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Foreword
When Rebecca asked me to write a foreword to her book I didn’t have to think
twice about endorsing it.

Our paths had crossed numerous times before. I’ve been a professional Haskell
programmer for almost a decade now and I’ve been teaching and evangelizing
Haskell for even longer. If you’ve used Haskell you’ve probably used one of
my packages or read one of my blog posts.

Rebecca immediately made an impression on me when we met at the Haskell
Love conference. I was struck by her extremely sensible and pragmatic
approach to Haskell. Now I know Rebecca as a colleague as well as an active
member of the Haskell community. She’s an engineering manager for a Haskell
team, a Haskell.org committee member, and has presented and hosted
workshops at numerous Haskell conferences. Rebecca knows Haskell.

As the author of the “State of the Haskell Ecosystem,” I’ve understood for
some time that the Haskell ecosystem is missing a well-written book. But no
longer. That well-written book is here.

Yes, Rebecca writes well, but I think the secret ingredient in Rebecca’s
teaching style is patience. I don’t just mean that she’s a patient teacher; she
instills patience in her students, too. Haskell is a language that rewards
patience by paying amazing dividends in the long run. But “in the long run”
means that the payoff doesn’t come until you get beyond the beginner level.
Rebecca truly understands how to mold beginners into intermediate Haskell
programmers.

You might be one of the many Haskell beginners looking for some way to
graduate to that intermediate Haskell programmer where you really leverage
the strengths of Haskell. If that’s you, then look no further: Effective Haskell
is the book for you. You’ll find that this book is patient but not tedious; you
might even say it’s effective. You’ll derive value from the book early on because
Rebecca expertly interleaves foundational concepts with opportunities to get
your hands dirty with useful applications.
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If that sounds like what you’re looking for, then read on. With Effective Haskell
you’re well on your way to pursuing a long and rewarding journey with a
remarkably powerful language.

Gabriella Gonzalez
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Introduction
Software development is harder than it’s ever been, and the unfortunate
reality is that every year things continue to get harder. Much of this difficulty
is due to the complexity inherent in modern systems. Today, software needs
to do more things, it needs to do them at a larger scale, and the consequences
for failure are higher. To be effective in the market today, we have to use every
tool at our disposal to rein in the complexity of our systems. I believe that
Haskell is one of the greatest tools that we have at our disposal today to help
us craft systems that are both more reliable and less complex.

Haskell isn’t a new language. In fact, the first version of Haskell was published
in 1990, a year before Python and five years before Java. In many ways Haskell
has always been a remarkably successful language. It’s been used widely in
both industry and academia for the research and development of programming
languages, and the design of Haskell has been incredibly influential in shaping
other languages that are in wide use today.

Although it’s been wildly successful as a research tool and programming
language “influencer,” industrial adoption of Haskell has lagged behind. Today,
there are more Haskell jobs than ever, and more companies are choosing
Haskell to build their products and key parts of their infrastructure. Right
now, Haskell remains more of a secret weapon than a mainstream tool, but
the clear benefits of Haskell for the kinds of systems that people are building
today means that an inflection point in the popularity of the language is
inevitable. If Haskell doesn’t become the next big thing, then the next big
thing will certainly end up looking even more like Haskell than any of the
other myriad of languages that have been influenced by it.

Why Choose Haskell?
The reason that Haskell is such a good choice for modern software is that it
gives us everything we need to build reliable, predictable, and maintainable
systems that run efficiently and can be easily scaled horizontally. This is
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thanks to Haskell’s design as a lazy pure functional language with an excep-
tionally powerful and expressive static type system.

When you think of functional programming, the first thing that likely comes to
mind are the sorts of functional programming features that are recently being
added to mainstream object-oriented languages. These include things like:

• Support for closures or lambda functions
• Using functions like map and reduce instead of traditional loops
• Immutable data structures that copy their results rather than mutating

their inputs

Haskell is different. The benefits we get from Haskell go far beyond being able
to pass around functions and have immutable data structures. Thanks to its
purity, Haskell can offer us strict guarantees about immutability across our
entire program. This means that we never have to worry about unintended
changes to shared or global state causing our program to crash, or think
about how to coordinate access to mutable data.

One of the reasons that Haskell can give us strong guarantees about what our
program does where other languages can’t is thanks to the power of its type
system. Haskell’s type system is more expressive than the type system of any
other mainstream programming language in use these days. Thanks to the type
system, a Haskell program can keep track of information about what kind of
data a variable holds, where it came from, what can be done with it, and even
whether the function that calculates that value could possibly fail.

Of course, this type information doesn’t just help us write better programs
once. Every time we make changes to our program, the type checker does its
job to ensure that we haven’t introduced any new problems, and helps us
track down things that might need to change. As applications grow and teams
get larger, the power of the type system to help us refactor becomes even more
important. Types become a way that we can communicate with our peers, to
provide guard rails for how they use our code, and to make sure we are using
the code they wrote as it was intended. In this way, Haskell doesn’t just solve
for the problems of complexity with the software we’re writing, it also helps
with the complexity inherent in building that software with a large team.

Why This Book
Haskell can offer enormous benefits to individuals and developers who want
to write high quality software, but as the saying goes, “if it were easy, everyone
would do it.” The benefits of Haskell come at the cost of a steep learning curve.
Haskell is hard to learn, but this book will help.
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Learning Haskell can be hard in part because it’s so different from other
languages you’ve probably used. This ends up being a particularly hard
problem because many of the most unusual concepts that you need to learn
often show up all at the same time, leading to circular dependencies in your
learning plan. This book has been carefully designed, especially in the first
half, to provide an on-ramp to the language that avoids the need to get into
circular knowledge references.

Rather than teach you how to translate your programs from other languages, in
this book you’ll develop an intuition for how to think about programs in Haskell
from the ground up. This will make it easier for you to read other developers’
code, make you more effective at writing code, and help you with troubleshooting.

Most of the chapters in this book build on concepts from previous chapters,
and no content in any chapter relies on concepts that have not yet been
introduced. You’ll never be forced to use something that hasn’t yet been fully
explained. In the last half of this book, once you have worked through the
fundamental materials, you may be able to approach some material out of
order if there are particular areas that you are interested in.

Some features of Haskell can seem unnecessarily complex the first time you
encounter them. Some people, when they are faced with a feature that makes
no sense, will assume the feature was a bad idea and give up on learning it
altogether. Other people will put the concept on a pedestal and assign it dispro-
portionate significance. In either case, the lack of motivation for the things
Haskell does differently can be a barrier to learning. To help with that, each
time a new concept is introduced in this book, we’ll dedicate a significant amount
of time to establishing a motivation for that concept to help you better internalize
the reason for the design decisions Haskell makes. Understanding the motivation
will ensure you’re better positioned to make informed choices about how to
design your applications, and when and how to use features of the language.

Since you’ll be learning to think about programming in an entirely new way,
we’ll approach the material quite slowly in the beginning, carefully outlining
all of the intermediate steps that go into executing some code and walking
through multiple examples. As you approach the middle of the book, the pace
will pick up, and by the last few chapters you should be learning new concepts
at the pace of a native Haskell developer.

What to Expect as You Read
This book focuses on teaching through the demos and hands-on example code.
Most of the chapters in this book will start with a motivating example followed
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by several interactive demonstrations of a concept that you can reproduce
using the interactive Haskell development environment ghci. Most chapters
will also include some projects you can build as you are working through
material. The chapters will include all of the code you need to build a func-
tioning minimal example, but you are encouraged to make modifications and
experiment with the code as you are working through the book. At the end
of each chapter you’ll also have some exercises that build on the examples
you wrote. These examples will help you learn how to navigate Haskell’s
documentation and work within its ecosystem to self teach, so you are better
equipped to continue learning after you’ve finished the book.

Compared to other programming language communities, parts of the Haskell
community can tend to be a little “math jargon” heavy. It’s not uncommon to
see terms from theoretical computer science and math make their way into
blog posts, articles, and even library documentation. This book aims to teach
Haskell without requiring either a strong background in mathematics or
familiarity with mathematical jargon. Since knowing the jargon and getting
comfortable using it will ultimately help make you a more effective Haskell
developer, common jargon terms will be introduced, defined, and then used
consistently throughout the book. If you are skipping ahead and see some
intimidating sounding language, turn back a few pages and you’re likely to
find a definition and several examples to help you make sense of the words
before they start being used regularly.

How to Read This Book
This book has been designed to be read cover-to-cover as a tutorial and
workbook, or to be used in a classroom or reading group setting. Starting
with Chapter 1, each new chapter will continue a theme or build on some
knowledge that you picked up in the previous chapter. If you have some prior
experience with Haskell, it’s worthwhile to start reading from the beginning
so that you can follow along with the subsequent references to earlier material.

For more experienced Haskell developers, this book can also serve as a useful
resource to help you learn some practical ways to apply more advanced
techniques. If you’ve used Haskell in school or written a few small programs
and are looking to move into building larger production applications, you may
find it helpful to skim the first half of this book and then start reading the
second half more thoroughly.

As you are working through the book, you’ll encounter several different kinds
of example code. You should always be able to tell what type of environment
you should be working in based on the formatting of the examples:
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• Code that starts with a λ character should be typed into ghci.
• Lines that start with user@host$ should be typed into a shell like bash or zsh.
• Other code can be written in Haskell files using your text editor, or written

directly into ghci at your discretion.

Until you have finished Chapter 5, create a new directory for each chapter. Inside
of the directory you create for each chapter, create a file named after the current
chapter, for example, Chapter1.hs. You can use this for keeping track of example
code and experiments you want to run. You’ll also create several files named Main.hs
as you are working through the examples. You can put each of these in a subdi-
rectory, for example, one subdirectory per chapter, or you can rename your old
Main.hs files when you are no longer actively working through them. Whatever
organizational scheme you prefer, ensure you keep around all your examples and
experiments since you’ll want to refer to them frequently as you are learning.

Once you’ve worked through the chapter on Cabal on page 155 you’ll be better
equipped to create fully stand-alone projects that you can build. You’ll also
learn how to re-use code that you’ve written. From that point onward, you
can create a new project for each chapter or each major example.

Following Along with Example Code
As you read this book, you’ll work through examples iteratively, making
changes to earlier code and adding new features. Once you’ve learned about
how to import code from other modules, we’ll begin introducing new features
iteratively that require adding additional imports. Similarly, once you’ve
learned how to work with language extensions, we’ll add them as we work
through examples. The rest of this section will discuss how we’ll approach
introducing new imports and extensions in example code. Don’t worry too
much about the syntax yet. As you work through the book, you’ll learn about
imports and language extensions before they are required for any examples.
For now, skim this section and feel free to come back to it later if you need to.

Most of the chapters in this book will focus on building up a few small
example programs. In some cases, we’ll explicitly define a new module when
we’re starting a new example. In this case, these new modules may start out
including a few language extensions or imports.

{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE DerivingStrategies #-}
module Main Where

import Data.Text (Text)

main :: IO ()
main = print helloWorld
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As we iterate through the example, we’ll add new features that might require
additional language extensions or add-ons. When we’re getting ready to use
a new module or extension, we’ll add them to the top of an example:

{-# LANGUAGE OverloadedStrings #-}
import Data.ByteString (ByteString)

helloWorld :: ByteString
helloWorld = "Hello, World"

In your own code, you should add these to the relevant parts of your module.
Here’s an example of what your own code should look like as you follow along
with the examples:

{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE OverloadedStrings #-}
module Main Where

import Data.ByteString (ByteString)
import Data.Text (Text)

helloWorld :: ByteString
helloWorld = "Hello, World"

main :: IO ()
main = print helloWorld

Not all of the examples that you work through will start with a module and
a set of imports or extensions. In these cases, you can start with your own
empty module, or you can work though the examples in ghci.

Compiler Versions, Language Standards, and Extensions
Although there have been several different implementations of Haskell over
the years, the Glasgow Haskell Compiler (GHC) is the de facto standard Haskell
compiler. In this book we’ll focus on Haskell as implemented by GHC 9.4,
which is the newest stable release at the time of this writing. All of the
examples have also been tested with GHC 8.10.

Compiler Version Differences

A few examples in this book will use newer features of GHC not
available in version 8.10. Look out for an aside, like this one, to
learn about newer features and how to write code without those
features when you need to support older compilers.

As Haskell evolves, new features are typically added through extensions.
Language extensions allow you to enable and disable specific language fea-
tures. The Haskell2010 language standard is the default language version
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that’s used by GHC 8.10, and it includes a number of extensions that are
enabled by default. In GHC 9.4, the GHC2021 language version is used by
default. GHC2021 isn’t an officially published Haskell standard; instead it
represents a number of commonly accepted GHC specific nonstandard
extensions to Haskell2010 that are enabled by default.

In this book, we’ll target Haskell2010. Any language extensions that aren’t
included in Haskell2010 will be introduced and discussed. Complete example
programs will always include all extensions that would be required when
using Haskell2010. Shorter examples may omit language extensions for the
sake of readability.

GHC2021 Extensions

We’ll target Haskell2010 as a baseline when choosing which lan-
guage extensions to highlight in this book. If you’re using
GHC2021, look for an aside like this to tell you when an extension
is included by default and doesn’t need to be enabled explicitly.

EnabledExtension

ManuallyAllowAmbiguousTypes

GHC2021BangPatterns

GHC2021ConstraintKinds

ManuallyDataKinds

ManuallyDefaultSignatures

ManuallyDeriveAnyClass

ManuallyDerivingStrategies

ManuallyDerivingVia

GHC2021ExistentialQuantification

GHC2021ExplicitForAll

GHC2021FlexibleContexts

GHC2021FlexibleInstances

ManuallyFunctionalDependencies

ManuallyGADTs

GHC2021GeneralizedNewtypeDeriving

GHC2021KindSignatures

GHC2021MultiParamTypeClasses

ManuallyOverloadedStrings

GHC2021PolyKinds
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EnabledExtension

ManuallyQuantifiedConstraints

GHC2021RankNTypes

ManuallyRecordWildCards

GHC2021ScopedTypeVariables

GHC2021TupleSections

GHC2021TypeApplications

ManuallyTypeFamilies

GHC2021TypeOperators

ManuallyUndecidableInstances

ManuallyNoStarIsType

GHC2021PolyKinds

GHC2021StandaloneDeriving

Libraries and Library Versions
The examples in this book stick to the standard library, base, as much as
possible. For features that aren’t available in base, we’ll stick to a small
selection of popular libraries. This should ensure maximum compatibility, at
the cost of not showing off some very interesting libraries that are worth
learning. The following table includes the exact versions of each package that
were used for the examples. In any cases where there are incompatible changes
between library versions, we’ll use the most recent version of the library.

Version (GHC 8.10)Version (GHC 9.4)Package

4.14.3.04.17.0.0base

0.10.12.00.11.3.1bytestring

1.2.1.01.2.1.0base64-bytestring

1.2.4.12.0.1text

0.6.5.10.6.6containers

0.12.3.10.12.3.1vector

1.9.31.12.2time

2.7.2.22.7.3unix

2.2.22.2.2mtl

0.5.6.20.5.6.2transformers

1.6.13.21.6.15.0process
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CHAPTER 1

Getting Started with Haskell
Haskell lives at the intersection between practical applied languages and
research languages created to push the boundaries of what’s possible to do
in a programming language. The expressiveness and flexibility that makes
Haskell useful for computer science research turns out to also be incredibly
useful for the working engineer who wants to build reliable and maintainable
systems. That’s why you’ll find it used in everything from web applications
to data pipelines to compilers and configuration management tools.

The Haskell motto avoid success at all costs is a reminder that programming
in Haskell sometimes means trading away immediate familiarity or comfort
for power, flexibility, and correctness. Avoiding short-term success and doing
what’s right is the Haskell path to long-term success. This trade-off means
that things that you might take for granted in other languages work a little
bit differently in Haskell. Haskell is no harder to learn than any other lan-
guage, but for experienced developers, the challenge is in unlearning old
practices and preconceptions.

One of the ways Haskell is different is that it’s a pure functional language.
Haskell developers like to throw the words pure and purity around frequently,
but you won’t always find an exact definition of what it means. For our pur-
poses, we can think of purity like this: in a Haskell program, all values are
immutable, and all functions have to be free of any side effects. That means
we can’t ever modify in place or change the value of variables, we can’t modify
any global state, and we can’t arbitrarily do things like read from files on disk,
access the network, or print something to the screen. At first, this might seem
like an onerous set of restrictions, but as you’ll see starting in Chapter 7 on
page 263, Haskell gives you a rich set of tools and alternative patterns so that
you can write the same sorts of programs that you would write in an impure
language.
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Another way that Haskell differs from many other popular languages is in
the power and expressiveness of its type system. You’ll start to learn more
about how to make use of Haskell’s type system starting in Chapter 4 on page
89. In the mean time, we’ll take advantage of Haskell’s sophisticated type
inference which will allow us to start getting familiar with the language without
worrying too much about types.

Finally, Haskell is a lazy language. That means Haskell has the powerful
ability to avoid running parts of our program until it’s sure that we will need
the results. This can let us write programs in ways that feel more natural but
might have significant negative performance costs in a strict language. You’ll
have an opportunity to start learning about laziness starting in the next
chapter on page 47.

For now, we’ll focus on getting familiar with the basic syntax of Haskell. In
this chapter you’ll start learning Haskell from the ground up by getting a
handle on foundational concepts like defining variables, creating and calling
functions, and working with lists. A lot of this will feel familiar, but working
through it carefully will ensure that you don’t get tripped up by subtle but
fundamental features of Haskell as we get deeper into the language in later
chapters.

Exploring Haskell Interactively
We’ll start our Haskell journey by diving into ghci to run some commands
interactively. ghci is Haskell’s REPL, an interactive environment that lets you
run commands, call functions, and even debug your programs. Most Haskell
developers rely on ghci extensively as they develop their programs, and it’s a
natural starting point for you to start familiarizing yourself with the basic
syntax of the language. For instructions on getting ghci and the rest of your
Haskell environment installed and configured, you can consult the instructions
online at haskell.org.1

When you start up ghci you’ll see a default prompt:

$ ghci
GHCi, version 9.4.2: https://www.haskell.org/ghc/ :? for help
Prelude>

The first thing you’ll see is some information about the current version of
GHC that you have installed. It’s okay if you are using a newer, or slightly
older, version of ghci.

1. https://www.haskell.org
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The next line is the ghci prompt. The prompt shows you a list of all of the
current modules that you have imported; in this case it’s just Prelude, which
is the name given to all of the built-in things that are available by default
from Haskell’s standard library.

For the sake of readability, in this book we’ll use a slightly different prompt.
First, we’ll omit the list of imported modules. Second, we’ll change our prompt
character to the lowercase Greek letter lambda: λ. You can use any letter or
symbol you like, but λ is both a nod to the origins of functional programming
and a nice visually distinctive way to help you quickly see when we’re working
in an interactive session.

$ ghci
GHCi, version 9.4.2: https://www.haskell.org/ghc/ :? for help
λ

Configuring Your ghci Prompt

If you’d like to make your prompt look like the one in the examples, you can type:
:set prompt "λ" when you first start ghci. You can also add it to your ghci configuration
file, at ${HOME}/.ghci.

Now try typing in a few simple arithmetic expressions to see how you can use
ghci as a simple calculator:

λ 1 + 2
3
λ 3 + 4 + 5
12
λ 12 * (1 + 2 - 2) / 6
2.0

Try experimenting with basic arithmetic using parentheses and the +,-,*,/ oper-
ators to get comfortable working with ghci and entering different expressions.

Working with Lists
Now that you’re comfortable using ghci as a calculator, try creating some lists:

λ [1,2,3]
[1,2,3]
λ ["one", "two", "three"]
["one","two","three"]

When you are working with numbers, you can also create a list using the
range syntax. You create a range by creating a list with a starting and ending
number separated with two dots (..):
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λ [1..10]
[1,2,3,4,5,6,7,8,9,10]
λ [2..5]
[2,3,4,5]

As you can see, the range syntax gives us a list of numbers starting at the
first number and going up, one at a time, to the final value. If the starting
and ending values are the same, we’ll just get a single element list:

λ [10..10]
[10]

If the starting value is larger than the ending value, then you’ll get back an
empty list.

λ [10..1]
[]

If you start your range with two numbers instead of a single number, then
the range will increment, or decrement, by the difference between the two
starting numbers. Here’s how you’d get a list of the even numbers up to ten:

λ [2,4..10]
[2,4,6,8,10]

Or the first one hundred numbers in increments of 23:

λ [0,23..100]
[0,23,46,69,92]

In this example, you’ll notice that our list stops at 92 since that’s the last
multiple of 23 that is less than the end of our range.

You can use the same technique to generate a range that counts down. For
example, if you want to get a range that counts down from 10, you just need
to provide the first two numbers:

λ [10,9..0]
[10,9,8,7,6,5,4,3,2,1,0]

You can embed arithmetic expressions inside of lists too. Look at this example.
Do you see what the output will be when you run it?

λ [10 + 2, 10 * 2, 10 - 2, 10 / 2]

When you’re playing around with longer lists, reading the code in ghci can
start to become difficult, especially if you have lines of code longer than the
width of your terminal. You can break up a long expression across multiple
lines by typing :{ on its own line, entering as many lines as you like, and fin-
ishing with :}, also on its own line:
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λ :{
Prelude| [ 1
Prelude| , 2
Prelude| ]
Prelude| :}
[1,2]

This feature isn’t limited to lists; you can also use it for any other type of
expression when you find that it helps readability while working in ghci.

Creating Lists with More Than One Type
You might have noticed that all of our examples are of lists that only contain
a single type of value, for example, a list of all strings, or a list of all numbers.
In Haskell, a list can only contain one type of value at a time. If you try to
create a list that has two different types of values, like a number and a string
in the example, you’ll get an error message:

λ [1, "two"]

<interactive>:6:1: error:
• Ambiguous type variable ‘a0’ arising from a use of ‘print’
prevents the constraint ‘(Show a0)’ from being solved.
Probable fix: use a type annotation to specify what ‘a0’ should be.
These potential instances exist:

instance Show Ordering -- Defined in ‘GHC.Show’
instance Show Integer -- Defined in ‘GHC.Show’
instance Show a => Show (Maybe a) -- Defined in ‘GHC.Show’
...plus 22 others
...plus 15 instances involving out-of-scope types
(use -fprint-potential-instances to see them all)

• In a stmt of an interactive GHCi command: print it

This error message should look pretty confusing right now, and that’s okay.
As you are getting started with Haskell you’ll run into many situations where
unexpected things might cause you to see some errors. Some errors, like this
one about ambiguous type errors, will be particular common early on. Don’t
worry about these too much yet. As you progress through this text you’ll learn
more about what causes these errors, and how to fix them. You’ll be able to
understand more about this error in particular once you learn more about
lists and Haskell’s type system. You’ll learn much more about how to construct
lists and use them effectively in the next chapter on page 47. Later, when you
start to learn more about Haskell’s type system on page 89, you’ll learn how
to read and better interpret error messages like this.
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Creating Pairs
Tuples in Haskell let you store pairs, or more than pairs, of values. A list can
hold any number of values, but they all have to be the same type. A tuple can
hold different types of values, but size is fixed. You can’t add or remove items
from a tuple. Tuples are defined with parentheses:

λ tuple = (2, "two-pule")
λ thruple = (3, "triple", "thruple")
λ quadruple = (4, "quadruple", 4.0, False)

Two-element tuples are the most common kind of tuple, and so there are
functions to help you get the first and second elements out of them easily.
The functions are called fst and snd:

λ fst (2, "tuple")
2
λ snd (2, "tuple")
"tuple"

You can nest tuples and lists with other tuples and lists however you like:

λ ([1,2,3],["one","two","three"])
([1,2,3],["one","two","three"])
λ [(1,2),(3,4)]
[(1,2),(3,4)]

Although the fields of a tuple can be different types, when you have a list of
tuples they have to all have the same number of elements, and the types have
to all be the same at each position in the tuple. For example, we can have a
list of tuples that contain numbers and strings:

λ [("haskell", 7), ("is", 2), ("fun", 3)]
[("haskell",7),("is",2),("fun",3)]

However, we’ll get an error if we try to swap the order of fields in some of the
tuples:

λ [("haskell",7),(2,"is"),("fun",3)]

<interactive>:3:1: error:
• Ambiguous type variable ‘a0’ arising from a use of ‘print’
prevents the constraint ‘(Show a0)’ from being solved.
Probable fix: use a type annotation to specify what ‘a0’ should be.
These potential instances exist:

instance (Show a, Show b) => Show (Either a b)
-- Defined in ‘Data.Either’

instance Show Ordering -- Defined in ‘GHC.Show’
instance Show a => Show (Maybe a) -- Defined in ‘GHC.Show’
...plus 24 others

Chapter 1. Getting Started with Haskell • 6

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


...plus 47 instances involving out-of-scope types
(use -fprint-potential-instances to see them all)

• In a stmt of an interactive GHCi command: print it

We’ll also get an error if one of the tuples has a different number of elements,
even if the elements are all of the same type:

λ [(1,2), (4,5), (5,6,7)]

<interactive>:5:16: error:
• Couldn't match expected type: (a, b)

with actual type: (a0, b0, c0)
• In the expression: (5, 6, 7)
In the expression: [(1, 2), (4, 5), (5, 6, 7)]
In an equation for ‘it’: it = [(1, 2), (4, 5), (5, 6, 7)]

• Relevant bindings include
it :: [(a, b)] (bound at <interactive>:5:1)

As with the other error messages you’ll see in this chapter, you don’t need to
worry about understanding the details of what went wrong just yet. You’ll
learn how to read these sorts of error messages later on in the book.

Printing Things to the Screen
Although ghci automatically prints the value of an expression to the screen,
when you’re writing full programs you’ll want to control when you print things
out to the screen. The putStrLn function will print a string to the screen with a
newline (you can use putStr if you don’t want the extra newline). You can print
values in ghci as well.

Try it out yourself by typing putStrLn "Hello, World!" into ghci. Notice that in Haskell
calling a function doesn’t require any parentheses. Calling a function (or as
we often say in Haskell, applying a function to some arguments) is as simple
as functionName arg1 arg2 arg3.

If you try to use putStrLn to print a number to the screen you’ll get another
type error, since it only works with strings. Pick your favorite number and
try passing it to putStrLn to see an example of this.

You can convert most types, like numbers and lists, into strings using the
show function, as in the following examples. Try running these yourself to get
a feel for how it works:

putStrLn (show 12)
putStrLn (show [1..10])
putStrLn (show "Hello, World!")
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Calling show manually can add a lot of unnecessary boilerplate to your code.
The print function combines show and putStrLn into a single function. Try it
yourself by using print with your favorite number to print it onto the screen.

Spend as much time as you’d like trying out different expressions in ghci.
When you’re ready to move onto the next section, you’ll write your first real
Haskell program. Throughout the rest of this chapter you’ll learn more about
the basics of Haskell’s syntax and semantics and be able to write more useful
expressions in ghci.

Writing Your First Haskell Program
Now that you have some experience evaluating expressions, it’s time to write your
first complete Haskell program. We’ll start with an obligatory “Hello World”
program by creating a new empty file named Main.hs in your Chapter1 directory.

Open Main.hs and copy this example:

module Main where
main = print "Hello, World!"

You’ll learn what each of these lines is doing as you work your way through
the chapter, but for now let’s build the application and run your program.

From your command line you can compile your program by typing ghc Main.
After the program is built you’ll have a new executable, Main, that you can run
to see your message:

user@host$ ghc Main
[1 of 1] Compiling Main ( Main.hs, Main.o )
Linking Main ...
user@host$ ./Main
"Hello, World!"

Compiling your program upfront makes sense if you’re going to run your
program several times, but if you just want to run it once or twice while you
are developing it, then you can skip the separate compilation step and just
run your module by calling runhaskell Main.hs:

user@host$ runhaskell Main.hs
"Hello, World!"

As an alternative to runhaskell you can also load your module directly into ghci
using the :load command. Loading your module into ghci not only lets you run
your main function, like in the following example, but also gives you access to
all of the other functions and variables that are in scope. Loading modules for
interactive testing while you are actively developing code is a great way to design
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better APIs and get a feel for how your code is working. Just keep in mind that
code running in ghci won’t be as performant as code compiled ahead of time.

Open ghci from the Chapter1 directory where you saved Main.hs and load your
module and run Main.hs:

λ :load Main.hs
λ main
"Hello, World!"

Congratulations! You’ve written and executed your very first Haskell program.
To write something more sophisticated, you’ll need to learn some more syntax.

Formatting Haskell Code
Haskell is a whitespace sensitive language, meaning that statements are
grouped together based on their level of indentation, like Python, instead of
using braces as in JavaScript. Individual lines are terminated with a newline,
and don’t require any punctuation.

The amount of indentation you use is up to you, as long as you are consistent
within a given block of code. All the examples in this book will use two spaces,
which is common practice in Haskell.

Creating New Variables
Haskell variables must start with a lowercase letter and can contain letters,
numbers, underscores, and the single quote character (‘). You can use Unicode
letters in Haskell variable names, but we’ll stick to ASCII in this book. By
convention, Haskell variables use camelCase. Here are some examples:

helloWorld = "Hello, World"
number5 = 5
snake_case_variable = True
number5' = 6

As you might expect, we can also assign a variable to another variable:

five = 5
number = five

In ghci you can enter the name of a variable to see its value:

λ helloGeorge = "Hello, George"
λ helloGeorge
"Hello, George"
λ five = 2 + 3
λ five
5
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You can also re-use a variable name in ghci. For example, let’s create a new
greeting, and then change it:

λ greeting = "Good Morning"
λ greeting
"Good Morning"
λ greeting = "Good Afternoon"
λ greeting
"Good Afternoon"

In this example, we are re-using the variable name greeting, but we are not
changing the value of the variable. This can be a subtle distinction, so let’s
look at an example to help make it more clear. We’ll start by creating two new
variables, one and two:

λ one = 1
λ one
1
λ two = one + one
λ two
2

If we re-use the variable name one, and this time set it to five, we can see that
the value of two doesn’t change:

λ one = 5
λ one
5
λ two
2

From the time that we re-use the name one, anytime we type one we will be
referring to the new variable, but any code that was written before we re-used
the variable name will continue referring to the original variable.

In languages where we can change the value of a variable, it’s common to set
the new value of a variable based on the old value. If we try to do that in ghci,
the result might be surprising. Let’s try setting two to one, and then increment-
ing it:

λ two = 1
λ two = two + 1

So far, so good. Unfortunately, if we try to print out the value of two you’ll see
that ghci will seem to get stuck. Press control+c to regain control of ghci:

λ two
^CInterrupted.
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So what happened? This is a common bug that causes problems for people
first learning Haskell, and occasionally even catches experienced Haskellers
off guard. The problem is, since all of our variables in Haskell are immutable,
we can’t actually modify two to increment it. Instead, when we say two = two + 1
we’re creating a brand new variable named two, and its definition is recursive.
The two on the right hand side of the expression is referring to the brand new
two that we just defined. We have essentially just asked ghci to count forever.
Since Haskell is a lazy language, it doesn’t actually try to run this infinitely
recursive code until we ask it to print out the value of two. You’ll learn more
about recursion, and how to apply it usefully, later on in this chapter, and
you’ll learn more about laziness in the next chapter on page 47.

For now, we can fix our infinite recursion bug by choosing a different name
for our variable. The problem of wanting a variable that represents a slightly
modified version of an earlier variable comes up frequently in Haskell, so
there’s a common pattern: using prime variables. Let’s look at an example:

λ two = 1
λ two' = two + 1
λ two'
2

In this example, you can see that instead of re-using the variable name two
directly, we have added a single quote (') to the end of the variable name.
Haskellers sometimes pronounce this “prime” as in “two prime.” You might
also see the symbol pronounced “tick” when it’s used in this context. There’s
no special meaning to the character, it’s simply another letter that you’re
allowed to use anywhere, except as the first character, when you are naming
variables. You can add as many as you like:

λ two' = two + 1
λ two'' = two' + two
λ two''' = two'' + two'
λ two'''
5

In practice, variables with a single tick are common. Double prime variable
names, like two'', are rare but occasionally useful. If you’re using three or more
primes then it’s probably time to refactor your code.

Now that you’ve worked with variables in ghci, let’s get a feel for how they work
in normal applications by building a full program that defines some variables
and then prints them out. We’ll start by creating a new Main.hs. Next, we’ll
define a pair of strings named salutation and person. Finally, we’ll make a third
variable named greeting that joins the two strings. We can join strings in Haskell
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using the (<>) operator: "like" <> " " <> "this!". In some code bases, especially
older ones, you might also see the (++) operator being used to join strings:
"like" ++ " " ++ "this!". The (++) operator is a less general way to join things, and
it only works for lists and plain Haskell strings. Since (<>) is more general
and more commonly used, we’ll stick to it throughout this book.

module Main where

salutation = "Hello"
person = "George"
greeting =

salutation <> " " <> person

main = print greeting

You’ll notice that all of the variables we created in this example are defined
at the top level, outside of main. We’ll stick with this approach for now, and
you’ll also learn how to define variables inside of functions later in this
chapter.

Working with variables inside of a Haskell program is generally the same as
working with them in ghci, with one exception. As a concession to practical
usability, ghci allows us to redefine variable names. Outside of ghci we would
rather not risk bugs caused by having an ambiguous value for a variable, so
re-using names inside of the same scope isn’t allowed. If we try to add two
variables named message into the top level of Main.hs we’ll get an error. Let’s try
it to see what happens:

module Main where

message = "Hello, George"
message = "Hiya, Porter"

main = print message

If you try to run this program, you’ll get an error:

Main.hs:4:1: error:
Multiple declarations of ‘message’
Declared at: Main.hs:3:1

Main.hs:4:1
|

4 | message = "Hiya, Porter"
| ^^^^^^^

You can see in this example that the compiler has helpfully pointed us to the
exact location of the error, and told us what’s wrong. From here we could
either remove the duplicate definition, or we can choose a different name. In
the next section, you’ll learn about writing your own functions, and later on
in this chapter you’ll learn about creating new local variables using let and
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where. It’s useful to keep in mind as you learn about these things that you
can always re-use variable names in a new scope.

Writing Functions
Defining functions in Haskell may look strange, because of how lightweight
the syntax is compared to other languages. In fact, the syntax for defining
functions and variables in Haskell looks almost identical.

To define a new named function, give the function a name along with names
for each of the parameters that you want to accept. To look at a concrete
example, let’s rewrite our greeting program from earlier so that we can take
a variable greeting and person to greet.

We’ll start by creating a new function, makeGreeting, that takes two arguments,
salutation and person. We’ll use the <> operator to concatenate the two strings and
add a space between them. The return value of the function is the concatenated
string. Create a new Main.hs and copy the following example to get started.

module Main where

makeGreeting salutation person =
salutation <> " " <> person

main = print "no salutation to show yet"

Now load up ghci and test out your new function by calling makeGreeting "Hello"
"George".

You might notice that we’re not doing anything special to return a value from
our function. Later in this book you’ll learn how to be explicit about the return
value of your function. For now though, you can rely on knowing that the
value of the expression in your function is the return value of the function.

You can also create anonymous functions using a backslash (\) followed by
the parameters for the function, and then an arrow (->) followed by the body.
For example, you could create an anonymous version of the makeGreeting
function with:

\salutation person -> salutation <> " " <> person

In addition to the term “anonymous function,” you’ll sometimes see these
unnamed functions referred to as “lambda functions,” “lambda abstractions,”
or simply “lambdas.” All of these names refer to the same concept. In this
book we’ll use “anonymous function” consistently.

Functions close over the values that are in scope when they are defined,
meaning that the variables that were in scope when you defined the function
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are also in scope inside of the function. That means you can also nest
anonymous functions. All of the functions in the next example will behave
the same way:

makeThruple a b c = (a,b,c)
lambdaThruple a b = \c -> (a,b,c)
lambdaThruple' = \a -> \b -> \c -> (a,b,c)

In fact, in Haskell all functions only take a single argument. Functions that
appear to take multiple arguments, like makeThruple and lambdaThruple are really
just shorthand for a function like lambdaThruple' that creates a new function
for each parameter. The process of converting a function that takes multiple
arguments into a series of single-argument functions is called currying.
Although many languages support some form of currying, Haskell is somewhat
unusual in the fact that all functions are curried by default. As you’ll see
later in this section, and throughout this chapter, automatic currying makes
some common Haskell idioms much easier to use.

You’ve already called functions several times as you’ve worked through this
chapter, from functions like print to main. So far, every time you’ve called a
function you’ve given it all the arguments that it expects. When a function is
called with all of its arguments and can return a value that isn’t a function,
we call it fully saturated. It’s also possible, and common, to call a function with
only some of its arguments. We say these functions are partially applied.

makeGreeting:

greetPerson = makeGreeting "Hello"
λ greetPerson "George"
"Hello George"
λ greetPerson "Jane"
"Hello Jane"

In this example, you created a new function called greetPerson by giving
makeGreeting its first argument, but not the second. This pattern of partial
application also works when you’re defining new functions. Say you wanted
to make a new function that makes greetings more enthusiastic by adding
an exclamation point to the salutation, but otherwise you wanted to re-use
the logic from makeGreeting. You can do that by writing a function that partially
applies a modified salutation to makeGreeting. Let’s see an example:

enthusiasticGreeting salutation =
makeGreeting (salutation <> "!")

You could also add an extra parameter to enthusiasticGreeting just to pass it along
to makeGreeting:
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enthusiasticGreeting salutation name =
makeGreeting (salutation <> "!") name

In fact, the process of adding or removing those extra parameters has a name
that you’ll sometimes see used in Haskell. Removing the extra parameter, as
in the first example, is called eta reduction or η-reduction. Adding a parameter
and passing it along is called eta expansion. It’s useful to know these terms
because you’ll run into them occasionally in the Haskell community, and may
see them used in the output of some tools like code linters. For now it’s enough
to know that η-reduction is generally idiomatic in Haskell.

Operators, like (*) and (<>), are just functions that are infix by default. You
can partially apply them like any other function, except that you need to put
parentheses around the expression. In fact, you can partially apply the left
or right-hand operand independently. Try running these examples in ghci to
get a feel for how you can use partial application:

λ half = (/2)
λ twoOver = (2/)
λ half 10
λ half 20
λ twoOver 2
λ twoOver 8

You can also turn regular functions into infix functions by surrounding the
function name with backticks. This can sometimes help make code more
readable in general, and is especially handy when you want to partially apply
the second argument of a function. Here are some examples. Try typing them
into ghci.

λ greetGeorge = (`makeGreeting` "George")
λ greetGeorge "Hello"
λ greetGeorge "Good Evening"

The flip function is another handy way to apply only the second argument of
a function. You could write flip yourself easily:

flip someFunction arg1 arg2 = someFunction arg2 arg1

You can use flip in the same place that you’d backticks:

λ greetGeorge = flip makeGreeting "George"
λ greetGeorge "Good Afternoon"
"Good Afternoon George"

You might notice that when you write flip makeGreeting "George" that makeGreeting
is applied to flip first, and then "George" is passed in to the resulting function.
That is because of the precedence of function application. In Haskell,
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function application has a high precedence, and it associates left to right, so
flip makeGreeting "George" is the same as writing (flip makeGreeting) "George". Sometimes
the precedence of function application will require you to use parentheses.
For example, imagine a function that combines three strings:

λ sayThree a b c = a <> " " <> b <> " " <> c

If you call flip on this, as you’ve done in the earlier examples, you’ll flip the
first and second arguments:

λ flip sayThree "Good" "Afternoon" "George"
"Afternoon Good George"

If you want to flip the second and final arguments, you need to use parenthe-
ses to partially apply the first argument to the function first:

λ flip (sayThree "Good") "Afternoon" "George"
"Good George Afternoon"

Composing Functions
Now that you understand more about creating and calling functions in Haskell,
it’s time to learn about function composition. Fundamentally, function com-
position is about building functions that bring together two or more smaller
functions into a single larger function. In this general sense, using function
composition to build abstractions is what all programming is about.

Let’s look at an example of some code we might write without function com-
position. We’ll start by defining a few new functions that will do some basic
arithmetic on a number. You can write these in ghci or follow along with the
example by creating Chapter1.hs and adding them there.

module Chapter1 where

addOne num = num + 1
timesTwo num = num * 2
squared num = num * num
minusFive num = num - 5

Now that we’ve defined some functions that we want to use, let’s load them
into ghci and use them to generate a final value:

λ :load Chapter1.hs
[1 of 1] Compiling Chapter1 ( Chapter1.hs, interpreted )
Ok, one module loaded.
λ result1 = addOne 1
λ result2 = timesTwo result1
λ result3 = squared result2
λ minusFive result3
11
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In this example, we’re composing all of our functions by creating intermediate
values and passing them around. This works, but it’s tedious and error prone
since we might accidentally pass in the wrong intermediate variable, and if
we want to edit code like this later we could end up having to rename several
intermediate variables. Instead, we can use parentheses to call one function
directly with the output of another function. This makes it much easier for
us to re-use a particular collection of functions that are being called in a
certain way. For example, let’s add a findResult function to Chapter1.hs that will
compose the functions this way:

module Chapter1 where

addOne num = num + 1
timesTwo num = num * 2
squared num = num * num
minusFive num = num - 5

findResult num = minusFive (squared (timesTwo (addOne num)))

Let’s see this in action by loading the file up in ghci again. If you haven’t closed
your ghci session already, you can use the :reload command to load the newest
version of Chapter1.hs. For a single file, this won’t make much difference, but
:reload can be substantially faster when you are editing large projects.

λ :reload
[1 of 1] Compiling Chapter1 ( Chapter1.hs, interpreted )
Ok, one module loaded.
λ findResult 1
11
λ findResult 7
251

As you can see, our new version of the function is not only easier to read, it’s
also easier to call with different values.

Since composition is something we do so frequently in Haskell programs,
there are a couple of tools we have at our disposal to make this even easier:
two functions named ($) and (.). The function application operator, ($), helps
us avoid having too many parentheses when we write code. The function
composition operator, (.), helps us quickly build new functions by combining
existing ones.

Let’s start by looking at an example of how we can use ($) to help us write
easier-to-read code. As you’ve seen, Haskell’s normal function application
syntax is extremely lightweight. We just add the names of arguments right
after the name of the function.

λ addOne 1
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As you work through this book, you’ll learn about several advantages to this
syntax, but it has a significant drawback: if we want to use the output of a
function call as the input of a second call, the obvious way to write that would
have some ambiguity. Look at this example:

λ addOne timesTwo 1

<interactive>:36:1: error:
• Non type-variable argument in the constraint: Num (a -> a)
(Use FlexibleContexts to permit this)

• When checking the inferred type
it :: forall {a}. (Num a, Num (a -> a)) => a

As the authors of this code, we might know that our intent is to pass the
result of timesTwo 1 into addOne, but Haskell will interpret this as though we
are trying to pass two arguments to addOne, the first argument being the
function timesTwo and the second argument the number 1. Haskell is a func-
tional programming language that makes heavy use of passing around first
class functions, so this is an entirely sensible thing we might want to do
sometimes, but for now it just means we’ll get an error message. Don’t worry
about the specific meaning of the error text here. You’ll learn more about how
to read error messages later, when you start to learn more about working
with types on page 89.

One way that we can fix this error is by adding parentheses:

λ addOne (timesTwo 1)

In small examples like this, parentheses are a helpful way to ensure that the
code is evaluated the way you intend. In other cases, parentheses may not
be very readable, and in those situations you can use the function application
operator ($), which applies the function on the left-hand side to the value on
the right-hand side. The trick is that this operator has very low precedence,
so the right-hand side will be evaluated before the function is applied to it.
This has the same effect as wrapping everything after the ($) in parentheses.
So you could rewrite the earlier example this way:

λ addOne $ timesTwo 1

The choice of when to use ($) is largely stylistic. We’ll use it in this book when
it enhances readability, and skip it when it makes the code less readable.

Next, let’s look at the function composition operator, (.). This operator is a
higher-order function, a term you’ll hear used from time to time to describe
functions that accept another function as an argument, or return a function.
The (.) operator does both. It combines two functions and gives you a new
function that accepts an argument to the right-hand function, and passes
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that function’s output on as input to the left-hand function. It’s a simple
function that you could easily write yourself:

(.) func1 func2 = \arg -> func1 (func2 arg)

You use (.) like any other operator, except its operands are functions. Let’s
see an example:

λ timesTwoPlusOne = timesTwo . addOne

The timesTwoPlusOne function returns a new function that will double a value
after incrementing it. Notice that although timesTwoPlusOne is a function, you
don’t have to specify any parameters for it directly. When you combine
timesTwo and addOne with (.), the result is a new function that takes a parameter.
You can also chain multiple functions with (.):

λ timesEight = timesTwo . timesTwo . timesTwo
λ timesEight 3
24

Let’s look at a few more examples:

λ doubleIncremented = addOne . addOne
λ doubleIncremented 4
6

λ (timesTwo . addOne . squared . minusFive) 128
30260

It’s common to want to use (.) without making a named function. If you try
to call a function that you’ve composed you might run into the same problem
that you saw earlier when trying to manually compose functions:

λ timesTwo . timesTwo 3

<interactive>:34:1: error:
• Non type-variable argument in the constraint: Num (a -> c)
(Use FlexibleContexts to permit this)

• When checking the inferred type
it :: forall {c} {a}. (Num c, Num (a -> c)) => a -> c

You can ignore the specifc text of the error message for now. The reason that
you are getting the error is that calling timesTwo 3 is higher precedence than
composing timesTwo . timesTwo. To create a composed function you need to use
parentheses, or you can use the function application operator you learned
about earlier in this section:

λ (timesTwo . timesTwo . timesTwo) 3
24
λ timesTwo . timesTwo . timesTwo $ 2
16
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Using function composition to build more complex functions from smaller
functions is one of the most common things that you’ll do while writing Haskell
programs.

Writing Functions with No Named Parameters
Pointfree programming, sometimes called tacit programming, takes the ideas
of η-reduction and function composition to their logical conclusion by writing
functions that take no named parameters at all. For example, consider our
original makeGreeting function:

makeGreeting salutation person = salutation <> " " <> person

We can apply η-reduction once to remove the final named parameter quite
easily:

λ makeGreeting' salutation = ((salutation <> " ") <>)

To take it a step further and write a pointfree version of the function requires
that we rethink the structure of our function definition a little bit. Let’s re-
write makeGreeting' while retaining salutation first:

λ makeGreeting' salutation = (<>) (salutation <> " ")

This version of the function makes the second call to (<>) into a prefix function.
Its first argument is the first half of our string, which combines salutation with
a trailing whitespace. The second argument to the function, which we aren’t
binding to a variable name here, is the string that will become the last half
of the combined greeting.

As a next step, let’s replace the named salutation parameter with an anonymous
function defined where we are using it:

λ makeGreeting' = (<>) . (\salutation -> salutation <> " ")
λ makeGreeting' "hello" "george"
"hello george"

This is getting closer to a completely pointfree program: we’re no longer
binding any variables in our top level function declaration, but you might
already see that we can easily drop the explicitly bound variable name inside
of our anonymous function as well. We know that we could refactor this inner
expression. For example, imagine if we broke this up into two separate func-
tions:

λ firstPart salutation = salutation <> " "
λ makeGreeting' = (<>) . firstPart
λ makeGreeting' "hello" "george"
"hello george"
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You could refactor firstPart to be pointfree by rewriting it:

λ firstPart = (<> " ")
λ makeGreeting' = (<>) . firstPart
λ makeGreeting' "hello" "george"
"hello george"

Now you can substitute the definition of firstPart back into the definition of
makeGreeting', leaving you with a fully pointfree definition:

λ makeGreeting' = (<>) . (<> " ")
λ makeGreeting' "hello" "george"
"hello george"

Pointfree functions in Haskell can sometimes make code much cleaner and
easier to read, and can offer a more principled way of writing functions, or
they can also greatly reduce the readability and maintainability of code. The
threshold for whether to make a function pointfree or not is a matter of debate
in the Haskell community. In this book we will use a mixture of pointfree and
pointful functions. Try writing functions in both styles and figure out which
approach you prefer.

Precedence, Operators, and Fixity
Pointfree style is a great example of the flexibility that Haskell’s syntax can
afford you in writing code that’s short and to the point. Since Haskell’s
grammar requires very little in the way of additional punctuation to separate
out different parts of an expression, pointfree style feels like a natural evolution
of Haskell’s already generally minimalist style. The downside of both pointfree
style specifically, and Haskell’s lightweight syntax in general, is that it relies
on implicit rules about how things are parsed, rather than explicit punctuation
where characters and symbols are used to tell both the compiler and the
reader how to parse the code.

Thankfully, although these parsing rules are implicit and not written directly
into the code you read or write, there are only a few of them. In this section
we’ll start by looking at some concrete examples of how Haskell parses things
in different circumstances, and the rules behind the choices it makes. Next,
you’ll learn how to define your own custom operators. This will give you the
opportunity to learn about two other important factors in how Haskell code
gets parsed: binding precedence and associativity.

Let’s start with a simple example of something that does what we would expect:

λ "the first number is " <> show 1
"the first number is 1"
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We’ve written code like this before, and at the time we didn’t remark on it,
but this is a good example of one of the implicit rules that helps Haskell avoid
too many parentheses: passing an argument to a function always has higher
precedence than passing that argument to an operator. In formal Haskell
speak, we’d say that function application has a higher binding precedence
than operator application. Without this rule, our example wouldn’t work
because the (<>) operator would get passed to the function show instead of
the string we get back when we say show 1. This same rule also lets us call
functions in the middle of a longer string of calls to operators:

λ "the sum of " <> show 1 <> " and " <> show 2 <> " is " <> show 3
"the sum of 1 and 2 is 3"

The higher binding precedence of functions means we can omit the parenthe-
ses in this example, but there are other cases where it means we have to add
some parentheses. For example, if we try show the sum of two numbers without
parentheses, we’ll get an error:

λ show 1 + 2

<interactive>:119:8: error:
• No instance for (Num String) arising from a use of ‘+’
• In the expression: show 1 + 2
In an equation for ‘it’: it = show 1 + 2

The problem here is the binding precedence of functions means show is called
with 1 first, giving us the string "1". Next, we try to add the string "1" to the
numeric literal 2. Haskell won’t let us add a number and a string together,
so we get an error instead. We can introduce parentheses to solve this problem:

λ show (1 + 2)
"3"

Parentheses override all other precedence and let us explicitly set the order
in which things should be evaluated. Within the parentheses, all of the normal
rules about precedence and binding still apply, but from the outside the entire
parenthetical expression is treated as a single thing. In the case of our
example, that means that even though function application has the highest
precedence, the thing that’s being applied is the result of evaluating the entire
parenthetical expression.

Function application having higher precedence than operator application is a
helpful rule for resolving ambiguity in code like show 1 + 2, but what happens if
we try to pass the result of one function call into another function and introduce
some ambiguity. As an example, let’s write a function that adds two numbers:

λ add a b = a + b
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We could try to add the result of two other additions together by writing
something like:

λ add add 1 2 add 3 4

As you can probably guess, this doesn’t work. If you try this you should get
an error like this:

<interactive>:123:1: error:
• Non type-variable argument in the constraint: Num (a -> a -> a)
(Use FlexibleContexts to permit this)

• When checking the inferred type
it :: forall {a}.

(Num a, Num (a -> a -> a),
Num ((a -> a -> a) -> (a -> a -> a) -> a -> a -> a)) =>

a

We can add parentheses to fix our error:

λ add (add 1 2) (add 3 4)
10

Although this might be intuitive, there’s no particular reason parsing has to
work this way. When faced with some ambiguity around what to parse, for
example, because two things have the same precedence, the compiler needs
to pick an order. We can visualize this by adding parentheses to help develop
an intuition for the order that things get evaluated in.

Our original statement:

add add 1 2 add 3 4

Becomes:

((((((add add) 1) 2) add) 3) 4)

In this approach, each time that there’s a function being called, we need to
figure out how to prioritize what to evaluate first, so we start with the left and
work our way “out” or to the right. Alternatively, we could have worked right-
to-left. It’s hard to visualize exactly what this would look like, especially if
you are accustomed to working in left-to-right languages. The fact that we
write functions to the left of their arguments in Haskell means that parsing
function application right-to-left would look strange indeed. We can imagine
it would be something like this:

(add ((add 1 2) (add 3 4)))

The choice of whether to parse things left-to-right or right-to-left is known as
its associativity. We would say that our first example is left associative and
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the second example is right associative. Normal function application in Haskell
is left associative. Infix functions and operators have a bit more flexibility.

We can’t control the binding precedence or associativity of normal function
application in Haskell, but we can configure these for infix functions. This
combination of properties is called its fixity, and we declare it using a fixity
declaration. You’re most likely to see fixity declarations when creating custom
operators.

Creating Custom Operators
Haskell allows you to define your own operators, and as you’ll see later on in
chapter 6 on page 209, allows you to provide your own implementation of some
commonly used operators. Used sparingly, custom operators can improve the
experience of using a library, but be careful—overuse of operators can lead
to unreadable and unmaintainable code.

Another benefit to creating your own operators, and the one we’ll focus on in
this section, is that they can give you a useful insight into some of the parsing
rules you’ve just learned about. In this section, we’ll implement a few different
operators to get a feel for how they work, with a special focus on what we can
learn about Haskell’s syntax as we’re creating them.

First things first, what is an operator? You’ve already seen that operators
work a lot like regular Haskell functions, but there are a few important differ-
ences:

1. Operators are infix by default, and can be made to work like regular
functions when surrounded by parentheses. Regular functions need to
be surrounded in backticks to be used infix.

2. Functions have a higher binding precedence than operators, so when it’s
ambiguous whether an argument belongs to a function or an operator,
the function will always be chosen.

3. A function can have any number of arguments, but a custom operator
must always have exactly two arguments. We call these binary operators.

4. Functions can be named using any letters. Operators must be named
using symbols.

5. A function whose name starts with an uppercase letter is a type construc-
tor, which you’ll learn about when you start creating your own types on
page 117. Similarly, operators that start with the colon symbol, :, are
reserved for type constructors.
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Haskell operators can be named using nearly any combination of ASCII and
Unicode symbols, but they can’t contain letters or spaces. For the purposes
of operator naming, the underscore character, _, is considered a letter, so you
can’t use it in your operator names. You also can’t use parentheses, (), or
square brackets, [], in your operator names. Angle brackets <> are allowed,
and are popular when naming operators.

Let’s start by defining our own addition operator, which we’ll call (+++). There
are two ways that we can define an operator. First, we can write the definition
as though we were writing the function in prefix form, with parentheses:

module OperatorExample where

(+++) a b = a + b

Alternatively, we can write it as though we were using it in infix form:

module OperatorExample where

a +++ b = a + b

The difference here is entirely stylistic. You can still use the operator as a
normal infix operator even if you define it using the prefix form; you can also
still use parentheses to call the operator in prefix form even if you’ve defined
it using the infix style. We’ll use infix form for the examples in this section,
but you can choose whichever you like better.

If you load this example up in ghci you can see that it does work as an operator
and lets you add numbers. You can also still do all of the normal operator
things you’d do, like use it in prefix form, or partially apply it:

λ :load OperatorExample.hs
[1 of 1] Compiling OperatorExample ( OperatorExample.hs, interpreted )
Ok, one module loaded.
λ 1 +++ 1
2
λ (+++) 1 2
3
λ increment = (+++ 1)
λ increment 8
9
λ anotherIncrementer = (1 +++)
λ anotherIncrementer 0
1

This is looking pretty good, but if we try to use our new operator as part of a
longer expression, we’ll see that our operator is giving us different results
compared to the standard addition operator:
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λ 1 +++ 2 * 3
9
λ 1 + 2 * 3
7

The problem is that our new operator has higher precedence than multiplica-
tion, so in our first example we’re calculating (1 +++ 2) * 3. In normal arithmetic,
multiplication has a higher precedence than addition, and in Haskell (*) has
a higher precedence than (+) operator. That means that in our second example
we’re calculating 1 + (2* 3). We can fix this by adding a fixity declaration.

A fixity declaration has three parts. First, you declare the operator’s associa-
tivity:

• infixl for left associativity
• infixr for right associativity
• infix if the operator is not associative

Next, you set the operators binding precedence. The binding precedence is a
number from 0 (the lowest precedence) to 9 (the highest precedence). The last
part of the fixity declaration is the name of the operator, or infix function,
that you are declaring the fixity for.

Normal addition in Haskell is left associative and has a precedence of 6. You
can find this out from the online documentation, or by looking at the info in
ghci using the :info command:

λ :info (+)
type Num :: * -> Constraint
class Num a where

(+) :: a -> a -> a
...

-- Defined in ‘GHC.Num’
infixl 6 +

There’s a lot of extra information in this output that you won’t understand
until chapter 3, when you learn more about types on page 91. What’s impor-
tant for us is the last line of output:

infixl 6 +

This is the fixity declaration for addition. If we use the same fixity declaration
for (+++) then we should see the same behavior in our example. Let’s give it
a try:

module OperatorExample where

infixl 6 +++
a +++ b = a + b
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λ :load OperatorExample
[1 of 1] Compiling OperatorExample ( OperatorExample.hs, interpreted )
Ok, one module loaded.
λ 1 +++ 2 * 3
7

Now that we’ve lowered the binding precedence from the default of 9 to 6, our
new addition operator behaves like we would expect.

Copying the fixity declaration from (+) helped us get working code, but we
don’t always have some existing work we can reference. Let’s look at some
different fixity definitions and how they would have changed the behavior.

Since we’re going to be experimenting with several different versions of the
same function, with different fixity declarations, it may be easier for you to
work in ghci rather than making the changes in your file and re-loading it. As
a matter of convenience you can enter the definition of your operator and its
fixity declaration on the same line in ghci separated by a semicolon:

λ a +++ b = a + b; infixl 6 +++

You can use the up-arrow key to scroll backwards through history and re-
edit this line to save yourself some typing. You can also type Control-r to search
backwards through history to get back to this line if you’ve been running
several different experiments. This can be a fast way to iteratively test different
minor changes to a piece of code.

The first change we’ll try is changing the binding precedence from 6 to 7. The
fixity of (*) is infixl 7 *, so in this example both operators will have the same
precedence:

λ a +++ b = a + b; infixl 7 +++

If we run our first example, we’ll see that we’re once again adding before we
multiply:

λ 1 +++ 2 * 3
9

However, if we re-order our example and have the multiplication on the left-
hand side of the expression, when both operators have the same precedence,
then we’ll multiply first:

λ 3 * 2 +++ 1
7

If the precedence of (+++) is higher or lower than (*), then the output will be
consistent regardless of the order in which we type the expression:
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λ a +++ b = a + b; infixl 6 +++
λ 3 * 2 +++ 1
7
λ 1 +++ 2 * 3
7
λ a +++ b = a + b; infixl 8 +++
λ 3 * 2 +++ 1
9
λ 1 +++ 2 * 3
9

This example tells us that when the binding precedence for two left-associative
operators is the same, then they are evaluated left-to-right. If we had two
right-associative operators of the same precedence, then the evaluation will
apply right-to-left. We can see an example of this if we define a right-associa-
tive version of (*), (***) and re-run some of our examples using it:

λ a +++ b = a + b; infixr 7 +++
λ a *** b = a * b; infixr 7 ***
λ 1 +++ 2 *** 3
7
λ 3 *** 2 +++ 1
9

λ a *** b = a * b; infixl 7 ***
λ a +++ b = a + b; infixl 7 +++
λ 1 +++ 2 *** 3
9
λ 3 *** 2 +++ 1
7

What if we have two operators with different associativity? As long as they
have a different binding precedence, everything will work as we’d expect. For
example, if we keep (***) left associative, and make (+++) right associative,
you’ll see that the behavior remains the same when they have different
precedence:

λ a *** b = a * b; infixl 7 ***
λ a +++ b = a + b; infixr 6 +++
λ 1 +++ 2 *** 3
7
λ 3 *** 2 +++ 1
7
λ a +++ b = a + b; infixr 8 +++
λ 1 +++ 2 *** 3
9
λ 3 *** 2 +++ 1
9
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If the binding precedence is the same though, we’ll get an error. The statement
is ambiguous and the parser doesn’t have any way to resolve the situation:

λ a +++ b = a + b; infixr 7 +++
λ a *** b = a * b; infixl 7 ***
λ 1 +++ 2 *** 3

<interactive>:289:1: error:
Precedence parsing error

cannot mix ‘+++’ [infixr 7] and ‘***’ [infixl 7]
in the same infix expression

When the precedence of the operations is the same and they have different
associativity, there are no rules that will tell the compiler how to evaluate the
expression, so it gives up. We can still evaluate this if we use parentheses:

λ (1 +++ 2) *** 3
9
λ 1 +++ (2 *** 3)
7

Another case where we have to use parentheses is when an operator doesn’t
define associativity at all. The equals operator, (==) is an example of a com-
monly used operator without associativity. Its fixity declaration is:

infix 4 ==

We can see this in action from ghci:

λ True == True == False

<interactive>:294:1: error:
Precedence parsing error

cannot mix ‘==’ [infix 4] and ‘==’ [infix 4]
in the same infix expression

Just like when we have operators with different associativity, you have to use
parentheses if you want to write an expression that uses multiple operators
that are not associative:

λ True == (True == True)
True
λ (True == True) == True
True

All of the examples of fixity declarations that we’ve looked at so far have
focused on operators. You can also write a fixity declation for a standard
function that is being used as an infix operator. For example, let’s write a
division function that does the same thing as normal numeric division:
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module OperatorExample where

divide = (/)

Since we haven’t given a specific fixity declaration to divide, when we use it as
an infix operator it will have the usual operator fixity: a binding precedence
of 9 and left associativity. The (/) operator is also left associative, but has a
precedence of 7, the same as multiplication. That means that repeated calls
to divide should give us the same result as repeated calls to (/):

λ :load OperatorExample.hs
[1 of 1] Compiling OperatorExample ( OperatorExample.hs, interpreted )
Ok, one module loaded.
λ 1 / 2 / 3 / 4
4.1666666666666664e-2
λ 1 `divide` 2 `divide` 3 `divide` 4
4.1666666666666664e-2

We can give divide a fixity declaration, just like we’d do with an operator. For
example, if we change divide to be right associative, then we can see that
repeated calls will start giving us a very different answer:

λ divide = (/); infixr 9 `divide`
λ 1 `divide` 2 `divide` 3 `divide` 4
0.375

You’ll notice in this example that when we write a fixity declaration for a
regular function, we need to put it in backticks. The fixity declaration doesn’t
change anything about how the function will behave if it’s not being called
infix. As an example, let’s set the precedence of divide to 0, and then call it a
few times infix as well as calling it as a normal function. You’ll see that when
it’s called infix it will have low precedence, but when it’s called as a normal
function it will continue to have a higher precedence than any other operator:

λ divide = (/); infixr 0 `divide`
λ divide 1 2 * 10
5.0
λ 1 `divide` 2 * 10
5.0e-2

As you can see, the fixity rules for operators, and for functions that are being
used in infix form, have a big impact on how your code is evaluated. Although
you might only create custom operators occasionally, the rules for binding
and associativity are important to keep in mind because they impact if, and
when, you need to use parentheses or the ($) operator when you are writing
programs. Throughout this book we will occasionally add parentheses or use
the ($) when the binding and precedence rules mean that they aren’t strictly
needed. This isn’t typical in most Haskell code. The common style in Haskell
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is to omit these things whenever you can. They are included in some examples
in this book to add clarity. If you are looking at some example code later on in
this book and find it confusing, the parsing rules around fixity are a common
culprit. Consider returning to this section and reviewing the material to see
if it makes the syntax of the example easier to follow.

Creating Local Variables Using Let Bindings
Now that you’ve learned how to create new top-level variables and functions,
it’s time to look at how to build more complex functions. In this section, you’ll
learn how to build larger and more complex functions by building up interme-
diate computations using let bindings.

Let bindings allow you to give a name to some particular expression in your
program. Let’s start with an example. We’ll rewrite our makeGreeting function
from before to use an intermediate value. If you still have access to your
previous file where you defined makeGreeting, feel free to re-use it. Otherwise,
create a new Main.hs with a function named makeGreeting with the following
definition:

module Main where

makeGreeting salutation person =
salutation <> " " <> person

main = print $ makeGreeting "Hello" "George"

Next, update your makeGreeting method to create an intermediate value using
a let binding. A let binding consists of the keyword let followed by some variable
definitions, and then the keyword in followed by an expression. In short: let
vars in expr.

Let’s see how to we can add a let binding to makeGreeting:

makeGreeting salutation person =
let messageWithTrailingSpace = salutation <> " "
in messageWithTrailingSpace <> person

You aren’t limited to a single variable inside of a let binding; you can create
as many different local variables as you want. We can write an extended
greeting function that demonstrates how we can create multiple local variables
in a single let binding:

extendedGreeting person =
let hello = makeGreeting "Hello" person

goodDay = makeGreeting "I hope you have a nice afternoon" person
goodBye = makeGreeting "See you later" person

in hello <> "\n" <> goodDay <> "\n" <> goodBye
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As with top-level bindings, you are free to reference bindings that you define
later in the same let expression. For example, we could have rewritten
extendedGreeting by saying:

extendedGreeting person =
let hello = makeGreeting helloStr person

goodDay = makeGreeting "I hope you have a nice afternoon" person
goodBye = makeGreeting "See you later" person
helloStr = "Hello"

in hello <> "\n" <> goodDay <> "\n" <> goodBye

In this example, hello references the helloStr variable that we don’t define until
later in the same let binding.

When you create a let binding, the expression you are binding a name to
doesn’t need to be a constant, like a string or a number. You can also use let
bindings to define new functions. The syntax is the same as defining a top-
level function:

extendedGreeting person =
let joinWithNewlines a b = a <> "\n" <> b

hello = makeGreeting "Hello" person
goodbye = makeGreeting "Goodbye" person

in joinWithNewlines hello goodbye

Haskell supports recursive let bindings, which means that the items inside
of our let bindings can refer to one another. The order doesn’t matter; you
can refer to items that you define further down in the let binding like in this
example:

exntededGreeting person =
let joinWithNewlines a b = a <> "\n" <> b

joined = joinWithNewlines hello goodbye
hello = makeGreeting "Hello" person
goodbye = makeGreeting "Goodbye" person

in joined

Let bindings can also be nested. For example, if you are defining a new
function inside of a let expression, and you want to define some variables
inside of that function, you can use nested let expressions.

Now that you understand a little bit more about let bindings, follow along
with the next example to create an extendedGreeting function that uses let
bindings to define intermediate values and functions:

extendedGreeting person =
let joinWithNewlines a b = a <> "\n" <> b

helloAndGoodbye hello goodbye =
let hello' = makeGreeting hello person
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goodbye' = makeGreeting goodbye person
in joinWithNewlines hello' goodbye'

in helloAndGoodbye "Hello" "Goodbye"

There’s one final type of binding called a where binding. A where binding fol-
lows all the same rules as a let binding, except it comes at the end of a func-
tion instead of the beginning, and uses the where keyword instead of let .. in.
Any parameters that you’ve bound to a variable name in your function will
be available to your where binding, but not anything you’ve defined in a let
binding. Conversely, anything you define inside of a where binding will be
available to use in let bindings:

letWhereGreeting name place =
let

salutation = "Hello " <> name
meetingInfo = location "Tuesday"

in salutation <> " " <> meetingInfo
where

location day = "we met at " <> place <> " on a " <> day

You can see in this example that the location function in our where clause can
access the place parameter to the function, but we have to explicitly pass in day
as a parameter, since location does not have access to variables defined in the let
binding.

Try rewriting your extendedGreeting function to use a where binding instead of a
let binding:

extendedGreeting person =
helloAndGoodbye "Hello" "Goodbye"
where

helloAndGoodbye hello goodbye =
joinWithNewlines hello' goodbye'
where

hello' = makeGreeting hello person
goodbye' = makeGreeting goodbye person

joinWithNewlines a b = a <> "\n" <> b

The choice of whether to use let or where bindings is a matter of personal style
and what seems to be the most readable as you are writing the code. In this
book we’ll use a mixture of both, and it’s common to see them both used in
real applications. As a general rule of thumb, we’ll use let bindings for inter-
mediate values and where bindings for ancillary and helper functions, but this
is an arbitrary choice and we might deviate from the pattern from time to
time if doing so will help make the code more readable. As you work through
the examples in this book, consider experimenting with both styles of bindings
to get a feel for your own personal style.
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Running Code Conditionally Using Branches
Haskell supports quite a few ways to take different branches in your code. Some,
like the venerable if expression will look familiar. Others, like guard clauses
might not. In this section, you’ll learn the basics of branching in your program.
Later, on page 66, you’ll learn about pattern matching, a powerful technique
you can combine with branches to make your code incredibly expressive.

The branching structure that you’re probably most familiar with from other
languages is the if expression. Like most other languages, if expressions in
Haskell allow you to return one value if some predicate is true, and a different
value if the predicate is false. In Haskell, if structures are expressions,
meaning that you can assign a variable to the result of an if expression, and
also that you must have both a true and false branch for every expression.
This makes the behavior of Haskell if expressions similar to the ternary ?:
operator in languages like C and JavaScript.

Let’s look at a basic example to start with, by writing a program that will print
a number if it’s smaller than 10, or otherwise print an error. Let’s start by
opening up an empty Main.hs file and copying the following example:

module Main where

printSmallNumber num =
if num < 10
then print num
else print "the number is too big!"

main = printSmallNumber 3

Once you’ve copied the example, test to make sure it runs:

user@host$ runhaskell Main.hs
3

You might next want to refactor your program to take advantage of the fact
that if expressions always return a value. If you try to run the updated version
in the example, you’ll quickly notice that the obvious solution introduces a
new bug.

printSmallNumber num =
let msg = if num < 10

then num
else "the number is too big!"

in print msg

When you ran this snippet you should have gotten an error that looks like
this one:
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[1 of 1] Compiling MaybeTooBig ( MaybeTooBig.hs, interpreted )

MaybeTooBig.hs:4:22: error:
• No instance for (Num [Char]) arising from the literal ‘10’
• In the second argument of ‘(<)’, namely ‘10’
In the expression: num < 10
In the expression:

if num < 10 then num else "the number is too big!"
|

4 | let msg = if num < 10
| ^^

Failed, no modules loaded.

The reason you got this error is, since if expressions return a value, and values
in Haskell have types, you have to make sure that both the then and else
clauses of the branch return the same type. Otherwise the compiler doesn’t
know what type the return value should be and it has to raise an error.

You can resolve the bug in your program by making sure both branches return
a string and then try running your program again with ghci. You can use the
show function from earlier in this chapter to convert your number to a string:

printSmallNumber num =
let msg = if num < 10

then show num
else "the number is too big!"

in print msg

Sometimes a single branch isn’t enough to express what we want. Although
Haskell doesn’t have any special syntax for chaining together multiple if
expressions, you can nest them as much as you want. Consider a function
that gives a size approximation for a number:

sizeNumber num =
if num < 3
then "that's a small number"
else

if num < 10
then "that's a medium sized number"
else "that's a big number"

This can get tedious and difficult to read as you add more branches. Enter
guard clauses. Let’s look at an example:

guardSize num
| num < 3 = "that's a small number"
| num < 10 = "that's a medium number"
| num < 100 = "that's a pretty big number"
| num < 1000 = "wow, that's a giant number"
| otherwise = "that's an unfathomably big number"
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As you can see from the example, this is the general syntax for using a func-
tion with guards:

functionName argument1 argument2 -- as many arguments as you want
| predicate1 = body1
| predicate2 = body2
-- as many predicates as you want
| otherwise = body3

In short, each guard clause starts with a vertical bar, followed by a predicate,
then an equals sign and the body of the function. You’ll notice in these
examples that we’ve ended our guard clauses with otherwise. This is an ordinary
value that’s defined for us by the standard library to make guard clauses
more readable. Its value is always True.

Predicates are evaluated from top to bottom. If we added another clause to
our function that checks to see if a number is greater than zero, we could
end up always hitting the first branch:

guardSize num
| num > 0 = "that's a positive number"
| num < 3 = "that's a small number"
| num < 10 = "that's a medium number"
| num < 100 = "that's a pretty big number"
| num < 1000 = "wow, that's a giant number"
| otherwise = "that's an unfathomalbly big number"

In this version of the function, we’ll get back “that’s a positive number” for
any positive number, and we’ll never end up hitting our other cases.

You can use let expressions and where clauses with guards just like with other
functions. Anything that you define in a let expression will only be in scope
for the particular branch where it’s defined. On the other hand, variables
defined inside of a where clause will be in scope for all of the branches of your
function:

guardSize num
| num > 0 =

let size = "positive"
in exclaim size

| num < 3 = exclaim "small"
| num < 100 = exclaim "medium"
| otherwise = exclaim "large"
where

exclaim message = "that's a " <> message <> " number!"

In this example, the size variable is only defined inside of the first branch.
We’d get an error if we tried to refer to it from any of our other branches. The

Chapter 1. Getting Started with Haskell • 36

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


exclaim function on the other hand is defined inside of a where clause, so it’s
available in all of the branches of our function.

A common syntax error that you might run into, especially if you are refactor-
ing your code to add guard clauses, comes from accidentally having an extra
= symbol between the last argument to your function and before the first
predicate. Let’s look at an example:

invalidFunction n =
| n > 5 = "bigger than five"
| otherwise = "smaller than five"

If you write a function like this into a file and try to load it into ghci you’ll see
a syntax error like this:

Main.hs:9:3: error: parse error on input ‘|’
|

9 | | n > 5 = "bigger than five"
| ^

Failed, no modules loaded.

When you see an error like this around a function with a guard clause, it’s a
good sign that you might have accidentally left a stray = symbol around at
the end of the list of arguments.

Guard clauses and if expressions are only two ways to branch in Haskell.
You’ll learn about a third type of branching, case expressions, later on in
this book.

Looping
If you’ve been programming for very long, you might’ve heard of the “fizzbuzz”
problem. It was once a common interview question that was asked to see
whether candidates could write a simple program, and it’s still used these
days as a common example when teaching new programmers. There are a
few minor variations of the problem, but let’s consider this version of it:

Given a number, fizzBuzzCount, return a string that contains all of the numbers
from one, up to and including fizzBuzzCount, except:

1. If the number is evenly divisible by 3, but not evenly divisible by 5, replace
it with the word “fizz”.

2. If the number is evenly divisible by 5, but not evenly divisible by 3, replace
it with the word “buzz”.

3. If the number is evenly divisible by both 3 and 5, replace it with the word
“fizzbuzz”.
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For any given individual number, we can use what we’ve already learned in
this chapter to write a function that will return the right output. Let’s start
there by writing a new function, fizzBuzzFor, that will calculate the “fizzbuzz
string” for any given number:

module FizzBuzz where

fizzBuzzFor number
| 0 == number `rem` 15 = "fizzbuzz"
| 0 == number `rem` 5 = "buzz"
| 0 == number `rem` 3 = "fizz"
| otherwise = show number

The rem function that we’re calling here returns the remainder after dividing
two numbers. By checking to see if the remainder is zero, we can tell if one
number is evenly divisible by another. You might also notice that our first
case tests to see if our number is evenly divisible by 15. This is a shortcut
that will tell us if the number is divisible by both 3 and 5.

This solves the problem for a particular number, but how can we go about
calling this function repeatedly for each of the numbers up to our fizzBuzzCount?
Most idiomatic Haskell solutions to this particular problem would use lists
and list functions that you’ll learn about in the next chapter on page 47. For
now though, we’ll focus on the fundamentals.

In procedural and object-oriented languages, the common approach to solving
a problem like this would be to use a loop, for example, a while or for loop. Let’s
look at an example of how we might write this in a procedural way. This
example will use JavaScript, but don’t worry if you aren’t familiar with Java-
Script. We’re only using this example so that we have something concrete to
reference when discussing the differences between procedural style looping
and writing loops in Haskell.

function rem(a,b) {
return a % b;

}

function fizzBuzzFor(number) {
if (0 == rem(number, 15)) {

return "fizzbuzz";
} else if (0 == rem(number, 5)) {

return "buzz";
} else if (0 == rem(number, 3)) {

return "fizz";
} else {

return number.toString();
}

}
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function fizzbuzz(fizzBuzzCount) {
var fizzBuzzString = "";
for (var curNum = 1; curNum <= fizzBuzzCount; curNum = curNum + 1) {

fizzBuzzString = fizzBuzzString + " " + fizzBuzzFor(curNum);
}
return fizzBuzzString;

}

We’ll ignore the definition of rem here, which is included to keep our function
names consistent with the Haskell code we’ve already written. We’ll also skip
past fizzBuzFor, which is more or less identical to our earlier Haskell implemen-
tation, except for the obvious differences in syntax. Instead, let’s jump right
to our definition of fizzbuzz.

The first thing we do in our fizzbuzz implementation is to declare some new
mutable variable named fizzBuzzString. We initialize this variable to the empty
string, and we accumulate the results of our loop into it. Our loop starts out
by creating another mutable variable named curNum. At each iteration of the
loop we first test to see if the current value of our mutable curNum counter is
still within the bounds of our fizzBuzzCount. If it is, then we we modify our
mutable fizzBuzzString value to append the current fizzbuzz value, and then we
increment the counter. Eventually, when the counter is past the bounds of
fizzBuzzCount the loop will exit and we’ll return the final value of fizzBuzzString.

Some of the words we just used to describe our procedural algorithm, like
mutable and update, are clues that we might not be able to directly translate
this looping approach to Haskell. After all, Haskell variables aren’t mutable,
and in a pure function we have nothing to update. It’s true that we don’t want
to directly translate the use of mutable values and state into Haskell, but an
idiomatic Haskell implementation is still quite similar to this procedural one.
Let’s look at a couple of ways that we can approach this sort of problem in
Haskell.

The first thing we want to do when we’re thinking about writing a looping
function in Haskell is to ask ourselves “what’s changing?” In our procedural
implementation, we have three important pieces of state:

1. fizzBuzzCount is immutable and tells us when to stop looping.
2. fizzBuzzString is mutable, and accumulates the output of the function.
3. curNum is the current number we’re fizzbuzzing. It’s also mutable and

changes once per loop iteration.

Our pure functional fizzbuzz implementation will need the same state that
the procedural one did. The key difference is that the state in our pure func-
tional version will be immutable. When we had mutable state we needed to
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start our function by initializing the state, and we had to finish our function
be extracting the final return value from our state. In the pure functional
version, we’ll accept immutable state as input, so there’s nothing to initialize.
That means our Haskell function will be equivalent to the body of our proce-
dural loop—we don’t need to worry about the initial setup of the function,
nor how to extract a final return value.

Let’s start our pure functional implementation by creating a new function.
We’ll start with the most straightforward translation of our procedural algo-
rithm, and refactor based on what we learn, so let’s call this first implemen-
tation naiveFizzBuzz:

module FizzBuzz where

naiveFizzBuzz fizzBuzzCount curNum fizzBuzzString

The first thing the body of our for loop did was check to see if our mutable
curNum value was greater than the target fizzBuzzCount. If so, we would exit the
loop and return the final string. Comparing two values and returning another
value doesn’t require any mutation, so we can translate that step directly:

module FizzBuzz where

naiveFizzBuzz fizzBuzzCount curNum fizzBuzzString =
if curNum > fizzBuzzCount
then fizzBuzzString
else

-- fill this in next

In this expanded example, we’re looking to see if we’ve finished our loop, and
if so we return fizzBuzzString. Just like in the procedural example, we’re making
an assumption here that when we get to the end of our loop, the state of
fizzBuzzString should be right, and we can return it. But how do we get the state
there without changing it? In the body of our procedural loop, if we weren’t
finished looping then we would change the state of the string by appending
the next fizzbuzz number to it. Let’s add that to our Haskell example:

module FizzBuzz where

naiveFizzBuzz fizzBuzzCount curNum fizzBuzzString =
if curNum > fizzBuzzCount
then fizzBuzzString
else

let nextFizzBuzzString = fizzBuzzString <> fizzBuzzFor curNum <> " "
-- fill this in next

Instead of modifying the string in place, our pure implementation will generate
a new string. In this example, we’re calling that new string nextFizzBuzzString.
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The next thing our procedural loop did was update the curNum counter by
incrementing it. Just like with nextFizzBuzzString we’re going to create a new
counter instead of modifying the one we have:

module FizzBuzz where

naiveFizzBuzz fizzBuzzCount curNum fizzBuzzString =
if curNum > fizzBuzzCount
then fizzBuzzString
else

let nextFizzBuzzString = fizzBuzzString <> fizzBuzzFor curNum <> " "
nextNumber = curNum + 1

in -- fill this in next

The last thing that our procedural loop did was to, well, loop. After updating
the mutable state, we would re-execute the same code in the body of the loop,
and do the same things, but of course on the next run all of the values have
been updated. The state of fizzBuzzString would have one more entry appended
to it, and curNum would be one step closer to the end of our range of numbers.

In our pure functional version, we’re going to do the same thing. We’ll run
the same code, but this time our curNum will be one step closer to the end, and
fizzBuzzString will have one more entry added. How? By calling naiveFizzBuzz with
the new values we’ve just calculated:

module FizzBuzz where

naiveFizzBuzz fizzBuzzCount curNum fizzBuzzString =
if curNum > fizzBuzzCount
then fizzBuzzString
else

let nextFizzBuzzString = fizzBuzzString <> fizzBuzzFor curNum <> " "
nextNumber = curNum + 1

in naiveFizzBuzz fizzBuzzCount nextNumber nextFizzBuzzString

If you haven’t spent much time working with recursion, this can be a little
bit confusing. Let’s work through what’s going on in this example to help
make it a bit more clear. You can start by copying the code into a file and
loading it into ghci so you can have an idea of what to expect:

λ :load FizzBuzz.hs
[1 of 1] Compiling FizzBuzz ( FizzBuzz.hs, interpreted )
Ok, one module loaded.
λ naiveFizzBuzz 3 1 ""
"1 2 fizz "

When you need to understand what’s happening in a particular Haskell function,
or even an entire program, one incredibly useful feature of Haskell is referential
transparency. This is a fancy sounding term, but it basically means since
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everything in a Haskell program is a pure value, we can always replace a
variable with its value, and any function call with the value that it returns,
and the program shouldn’t behave any differently. Let’s take advantage of
this and replace the variables we’re using to hold our state with their actual
values in our function. This will represent the very first iteration of our loop:

naiveFizzBuzz 3 1 "" =
if 1 > 3
then ""
else

let nextFizzBuzzString = "" <> fizzBuzzFor 1 <> " "
nextNumber = 1 + 1

in naiveFizzBuzz 3 nextNumber nextFizzBuzzString

Now that we’ve replaced the inputs with their values, let’s do some simplifica-
tion. First, we can remove our if expression since we know that 1 > 3 will never
be true. While we’re at it, we can replace our call to fizzBuzzFor 1 with the actual
value, and combine all of the string fragments. We can also simplify the addition
that we’re using to calculate nextNumber. When we do all that, we’ll end up with:

naiveFizzBuzz 3 1 "" =
let nextFizzBuzzString = "1 "

nextNumber = 2
in naiveFizzBuzz 3 nextNumber nextFizzBuzzString

Finally, let’s make one more set of substitutions, and replace nextNumber and
nextFizzBuzzString with their values:

naiveFizzBuzz 3 1 "" =
naiveFizzBuzz 3 2 "1 "

Now that we’ve simplified out all of the intermediate steps, we can see that
when we call naiveFizzBuzz with one state, it simply calls itself with the next
state. This is analogous to how our procedural loop runs with a new state
each time it evaluates the loop body.

Recursion can be tricky to follow, so let’s take advantage of referential trans-
parency and expand our call again. We can replace the call to naiveFizzBuzz with
its definition, just like we replaced variables with their values:

naiveFizzBuzz 3 1 "" =
if 2 > 3
then "1 "
else

let nextFizzBuzzString = "1 " <> fizzBuzzFor 2 <> " "
nextNumber = 2 + 1

in naiveFizzBuzz 3 nextNumber nextFizzBuzzString
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Again, let’s simplify things by removing our if expression and simplifying our
nextFizzBuzzString and nextNumber expressions:

naiveFizzBuzz 3 1 "" =
let nextFizzBuzzString = "1 2 "

nextNumber = 3
in naiveFizzBuzz 3 nextNumber nextFizzBuzzString

After simplifying our expressions, we’re again left with a recursive call, but
this time our state is one step closer to our final goal. Expanding naiveFizzBuzz
and simplifying once more, we’ll have:

naiveFizzBuzz 3 1 "" =
if 3 > 3
then "1 2 "
else

let nextFizzBuzzString = "1 2 fizz "
nextNumber = 4

in naiveFizzBuzz 3 nextNumber nextFizzBuzzString

Again we can remove our conditional, since 3 > 3 will always be false, and
replace our variables with their values in our call to naiveFizzBuzz to get a simple
recursive call:

naiveFizzBuzz 3 1 "" =
naiveFizzBuzz 3 4 "1 2 fizz "

This last call will be a little different. When we expand it this time the first
branch in our if expression will be True:

naiveFizzBuzz 3 1 "" =
if 4 > 3
then "1 2 fizz "
else

let nextFizzBuzzString = "1 2 fizz " <> fizzBuzzFor 4 <> " "
nextNumber = 4 + 1

in naiveFizzBuzz 3 nextNumber nextFizzBuzzString

When we simplify this time, we’ll drop the second part of our if expression,
and we’re left with:

naiveFizzBuzz 3 1 "" = "1 2 fizz "

We never evaluate the second branch of our conditional, so we do not make
another recursive call. The branch we did evaluate simply returns the input
string that we’ve been accumulating. When we’re writing recursive functions,
we call the condition that causes the recursion to end the base case.

If you haven’t spent much time with recursion, it is worth reading this section
a few times. Internalizing how to think about problems recursively can take
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a little bit of time and is often a matter of looking at many examples, so if you
are still finding it hard to fully understand this example you can continue
reading and you’ll have several more opportunities to work through similar
problems over the next few chapters. The important thing to note here is that
while we never introduced any mutable state, by using recursion we were
able to implement the same kind of logic, and solve the same kinds of problems
that you might use for and while loops for in a procedural language.

Summary
In this chapter, you learned the basic syntax of Haskell and learned how to
create new variables and functions. As you work through the rest of this book
you’ll continue to build on the fundamentals that you’ve learned. Feel free to
refer back to this chapter if you find yourself facing some syntax that you
don’t remember or recognize.

You also learned several built-in functions provided by Prelude. In the next
chapter, you’ll learn about Haskell’s type system and what a function does
based on its type signature.

Exercises
Now that you’ve learned a bit about the basics of Haskell’s syntax and how
to write some applications, try working through these exercises. You should
be able to complete all of the following exercises using the material from this
chapter, but if you find yourself stuck on an exercise, try reading ahead to
the next chapter and coming back to the exercise after you’ve gotten a bit
more practice thinking about how to implement programs in Haskell.

Factorials
The factorial function is a simple function that you can define recursively.
You can compute the factorial of a number, n, by multiplying all of the num-
bers up to n:

factorial 5 = 5 * 4 * 3 * 2 * 1 = 120

Try implementing your own factorial function. You can test your implementation
in ghci and compare its output to the example:

λ factorial 1
1
λ factorial 3
6
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λ factorial 5
120
λ factorial 10
3628800
λ factorial 25
15511210043330985984000000

The Fibonacci Sequence
The Fibonacci sequence is a sequence of numbers that can be defined recursively.
The first 10 numbers of the Fibonacci sequences are: 0,1,1,2,3,5,8,13,21,34.
You can calculate any given Fibonacci number, n, by adding up the two pre-
vious Fibonacci numbers.

Write a function that will compute the nth Fibonacci number for any given
number, n. You can test your implementation in ghci and compare it to the
example:

λ fibonacci 0
0
λ fibonacci 1
1
λ fibonacci 5
5
λ fibonacci 10
55
λ fibonacci 25
75025

Manual Currying
You’ve learned how Haskell functions work by taking a single argument. One
way to write a function that takes multiple arguments is to pass in a tuple
of arguments. For example, consider this addition function:

uncurriedAddition nums =
let

a = fst nums
b = snd nums

in a + b

Haskell’s standard library includes two functions, curry and uncurry, that make it
easy for you to convert between functions that take two arguments and functions
that take a tuple. The curry function transforms a function like our uncurriedAddition
function and turns it into one that takes two separate arguments:
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λ addition = curry uncurriedAddition
λ addOne = addition 1
λ addTwo = addition 2
λ addOne 1
2
λ addOne 2
3
λ addOne 3
4
λ addTwo 1
3
λ addTwo 2
4
λ addTwo 3
5

Similarly, the uncurry function takes a regular function with two arguments
and converts it into a function that accepts a tuple. For example, using
uncurry we could have rewritten uncurredAddition like this:

uncurriedAddition = uncurry (+)

Using what you’ve learned in this chapter, try implementing your own version
of curry and uncurry.

Since the standard library already has functions named curry and uncurry, you
should select different names for your implementations. After you’ve written
your versions, compare the behavior to the standard library implementations
to ensure that your versions behave the same way.
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CHAPTER 2

Working with Lists
Linked lists are a first class data structure that you will use frequently
throughout this book and as you are writing programs in Haskell. In the last
chapter, you were introduced to the basics of Haskell’s syntax and learned
how to create some simple lists. In this chapter, you’ll learn more about how
to work with lists using higher-order functions like map and foldr, how to write
recursive functions over lists effectively using pattern matching, and finally,
you’ll learn about how to deal with streaming data, generators, and infinitely
long lists by exploiting Haskell’s laziness.

Writing Code Using Lists
As you saw in the last chapter, lists of values are enclosed in square brackets,
and separated by commas. We can make lists of any type we want, but a list
can only hold a single type. Here are some examples of different types of lists.
Try creating them in ghci:

λ listOfNums = [1, 2, 3]
λ listOfFloats = [1.1, 2.2, 3.3]
λ listOfStrings = ["hello", "world"]

There’s also a special type of list that you’ve already used extensively: strings!
In Haskell, regular strings are simply lists of characters. When you create a
string using double quotes, it’s really just a nice way of writing a list of indi-
vidual characters. We can see this for ourselves in ghci:

λ ['h','e','l','l','o'] == "hello"
True

You’ll rarely, if ever, write strings using the normal list syntax. However, you
will frequently use other list functions when working with strings. This also
means that some of the functions you’ve already used, like the (<>) operator,
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are actually more general than you might have realized. For example, we can
combine lists of other values just as well as strings:

λ [1,2,3] <> [4,5,6]
[1,2,3,4,5,6]

λ ['h', 'e'] <> "llo"
"hello"

λ [[1,2,3],[4,5,6]] <> [[7,8,9]]
[[1,2,3],[4,5,6],[7,8,9]]

You can get the nth element of a list using the (!!) operator. List indices start
at 0:

λ words = ["foo", "bar", "baz", "fizz", "buzz"]
words !! 0
"foo"
λ words !! 4
"buzz"

You need to be careful to not accidentally try to take an index that’s larger
than the length of a list:

λ words !! 5
"*** Exception: Prelude.!!: index too large

We’re not limited to just single values; you can also create lists of lists:

λ nums = [[1,3,5],[2,4],[0]]
λ strings = [["hello", "good morning"], ["so long", "farewell"]]

We can create empty lists with just an opening and closing bracket, like this: [].

A list can only hold a single type of value. Because of this, you can’t have a
list with lists of different types. This would be an error, for example:

λ badList = [[1,2,3],["one","two","three"]]

Lists, like all other Haskell values, are immutable. Although you can’t change
the value of a list, you can efficiently construct lists by prepending a new
element to the start of an existing list. The process of adding a new element
to the beginning of a list is called “cons-ing,” and the operator we use to add
an element to the front of a list, (:), is generally pronounced “cons” as in
“construct.” This style of prepending an element to the beginning of a list is
so ubiquitous that when someone says that they are “adding an element to
a list” you should assume they are prepending it unless they say otherwise.

Let’s look at a couple of examples of constructing lists using (:). Try typing
out these examples yourself to see what the generated lists look like, and to
get more used to creating lists.
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λ 1 : [2,3]
λ 1 : 2 : [3]
λ 1 : 2 : 3 : []
λ 'h' : "ello"
λ 'h' : 'e' : ['l','l','o']
λ [1,2,3] : []
λ [1] : [2] : [3] : []

Although you’ve seen that you can append elements to a list with (<>), it’s far
more common in Haskell to build our lists by prepending elements with (:).
In fact, prepending elements is so common that it’s not unusual to see func-
tions where an entire list is built backwards only to be reversed at the end
before being returned. The reason for this is that in an immutable language,
prepending an element to a list is much more efficient than appending an
element to the end.

Later, on page 89, you’ll learn how to create list-like data structures yourself,
which will help you better understand the details of why prepending is more
efficient than appending to lists.

However you approach creating a list, in the end it comes down to putting
one element in front of another. When you add an element to the front of a
list, we call the part that you are adding the head of the list. In fact, a common
alternative phrase cons-ing is to push an element onto the head of a list. The
list that you are adding the element onto becomes the tail.

head : tail

The tail of a list is itself either any empty list, or a list with its own head and tail,
so you can also look at a list as a series of heads preceding a final empty list:

head : tail = head : (head : (head : ... : []))

Head and tail aren’t just the terms we use to talk about parts of a list. The
head and tail functions let you deconstruct a list and get the first element and
the rest of the elements back out of a list you’ve constructed. Let’s look at
some examples of using head and tail so you can get a feel for how they work:

λ head [1,2,3]
1
λ tail [1,2,3]
[2,3]
λ head (tail [1,2,3])
2
λ tail (tail [1,2,3])
[3]
λ tail [1]
[]
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The head and tail functions are quite useful when you need to get at different
parts of a list that you’ve built, but some caution is necessary with these
functions. Both head and tail are partial functions. A partial function is a function
that doesn’t work for all of its possible inputs, and might raise a runtime
exception or cause the program to crash. In the case of head and tail, these
functions will cause a runtime exception if you use them on an empty list:

λ head []
*** Exception: Prelude.head: empty list
λ tail []
*** Exception: Prelude.tail: empty list

You’ll learn another way to get the head and tail of a list on page 66 that
doesn’t risk raising these exceptions, and later in this book you’ll learn how
to handle runtime exceptions. In the meantime, take care to make sure you
check first to see if a list is empty before using these functions. You can check
for an empty list with equality:

listIsEmpty list =
if list == []
then putStrLn "this list is empty"
else putStrLn ("the first element of this list is: " <> show (head list))

Alternatively, you can use the null function, which will return True if a list is
empty, and False otherwise:

listIsEmpty' list =
if null list
then putStrLn "this list is empty"
else putStrLn ("the first element of this list is: " <> show (head list))

Creating Lists Recursively
A common pattern in Haskell is to create lists by pushing a new value onto
the head of a list that is created with a recursive function call. In the last
chapter, you worked through a few examples of recursion and built some
small recursive functions, but it’s worthwhile to spend a little bit of extra time
diving into recursive list construction. As you’ll see later on in this chapter,
there are some subtleties to the way that we construct lists recursively in
Haskell that can substantially change the way your program runs.

When you’re creating a list recursively in this way, your base case will be a
list, often the empty list [], and you’ll add elements at each step of the recur-
sion. If you haven’t used recursion in a while, remember that the base case
is the end of the recursion. It’s how you know that you’re done, since the base
case doesn’t make a recursive call. In most cases, it’s easiest to write recursive
functions by figuring out the base case first. Let’s look at a simple example
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of a function that creates a countdown from a starting number using this
technique:

countdown n =
if n <= 0 then []
else n : countdown (n - 1)

Load your module in ghci and try running it with a few different numbers to
get a feel for it:

λ countdown 10
[10,9,8,7,6,5,4,3,2,1]

In this example, you start with a base case where n is less than or equal to
0. In the base case, you return an empty list. If n is greater than zero, you
construct a list by prepending the current element to a recursive call that
decrements the variable. This is a bit different than some of the recursive
examples that you saw in the last chapter, because you’re building up a value
rather than reducing one.

To improve your intuition, let’s step through a small example by hand. We’ll
start by calling countdown 3. In the first step we prepend 3 to countdown (3 - 1):

countdown 3 =
if 3 <= 0 -- false
then []
else 3 : countdown (3 - 1)

If you keep expanding the calls to countdown you’d end up with something like
this, which isn’t quite valid Haskell, but gives you a sense of what’s happening:

countdown 3 =
if 3 <= 0 -- false
then []
else 3 : (

if 2 <= 0 -- false
then []
else 2 : (

if 1 <= 0 -- false
then []
else 1 : (

if 0 <= 0 -- true
then []
else undefined
)))

Resolving all of the branches you’d end up with:

countdown 3 = 3 : 2 : 1 : []
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This style of recursively constructed list can build very powerful functions.
Let’s look at another example using recursively constructed lists to find the
prime factors of an integer. Take some time to study this function and work
through it the same way that you worked through countdown to better under-
stand how it works.

factors num =
factors' num 2
where

factors' num fact
| num == 1 = []
| (num `rem` fact) == 0 = fact : factors' (num `div` fact) fact
| otherwise = factors' num (fact + 1)

This recursive function follows a common pattern where our algorithm requires
some initial seed value that we don’t want to require the user to pass in. To
make our code more ergonomic to use, it’s common to implement most of the
algorithm as a helper function in a let or where binding. The top level function
will just call the helper function with the initial seed value.

In the case of factors we’re calculating the potential factors of a number starting
from 2 and working our way up, so our starting value is 2. The recursive part
of our function is handled in our helper function, factors'.

The way our factoring algorithm works is that we start with a number we’d
like to factor—in this case we’re calling it num—and a potential factor, which
we’re calling fact. Our base case is when num is 1, which has no other factors,
so we can stop trying to find any.

The recursive case of our factoring function has two branches. The first of
our recursive cases happens if our candidate factor is indeed an actual factor
of our current number. We can figure this out using the rem function, which
gives us the remainder after dividing the current number by the candidate
factor. If the remainder is 0 then we’ve found a factor. When we have found
an actual factor, we need to do two things. First, we need to add our newly
discovered factor to our list of found factors. Second, we need to recursively
find the rest of our factors.

The way that we add the current number onto the list of factors might look
a little surprising at first:

fact : factors' (num `div` fact) fact

Remember that factors' will always return a list, whether it’s an empty list when
we encounter the base case, or a list with some factors in it if we’re in a
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recursive case. Since the return value of factors' is a list, we can add our new
factor by prepending it to the front of the list returned by our recursive call.

As for the recursive call, rather than just decrementing our number by one,
we can save a lot of time by dividing out the factor we’ve just found. We don’t
change the candidate factor in our recursive call, because some numbers
might have the same candidate factor multiple times. For example, the factors
of four are two and two.

That covers our recursive case when we’ve found a factor. In our last case,
when we haven’t found a factor, we increment our candidate factor by one
and try again. Eventually this will terminate because even if we have a prime
number we’ll eventually count all the way up so that our candidate factor
equals the number we’re trying to factor. In that case, the number will be
divisible by itself and we’ll add it to our list of factors, and then immediately
hit our base case.

Deconstructing Lists
Recursively deconstructing a list is another pattern, like recursively construct-
ing one, that you’ll use frequently when writing Haskell applications. In a
typical application you’ll have a base case where a list is empty and a recursive
case that does some computation with the head of the list and passes an
accumulated value to itself recursively. Let’s look at a concrete example by
building a function that checks to see if the parentheses in a string are bal-
anced (that there are the same number of opening and closing parentheses).
Keep a copy of this function open, you’ll be refactoring it shortly:

isBalanced s =
0 == isBalanced' 0 s
where

isBalanced' count s
| null s = count
| head s == '(' = isBalanced' (count + 1) (tail s)
| head s == ')' = isBalanced' (count - 1) (tail s)
| otherwise = isBalanced' count (tail s)

Just like the factors example, we start this function off by calling a helper
function that takes an accumulator value; in this case, isBalanced' takes a
counter. The first thing that isBalanced' does is use the null function, which
returns True if a list is empty. In the case of an empty list we’re done and can
return our accumulator. In the next two cases, we are destructuring the list
to look at the head element; if it’s an opening or closing parenthesis we
increment or decrement our count respectively. In all of the cases, we recur-
sively call the function with the tail of the input string.
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Traversing a list and accumulating a result, like we’ve done here, is a common
enough problem that you might want to create an implementation of it that
you can re-use. Let’s write a generic reduce function that provides the struc-
ture of recursion and then use it to re-implement isBalanced:

reduce func carryValue lst =
if null lst then carryValue
else

let intermediateValue = func carryValue (head lst)
in reduce func intermediateValue (tail lst)

You’ll notice when you look at this code that it looks almost like a minimum
viable example of what a recursive function should look like. In the Haskell
community, when we’re talking about the essential behavior of a function or
a datatype, without any extraneous business logic or implementation details,
we sometimes refer to that as the shape of the function or data structure. In
this case, we might say that this function has the shape of any general
recursive function over a list. Try using reduce to re-implement your isBalanced,
then compare your implementations to the example:

isBalanced str = 0 == reduce checkBalance 0 str
where
checkBalance count letter

| letter == '(' = count + 1
| letter == ')' = count - 1
| otherwise = count

Our new isBalanced function is a little shorter and much easier to read thanks to
the fact that we’re able to focus on the logic at each step of recursion without
having to manage the recursion itself. Factoring out recursion into its own
function is a small payoff the first time we use it, but as you use the pattern
repeatedly over a larger codebase you can start to benefit from the reduced effort
of understanding recursion each and every time, and instead you can start
thinking in terms of reduction.

The reduce function that you implemented is actually already available in
Prelude, where it’s called foldl. The general term in Haskell for these functions
that accumulate a value while recursing through a structure are called folds.
Let’s look at another common fold function that’s part of the Prelude: foldr.

The foldl and foldr function names stand for “fold left” and “fold right” respec-
tively. You can intuitively think of foldl as folding from left to right, and foldr
as folding from right to left.

To understand this better, let’s look at an example of how to build foldr,
alongside the previous reduce (now renamed foldl) function. Both the foldr and
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foldl functions that we’re building are part of the standard set of functions
that are in scope when you start a new Haskell program. This will confuse
the compiler, which will want to know which instance of the function you’re
intending to use. Later, on page 155, you’ll learn more about how to manage
library functions, but for now you can hide the default versions of these
functions to prevent a collision:

module FoldExamples where
import Prelude hiding (foldl, foldr)

With the two functions no longer imported from the standard library, you are
free to create your own implementation as you work through the rest of this
chapter.

foldl func carryValue lst =
if null lst
then carryValue
else foldl func (func carryValue (head lst)) (tail lst)

foldr func carryValue lst =
if null lst
then carryValue
else func (head lst) $ foldr func carryValue (tail lst)

Comparing the implementations of foldr with your earlier reduce (aka foldl) imple-
mentation, you’ll notice that they are broadly similar. They both return the
accumulator on an empty list, and otherwise perform some destructuring and
recursion. In the case of foldl we call the function that’s been passed in with the
current carry value and the head of the list, and then pass that into a recursive
call. In foldr, instead of passing our carry value directly into the function, we
pass the result of our recursive call. It’s also worth noting that the order of
arguments in the function that’s passed in reverses between the two functions.

For a more hands-on picture of what’s happening, let’s pretend to be the
compiler and use some pseudo-Haskell to explore exactly what happens when
we make a call to foldl. We’ll start with foldl (+) 0 [1,2,3]:

foldl (+)

0 1 2 3 []: : :( )

+0 1( ) 2+

+0 1( )

( )

+0 1( ) 2+( )( + 3 )

foldl (+)

foldl (+)

foldl (+) ( )

2 3 []: :( )

3 []:( )

[]( )

foldl (+) 0 [1,2,3] =
if null [1,2,3] then 0
else foldl (+) (0 + 1) [2,3]
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foldl (+) (0 + 1) [2,3] =
if null [2,3] then (0 + 1)
else foldl (+) ((0 + 1) + 2) [3]

foldl (+) ((0 + 1) + 2) [3] =
if null [3] then ((0 + 1) + 2)
else foldl (+) (((0 + 1) + 2) +3) []

foldl (+) (((0 + 1) + 2) + 3) []
if null [] then (((0 + 1) + 2) + 3)
else undefined -- we'll never get here

(((0 + 1) + 2) + 3) = 0 + 1 + 2 + 3 = 6

Looking at the way parentheses grow when you expand the function calls,
you can see that we end up working our way left-to-right through the list.
You might recognize the way the operations have been grouped from the
previous chapter when you learned about operators and fixity on page 21.
The foldl function is a left-associative fold.

If foldl is left associative then you might guess based on the name that foldr is
a right-associative fold. Let’s step through an example of foldlr (+) 0 [1,2,3] to see
if the guess is right:

foldr (+) 0 1 2 3 []:

+

: :( )

foldr (+) 01 2 3 []: :( )+

foldr (+) 01 2 3 []:( )+ +

foldr (+)1 2 3 []( )+ +

+1 2 3+ + 0

0

foldr (+) 0 [1,2,3] =
if null [1,2,3] then 0
else (1 + (foldr (+) 0 [2,3]))

foldr (+) 0 [2,3] =
if null [1,2,3] then 0
else (1 + (2 + (foldr (+) 0 [3])))

foldr (+) 0 [3] =
if null [1,2,3] then 0
else (1 + (2 + (3 + (foldr (+) 0 []))))

foldr (+) 0 [] =
if null [1,2,3] then 0
else undefined -- false

(1 + (2 + (3 + 0))) = 6
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As you can see, based on the way that the operations have been grouped,
foldr is indeed right associative.

Use Your Folds

As you are exploring the ideas in this chapter, you may have more
success using your own definitions of foldl and foldr. The versions
provided by default are more flexible, and they can work with data
structures other than lists. This sometimes causes errors when
the compiler doesn’t know what kind of data structure it should
be using. This is most likely to occur if you are writing code in a
pointfree style. If you run into this problem, first try refactoring
your code so that it isn’t pointfree. If that doesn’t help, you can
use the implementations of foldl and foldr you just defined, or
revisit this chapter after you’ve learned about type.

Let’s look at another example that can help to highlight the difference in
associativity between the two folds. You might recall in the last chapter we
looked at left and right associativity of division on page 24 to better understand
associativity of operators. Let’s return to that example again, this time to
explore the associativity of folds.

In that example, we learned that the normal division operator, (/) is left asso-
ciative. We created a right-associative infix function, divide, and used that to
see how left and right-associative operations gave us different results when
doing repeated division:

λ divide = (/); infixr 9 `divide`

λ 1 / 2 / 3 / 4 / 5
8.333333333333333e-3

λ 1 `divide` 2 `divide` 3 `divide` 4 `divide` 5
1.875

When we’re using folds, the operation that we’re passing in is treated as a
normal function, and its associativity doesn’t impact the final result we get
back. The associativity of the operation comes from the fold itself, rather than
the function we pass in. You can see, for example, that we get the same result
back from a call to foldl regardless of which division function we pass in:

λ foldl (/) 1 [1,2,3,4,5]
8.333333333333333e-3

λ foldl divide 1 [1,2,3,4,5]
8.333333333333333e-3
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The same thing applies to foldr as well:

λ foldr (/) 1 [1,2,3,4,5]
1.875

λ foldr divide 1 [1,2,3,4,5]
1.875

Related to the associativity of the folds, another important difference between
them is when in the call chain the initial element gets passed in. You can see
this in practice with another small variation of our fold example. Let’s look
at another right fold using division, and compare it to the result we get back
repeatedly applying the divide function by hand:

λ foldr divide 1 [2,3,4,5]
0.5333333333333333

λ 1 `divide` 2 `divide` 3 `divide` 4 `divide` 5
1.875

When you first see the difference between these two results, you might be
somewhat surprised. If foldr is right associative and it’s applying the divide
repeatedly, we would expect to get the same value that we get when we call
divide ourselves—but we seem to be getting something quite different!

If you look back at your implementation of foldr you might notice the problem:
when we’re dividing manually in this example, we have put our initial value
at the beginning of the list of division, but in the implementation of foldr we
apply the initial value last. Let’s try to do manual division again, taking this
into account:

λ 2 `divide` 3 `divide` 4 `divide` 5 `divide` 1
0.5333333333333333

With our starting value moved to the right place, we get the same result using
manual repeated division as we do from the call to foldr. Now let’s look at foldl.
Since it’s left associative, we’ll compare it to (/):

λ foldl (/) 1 [2,3,4,5]
8.333333333333333e-3

λ 1 / 2 / 3 / 4 / 5
8.333333333333333e-3

This time we’ve put the initial value on the left, and again gotten the same
result from manually doing repeated division.

It can be hard to keep the differences between foldl and foldr in your head when
you are writing code, so it helps to remember these points:
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1. The l in foldl stands for left associative.

2. In a left fold, the initial value is applied first, at the left-hand side of the
unrolled expression.

3. In a left fold the accumulator value is the first (left) argument of the
function you pass in.

4. The r in foldr stands for right associative.

5. In a right fold, the initial value is applied last, at the right-hand side of
an unrolled expression.

6. In a right fold, the accumulator is the second (right) argument of the
function that you pass in.

In the next chapter on page 89, you’ll learn about how to look up the type of
a function. Looking at the types is another easy way to remind yourself of the
difference between the two folds.

Transforming List Elements
Folds are useful and extremely common in Haskell code, but sometimes
instead of wanting to combine the elements of a list, you find yourself wanting
to transform the elements of a list individually. Consider, for example, that
you have a list of numbers and you want to double each of them. You could
write this using manual recursion:

doubleElems :: [Int] -> [Int]
doubleElems nums =

if null nums
then []
else

let
hd = head nums
tl = tail nums

in (2 * hd) : doubleElems tl

Like folding, applying a function to every element in a list is something quite
common and so we may want to factor out the common code to apply a
function to elements of a list from the specific logic of our function, in this
case doubling the value of an element. In Haskell, we call applying a function
to all the elements in a list “mapping,” and the function we use is called map.
The map function takes a function and applies it to every element in a list:

λ let incr x = x + 1 in map incr [1..3]
[2,3,4]
λ map (+2) [1..3]
[3,4,5]
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λ map show [1..3]
["1","2","3"]

You can even use map to apply a value to a list of functions:

λ map ($ 10) [(+ 1), (* 3), (`div` 5)]
[11,30,2]

To get a better feel for how mapping works, we can also implement our own
map function. We’ll start by refactoring doubleElems to use a fold rather than
manual recursion:

doubleElems = foldr doubleElem []
where

doubleElem num lst = (2 * num) : lst

In this refactored version of our code, we’ve created a helper function called
doubleElem that multiplies each element by 2. Let’s take another refactoring
step and, instead of passing in a number to multiply by, we’ll pass in a
function that will do the multiplication:

doubleElems' elems = foldr (applyElem (*2)) [] elems
where

applyElem f elem accumulator = f elem : accumulator

In this version, our new applyElem function is quite general, but it’s still only
working on a single step of the fold. Let’s take another refactoring step by
making the foldr part of our new map' function:

map' f = foldr (applyElem f) []
where

applyElem f elem accumulator = (f elem) : accumulator

doubleWithMap elems = map' (*2) elems

We can take this one step further and manually expand out our call to foldr,
giving us a more readable map function:

map'' f xs =
if null xs then []
else f (head xs) : map'' f (tail xs)

Filtering List Elements
Folding and mapping will both allow you to work with all the elements in a
list, but it’s common to find yourself only interested in a subset of items in
the list. There are several functions in base that you’ll be introduced to
throughout this book that will help you select specific items out of a list. For
now, we’ll focus on one of the most general and useful of these, the filter function.
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The filter function allows you to select elements from a list. To use it, provide
a function that returns True for values that you want to keep, and False for
values you want to discard. For example, if you wanted to find the sum of the
first ten odd numbers you could use filter with the odd function, which returns
True if a number is odd:

λ (foldr (+) 0 . filter odd) [0..10]
25

It’s common to combine functions like map, fold, and filter into a data processing
pipeline. Combining these building blocks can make it easy to write complex
data transformations. Let’s create an example by building a function, foodBudget,
to help plan the food budget for a party.

We’ll start by defining a function, checkGuestList, which will let us provide a list
of people who will be attending the party. We’ll make use of the built-in
function elem that tells us if a value is an element of a list:

checkGuestList guestList name =
name `elem` guestList

Next, we’ll create a list of some friends and how much their favorite meal
costs:

foodCosts =
[("Ren", 10.00)
,("George", 4.00)
,("Porter", 27.50)]

Finally, we’ll add a function to combine our guest list and our food cost list
to find the budget we need for our party:

partyBudget isAttending =
foldr (+) 0 . map snd . filter (isAttending . fst)

The partyBudget function might be a bit hard to read when you first look at it,
since we are composing several different functions, so let’s step through it
for a simple dinner party and see what’s happening:

λ partyBudget (checkGuestList ["Ren","Porter"]) foodCosts
37.5

We’re passing in a guest list that contains two of our friends, Ren and Porter,
along with a list that has food prices for all of our friends. If we expand all of
our helper functions we’d end up with this:
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partyBudget' =
foldr (+) 0
. map snd
. filter (\name -> fst name `elem` ["Ren","Porter"])
$ [("Ren", 10.00) ,("George", 4.00) ,("Porter", 27.50)]

When we’re composing functions like this, we usually want to read right-to-
left. In this case, we’ll start with our call to filter. We’ll call our filter function
for each item in the list, keeping the items where it returned true:

λ fst ("Ren", 10.00) `elem` ["Ren","Porter"]
True
λ fst ("George", 4.00) `elem` ["Ren","Porter"]
False
λ fst ("Porter", 27.50) `elem` ["Ren","Porter"]
True

After filtering we’re left with a smaller filtered list:

λ :{
> filteredNames =
> filter (\name -> (fst name) `elem` ["Ren","Porter"]) $
> [ ("Ren",10.00)
> , ("George",4.00)
> , ("Porter",27.50)]
> :}
λ filteredNames
[("Ren",10.0),("Porter",27.5)]

Next, we pass our new filteredNames list into our transform function, map snd.
This will transform our tuples by looking at the second element:

map snd [("Ren",10.00),("Porter",27.5)]
= [snd ("Ren",10.00), snd ("Porter",27.5)]
= [10.00,27.5]

All that’s left to do is add up the prices of our two guests’ favorite meals:

λ foldr (+) 0 [10.0,27.5]
37.5

Pure functional data processing functions made by composing maps, filters,
and folds can be extremely effective ways of quickly writing expressive and
effective Haskell code. As you spend more time with the language and become
more comfortable with function composition and Haskell idioms you will be
able to quickly read and write functions like this without the need to manu-
ally break down each step of the processing pipeline.
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Building Lists with Comprehensions
It’s also possible to represent combinations of map and filter using List Com-
prehensions. List comprehensions provide an alternate syntax for building
lists with maps and filters, and can sometimes make otherwise complex code
much easier to read.

The basic syntax for a list comprehension looks like this:

double = [2 * number | number <- [0..10]]

A list comprehension is an expression inside of square brackets, like a list,
but it uses a pipe to separate out an expression from some conditionals, like
a piece-wise function. In the double example, you can see the expression 2 *
number on the left-hand side of the pipe. On the right-hand side of the pipe,
we can select items from a list, like you would do with a map, and filter items
out like you would do with a filter. If you wanted to double only odd numbers,
for example, you could say:

doubleOdds = [2 * number | number <- [0..10], odd number]

In this example, you’ve added a new predicate that will limit the elements
that get pulled out of the list.

Functions on one list and with just a single predicate can sometimes look
nicer written as list comprehensions, but they are also easy to write in the
data pipeline style that you’ve already seen:

doubleOdds = map (\number -> 2 * number) . filter odd $ [0..10]

Where list comprehensions start to really shine is when you have several lists
that you want to work with, and many different filters. Let’s start with an
illustrative example by building a function that will take two lists of numbers
and will return a list of pairs of elements in the first list that are also in the
second list, paired with odd elements of the second list. We’ll start by imple-
menting this without using a list comprehension:

pairs as bs =
let as' = filter (`elem` bs) as

bs' = filter odd bs
mkPairs a = map (\b -> (a,b)) bs'

in concat $ map mkPairs as'

λ pairs [1..10] [2..5]
[(2,3),(2,5),(3,3),(3,5),(4,3),(4,5),(5,3),(5,5)]
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Now let’s look at the list comprehension version and compare it to the original
version:

pairs as bs =
[(a,b) | a <- as, b <- bs, a `elem` bs, odd b]

The list comprehension version is not only much shorter, but it also gives us
much more declarative-looking code. Instead of having to use filters to create
intermediate lists that we then map over, the list comprehension version lets
us more clearly state what we want: “pairs of a and b, where a comes from
the list of as, and b comes from the list of bs, where a is an element of bs,
and b is odd”.

To better see how we might make use of list comprehensions in practice, let’s
go back to our dinner party budgeting function and imagine we wanted to
expand it to account for the fact that most guests may want to eat more than
one dish. Instead of including a price for the guest’s favorite meal, we’ll instead
get a list of a guest and the food they’ve requested. We’ll also take two new
functions. First, willEat will take a guest’s name and a food, and will return
true if the guest might want to eat that food. Second, foodCost will take a food
and return its price.

To calculate our budget now, we want to go through the list of all the guests
that are attending and, for each food that we’ll be serving, add the cost for
that food if the guest might eat it. Building this as a simple pipeline with map,
filter, and fold could get quite complicated, but as you’ve just learned we can
use list comprehensions to help simplify these types of functions.

Using a list comprehension we can tersely express our new party budget
calculator:

partyBudget isAttending willEat foodCost guests =
foldl (+) 0 $
[ foodCost food
| guest <- map fst guests
, food <- map snd guests
, willEat guest food
, isAttending guest
]

Take particular note of the fact that, unlike previous examples of list compre-
hensions, in this example, we’re extracting a named element, guest, out of a
list but not using it in the final list. Using list comprehensions can be a great
way of expressing list processing code where you need to filter elements in
one list based on a subset of elements from another list.

Chapter 2. Working with Lists • 64

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


Using list comprehensions can be a handy way of expressing more complicated
pipelines succinctly and without having to create many intermediate values.
When you are writing list processing code it’s useful to experiment with list
comprehensions to see if they can help you simplify your code.

Folds and comprehensions make it easy for you to combine elements of a
single list, but what should you do if you want to combine two different lists?
Consider that you have a list of numbers and a list of roman numeral repre-
sentations of the numbers. If you wanted to associate the number with its
roman numeral representation you might first try to use a list comprehension,
like the following example:

λ [(num,str) | num <- [1,2,3], str <- ["I","II","III"]]
[(1,"I"),(1,"II"),(1,"III")
,(2,"I"),(2,"II"),(2,"III")
,(3,"I"),(3,"II"),(3,"III")]

That won’t work! List comprehensions are useful when we want all of the
permutations of our lists, but we only want to match the first element. You
can implement a function yourself to do this. Think about how you might
write a function named combineLists that takes two lists and returns a list of
tuples, like in this example:

λ combineLists [1..5] ["I","II","III","IV","V","VI","VII"]
[(1,"I"),(2,"II"),(3,"III"),(4,"IV"),(5,"V")]

One way you could implement a function like that is to use an explicit
recursion, like in this example:

combineLists as bs =
let

a = head as
b = head bs
as' = tail as
bs' = tail bs

in if null as || null bs
then []
else (a,b) : combineLists as' bs'

Just like with map and the fold functions, there is already a standard library
function that does exactly what combineLists does, and it’s named zip. Try using
your combineLists function with several contrived examples, and then use zip
for the same examples to demonstrate to yourself that they are doing the
same thing.

Combining lists into a tuple isn’t generally very useful by itself, but zip can
be combined with map and foldr to build much more sophisticated applications.
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Imagine, for example, that you had two lists of numbers and you wanted to
figure out the sum of each pair of elements from two lists. Try copying the
next example:

pairwiseSum xs ys =
let sumElems pairs =

let a = fst pairs
b = snd pairs

in a + b
in map sumElems $ zip xs ys

Alternatively, we could use the uncurry function, which makes it easy to apply
a function of two elements to a tuple:

pairwiseSum xs ys = map (uncurry (+)) $ zip xs ys

Run your new function with several examples, like this one:

λ pairwiseSum [1..5] [6..10]
[7,9,11,13,15]

Destructuring Values with Pattern Matching
In the last section, as you worked with lists, you learned how the shape of a
list was reflected in the way you worked with it using functions like (:), head
and tail. The idea that the shape of a data structure can be reflected in how
we write code to use that data structure is a powerful one, and it turns out
to have much more broad-reaching applicability than just lists.

Using pattern matching lets you write powerful expressions that match parts
of a value based on its shape. You’ll learn several ways to use pattern
matching in the remainder of this chapter. Let’s start by looking at how you
can use pattern matching with functions, case statements, and let bindings.

In its simplest form, a pattern lets you replace a variable with a specific value.
The pattern will match if the variable is equal to that value. It’s easier to
understand with an example, so let’s use pattern matching to build a program
that will give a special greeting to George:

customGreeting "George" = "Oh, hey George!"
customGreeting name = "Hello, " <> name

Notice that we have two implementations of the customGreeting function. The
first one will be used if the name matches “George”, and otherwise we’ll fall
through to our more general function. The matches happen top-to-bottom so
if you instead have:

customGreeting name = "Hello, " <> name
customGreeting "George" = "Oh, hey George!"
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Then you’d never get the custom greeting, since you will always hit the general
case before matching on the more specific "George" case.

Of course you’re not limited to just pattern matching on strings. You can
pattern match on most values, like numbers, booleans, even tuples and lists.
Let’s look at a few more examples:

matchNumber 0 = "zero"
matchNumber n = show n

matchList [1,2,3] = "one, two, three"
matchList list = show list

matchTuple ("hello", "world") = "greetings"
matchTuple tuple = show tuple

matchBool True = "yep"
matchBool bool = "this must be false"

Although all of these examples follow a general pattern where we match on
a special case first, and otherwise fall back to a catch-all case, this isn’t the
only way that we can use pattern matching. We can match on several different
cases. In the following example, we’ll create several different patterns as we
try to match different parts of a tuple.

matchTuple ("hello", "world") = "Hello there, you great big world"
matchTuple ("hello", name) = "Oh, hi there, " <> name
matchTuple (salutation, "George") = "Oh! " <> salutation <> " George!"
matchTuple n = show n

Notice that the final pattern in all of these examples is a variable that can
match any remaining values that haven’t already been matched. If we leave
out the final function in the next example, we’ll end up with a partial function.
As you learned earlier in this chapter, a partial function is one that doesn’t
handle all of the possible input values it could get, and a total function is one
that does handle all possible inputs. In this case, our partial function is
caused by an incomplete pattern match. In other words, the compiler can’t
find a pattern that matches the input to our function. Try entering it yourself
and running it for several different variations.

λ partialFunc 0 = "I only work for zero!"
λ partialFunc 0
"I only work for zero!"
λ partialFunc 1
"*** Exception: <interactive>:75:1-39: Non-exhaustive
patterns in function partialFunc

You don’t need a wildcard value for a pattern if you’ve explicitly matched all
the possible values a variable could have. For example, if we pattern match
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on a boolean value, we can provide cases for True and False to create a total
function:

matchBool True = "True story!"
matchBool False = "Sorry, this is just not True"

At the end of this section, you’ll learn some ways to ask the compiler to help
you catch potential bugs caused by incomplete patterns.

Destructuring Lists
Throughout this chapter you’ve been learning about how to construct lists,
but taking elements out of a list has been somewhat inconvenient. Up until
now, if you wanted to write a function that used elements from a list, you
would often end up writing the same boilerplate code that would

1. Check to see if the current list is empty (and if so return some base value),
2. Use the head function to get the first element of the list,
3. Use the tail function to get the rest of the list,
4. Possibly do some computation with the head of the list, and
5. Make a recursive call with the tail of the list.

With pattern matching, this becomes much easier. Let’s look at an example:

addValues [] = 0
addValues (first:rest) = first + (addValues rest)

In this example, we’re pattern matching over lists in two different ways. In
the first case, we pattern match to quickly identify our base case where we
have an empty list, and return 0. If we don’t have an empty list, we use pattern
matching to extract the head and tail of the list, which in this case we’re
calling first and rest.

You can also use pattern matching outside of the parameters of a function.
One useful place to use pattern matching is in let bindings. Imagine that you
have a function, fancyNumbers, which given some number, n, gives you back
the nth Fibonacci number and the nth prime number:

λ fancyNumbers n = (zip fibs primes) !! n
λ fancyNumbers 27
(317811,103)

If you wanted to write a function that works with this data, you can use pat-
tern matching on the tuple within a let expression to help make your code a
bit easier to read. Let’s look at an example:
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printFancy n =
let (fib, prime) = fancyNumbers n

fib' = show fib
prime' = show prime

in "The fibonacci number is: " <> fib' <> " and the prime is: " <> prime'

In some cases you want to pattern match, but also get the original value that
hasn’t been deconstructed. You can do that by adding a variable before your
pattern followed by an @ symbol. As an example, try copying in the following
function that will accept a pair and replace the first or second elements if
they match some special case, and otherwise will return the original pair:

modifyPair p@(a,b)
| a == "Hello" = "this is a salutation"
| b == "George" = "this is a message for George"
| otherwise = "I don't know what " <> show p <> " means"

λ modifyPair ("Hello", "George")
"this is a salutation"
λ modifyPair ("What's going on", "George")
"this is a message for George"
λ modifyPair ("this is", "a message")
"I don't know what (\"this is\",\"a message\") means"

Matching the entire element along with a pattern is particularly useful when
you have a large number of items you are matching out of a complex data
structure.

A special pattern that you can use is the wildcard pattern. A wildcard pattern
will match any value, like a variable would, but without binding the value to
a variable in your function. It’s a useful way of saying, “a value should be
here, but I don’t care about it.” One place this is useful is if you want to get
specific elements out of a tuple. To use a wildcard pattern, use an underscore
instead of a value or variable name. The fst and snd functions in Prelude give
you the first and second elements of a two-element tuple. Let’s use the wild-
card pattern to implement versions of these functions that work for a triple:

module Tuples where
import Prelude hiding (fst, snd)

fst (x, _, _) = x
snd (_, x, _) = x
thrd (_, _, x) = x

λ map ($ (1,2,3)) [fst, snd, thrd]
[1,2,3]
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In some cases, you might want to both ignore a particular value, as well as
communicate to other developers working in your codebase what that value
should be. In those cases, it’s common to use a variable name that starts
with an underscore prefix:

printHead [] = "empty!"
printHead lst@(hd:_tail) =

"the head of " <> (show lst) <> " is " <> show hd

In this version of the function, we are using the name _tail to communicate to
any future developer reading the code that the value is the tail of a list, and
also that it’s not a value we are going to be using.

You’ve seen that patterns allow you to branch at the function level: by using
patterns for your function arguments you can create different implementations
of your function for different inputs. Haskell offers another way to do this
within a single function, using case statements. A case statement allows you
to pattern match on a value inside of your function. You can combine pattern
matching with guards to create expressive branching conditionals based on
the values in your function.

In the simple case, a case statement looks much like a switch statement in
other languages. Let’s look at an example program that will tell us some of
our friend’s favorite foods using a case statement:

favoriteFood person =
case person of

"Ren" -> "Tofu"
"Rebecca" -> "Falafel"
"George" -> "Banana"
name -> "I Don't Know what " <> name <> " likes!"

You can also combine case statements with guards. To illustrate this, let’s
look at a different example. Copy the next example into a new file so you can
try running it in ghci:

handleNums l =
case l of

[] -> "An empty list"
[x] | x == 0 -> "a list called: [0]"

| x == 1 -> "a singular list of [1]"
| even x -> "a singleton list containing an even number"
| otherwise -> "the list contains " <> (show x)

_list -> "the list has more than 1 element"

Mixing case statements with guards can sometimes allow you to write terse
code when you are dealing with complex business logic, but be careful to not
use so many clauses in one place that it makes your code less readable.
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Getting Warned About Incomplete Patterns
Before we move on from pattern matching, let’s take a moment to look again
at the problem of non-exhaustive patterns. Since we first introduced the idea
of non-exhaustive patterns earlier in the section, we’ve been careful to avoid
them in all of the examples. It’s a good idea to avoid non-exhaustive patterns
whenever you can, and it’s rare for there to be a situation where you can’t
avoid them.

There are two situations where you might find yourself tempted to have an
incomplete pattern: when you are confident that the patterns you are omitting
won’t happen, and when you are still actively working on some code and
haven’t yet had an opportunity to implement the missing code.

When you are confident that your incomplete pattern isn’t really incomplete,
it can be tempting to leave it in. Once you learn how to create your own types
on page 117 and work with modules on page 155 you’ll be better equipped to
manage this situation. For now, an alternative is to use the error function. As
you might guess, error causes your program to fail with a runtime error. Let’s
revisit our original partial function example and look at how we can use error:

module Main where

partialFunction 0 = "I only work for 0"
partialFunction impossibleValue = error $

"I only work with 0 but I was called with " <> show impossibleValue

main = putStrLn $ partialFunction 3

If you compile and run this program, you’ll see that it still crashes, but the
output looks a bit different:

user@host$ ghc Main.hs
user@host$ ./Main
Main: I only work with 0 but I was called with 3
CallStack (from HasCallStack):

error, called at Main.hs:5:3 in main:Main

In this example, we haven’t prevented our program from crashing, but we
have at least been explicit about the fact that we expect to crash, and we’ve
gotten some useful information. The fact that your error can be explicit and
carry an error message often makes error a better choice than an incomplete
pattern for impossible cases.

Being explicit about intentionally incomplete patterns is one thing, but often
times we have incomplete pattern matches on accident. This can be because
we’re actively working on the code and haven’t written a match yet, or we
overlooked a potential value. It’s even possible that your code was complete
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when you originally wrote it, but someone else made some changes and
introduced some additional values, and now, once-working code has some
incomplete patterns lurking around waiting to cause trouble. These sorts of
errors can lurk in code for a long time until they finally manifest themselves
as a runtime error. Thankfully, the compiler can help us track them down
before we ship errors to our users. All we need to do is enable the warnings.

In most projects, you’ll enable or disable warnings at the project level. You’ll
learn how to customize the options that are used when building an entire
project when you learn about cabal projects on page 155. For the kind of small
projects you’ll be building over the next few chapters, you can also enable
and disable warnings directly from the command line when you build your
programs with ghc or load them into ghci. To start, let’s recreate the incomplete
pattern we had earlier by removing the explicit error case from our partial
function:

module Main where

partialFunction 0 = "I only work for 0"
main = putStrLn $ partialFunction 0

If we compile this without passing in any additional flags, we won’t get a
warning:

user@host$ ghc Main.hs
[1 of 1] Compiling Main ( Main.hs, Main.o )
Linking Main ...
user@host$ ./Main
I only work for 0

One way that we can get warnings about non-exhaustive patterns is to ask
for them explicitly by passing in the -Wincomplete-patterns option to ghc before
the name of the file we’re compiling:

user@host$ ghc -Wincomplete-patterns Main.hs
[1 of 1] Compiling Main ( Main.hs, Main.o )

Main.hs:3:1: warning: [-Wincomplete-patterns]
Pattern match(es) are non-exhaustive
In an equation for ‘partialFunction’:

Patterns not matched: p where p is not one of {0}
|

3 | partialFunction 0 = "I only work for 0"
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Linking Main ...
user@host$ ./Main
I only work for 0
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When we turn this flag on, the compiler helpfully points out exactly where
we’ve used a non-exhaustive pattern. Warnings don’t stop the program from
compiling though, and you’ll notice if you follow along with this example that
you still end up with an application that you can run.

Next, let’s try running our program in ghci. We’ll start by launching ghci nor-
mally without any arguments:

user@host$ ghci

When we load our file, we don’t get any warnings:

λ :load Main.hs
[1 of 1] Compiling Main ( Main.hs, interpreted )
Ok, one module loaded.

One option that we have is to pass -Wincomplete-patterns to ghci on the command
line when we start it:

ghci -Wincomplete-patterns

Now when we load our file in ghci we’ll see the same warnings that we saw
when we compiled the program:

λ :load Main.hs
[1 of 1] Compiling Main ( Main.hs, interpreted )

Main.hs:3:1: warning: [-Wincomplete-patterns]
Pattern match(es) are non-exhaustive
In an equation for ‘partialFunction’:

Patterns not matched: p where p is not one of {0}
|

3 | partialFunction 0 = "I only work for 0"
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Ok, one module loaded.

If you like to keep a long-running ghci session going, you might want to toggle
warnings on and off as you are developing without having to restart the pro-
gram. You can do that with the :set command. For example, we can temporar-
ily disable the warning by passing in -Wno-incomplete-patterns. If we do that, and
reload the file, you’ll see we stop getting warnings about the incomplete
pattern:

λ :set -Wno-incomplete-patterns
λ :load Main.hs
[1 of 1] Compiling Main ( Main.hs, interpreted )
Ok, one module loaded.
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We can also turn them back on with :set:

λ :set -Wincomplete-patterns
λ :load Main.hs
[1 of 1] Compiling Main ( Main.hs, interpreted )

Main.hs:3:1: warning: [-Wincomplete-patterns]
Pattern match(es) are non-exhaustive
In an equation for ‘partialFunction’:

Patterns not matched: p where p is not one of {0}
|

3 | partialFunction 0 = "I only work for 0"
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Ok, one module loaded.

GHC supports quite a lot of different warnings that can be individually enabled
and disabled. The pattern we just used holds for all of them. You can enable
a warning with -Wwarning-name and disable it with -Wno-warning-name. If you want
to enable all warnings about things that might be problems with your program,
you can also use -Wall. We won’t cover -Wall for now, since it will warn us about
some things that we haven’t learned how to fix yet.

Understanding How Programs Are Evaluated
Throughout this chapter you’ve learned how to express computations with
Haskell, and you’ve written several small working programs without thinking
too much about how the computer will actually run the programs that you’ve
written. If you have experience writing programs in other languages, you
might have an intuition about how applications are executed, but Haskell’s
execution model is a bit different than what you might have run into in other
languages, because it’s a lazy language. More specifically, Haskell uses a
form of laziness known as call by need. This means that when you define an
expression in Haskell it won’t be evaluated until the value is actually needed.
The expressions that haven’t been evaluated yet are called “thunks.” When
you’re writing Haskell programs, you build up layers of thunks representing
some work that might need to be evaluated at some point.

Laziness is particularly interesting when we’re dealing with lists, because one
of the consequences of the way that Haskell uses laziness is that it’s easy for
us to create and work with lists of elements that are very expensive to com-
pute, or even infinitely long lists.

To understand how this works, let’s take another look at Haskell lists, but
this time we’ll look a little bit more deeply at what the values actually look
like. You’ll learn much more about the inner workings of how Haskell stores
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values later on in this book on page 386, but for now we’re going to keep the
discussion somewhat abstract.

You know that a Haskell list is either an empty list, or a non-empty list, which
is made up of a pair of values: the head of the list, and the tail. The head of
a non-empty list is the value at the front of the list. The tail is another list
(which may or may not be empty). Thunks add another dimension that we
need to consider. The tail of a non-empty list might not be a list whose value
has been computed. Most of the time, the tail of a list is actually a thunk that
will be computed. The list that we get back when we compute that thunk
may, in turn, be another non-empty list whose tail is yet another thunk. In
fact, each time we evaluate a thunk to get a list, the result might be that we
create a brand new thunk that represents incrementally more of the list that
we’re trying to create.

Let’s take a look at this in practice with an example:

numbersStartingAt n =
n : numbersStartingAt (n + 1)

This function generates a type of list called a stream or, occasionally, a gen-
erator. These functions work by taking advantage of lazy evaluation to make
a list whose tail is a thunk. When we evaluate the thunk, it computes a new
list whose head is the next step of the iteration, and whose tail is another
thunk that will compute another step, and so on. We can visualize it in code:

numbersStartingAt 0 =
0 : <thunk>

If we’re only ever looking at the first element of a call to numbersStartingAt then
the thunk will never be evaluated, and we are only carrying around the first
number. If we do evaluate the thunk, then we’ll end up computing one more
step in the stream by calling numbersStartingAt again:

0 : numbersStartingAt 1

Which will give us:

0 : 1 : <thunk>

We can keep this pattern up forever. Every time we evaluate the thunk, we
get one more element in the list, and the tail will always be a freshly generated
thunk that will give us the next value when we need it.

This technique looks a lot like recursion, but it’s not quite the same thing.
Unlike recursive functions that we’ve written so far, streams don’t count down
to a base case. Instead, they start with a seed value and work their way up,
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potentially forever. The technical term for these kinds of functions is co-
recursive, but more often than not, in a casual setting people will simply use
the term “recursion” for this type of function. Since precisely defining the
difference is outside of the scope of the book, we won’t be overly rigorous and
will also just use the term “recursion” here.

Generating infinite lists this way ends up having several useful applications.
One example is it can help you avoid tricky modulo arithmetic. Instead of calcu-
lating the boundaries of an array, you can use the cycle function from Prelude
to create an infinitely repeating list. Let’s look at an example of this by writing
a function to convert radians to degrees. Our function will always return a
number of degrees between 0 and 359 (we’ll only consider integer numbers of
degrees), and instead of using modulo, we’ll index into a repeating list:

radsToDegrees :: Float -> Int
radsToDegrees radians =

let degrees = cycle [0..359]
converted = truncate $ (radians * 360) / (2 * pi)

in degrees !! converted

For practice, let’s write our own version of cycle. Our version will be really cool,
and we don’t want it to conflict with the existing function already named cycle,
so let’s call ours epicCycle:

epicCycle inputList =
cycleHelper inputList
where

cycleHelper [] = epicCycle inputList
cycleHelper (x:xs) = x : cycleHelper xs

You’ll notice that we’re using a helper function in a where clause in this func-
tion. While you won’t always need a helper function like this when you’re
creating streams, they are extremely common for this sort of problem. If you
find yourself trying to create a stream and getting stuck on how to build it,
think about whether you might need a auxiliary helper function.

Our helper function steps through each element of the input list, and adds
it to the output list. The first trip through the elements of our list, our cyclic
list will be the same as the list we started with. When we get to the end of the
input, for a normal finite list we’d just return the empty list and exit. For our
infinitely repeating stream, instead, we call epicCycle again, with the same list
we just finished with.

Laziness in Haskell is pervasive. We don’t have to go out of our way to manu-
ally construct lists like this to get an infinite list. We can use other normal
list functions to construct and work with infinite lists as well. For example,
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we can write an even shorter and cooler version of our function, a moreEpicCycle,
that uses (<>):

moreEpicCycle inputList =
inputList <> moreEpicCycle inputList

This version of our function works just like the previous version. We create
a new infinitely repeating list by taking the original list and appending a new
infinitely repeating version of it.

Folds and Infinite Lists
One of the most surprising consequences of the way that lazy evaluation
works in Haskell is that, in some cases, you can get a value back when you
use a fold on an infinite list. That can seem very counterintuitive at first, so
let’s look at an example to prove to ourselves that it does, in fact, work. Then
we’ll look at how it works.

In this example, we’ll write a function that will find the first element of a list that
satisfies our predicate function and return it, even if the list is infinite. You’ll
learn how to deal with optional values in a couple of chapters on page 117, but
for now we’ll return our result in a list. If we found what we’re looking for, we’ll
return it in a single item list. If we didn’t find it, we’ll return an empty list:

module InfiniteFind where

findFirst predicate =
foldr findHelper []
where

findHelper listElement maybeFound
| predicate listElement = [listElement]
| otherwise = maybeFound

If you load this up into ghci you can see that we can find numbers in many
different sorts of both finite and infinite lists:

λ findFirst (> 5) [1..100]
[6]

λ findFirst (> 10) [1..]
[11]

λ findFirst (> 50) (cycle [1..100])
[51]

Our function will also successfully return an empty list if we’re looking for
something that doesn’t exist inside of a finite list:

λ findFirst (> 100) [1..10]
[]
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Unfortunately, if we’re looking for something that doesn’t exist in an infinite
list, the program will never stop looking. You can press Control-C to cancel
something in ghci if you try this example:

λ findFirst (> 10) (cycle [1..5])
Interrupted.

It makes sense that if we’re looking for a value in an infinite list, and the
value isn’t in the list, then we’ll keep looking forever. Our program will simply
keep looking at one element after another. What makes less sense is how we
can successfully return a value if we do find one, when there’s still an infinite
amount of list left to go.

There are two important factors that let this work. First, this only works with
foldr. We can’t use foldl on an infinite list. Second, this only works if the function
we’re folding with is “sufficiently lazy.” In other words, we need to be very
careful about when we evaluate the thunk that is passed in as the second
argument to our helper function. To understand why this works, let’s pretend
to be the compiler and walk through an example. We’ll start our definition of
foldr from earlier:

foldr func carryValue lst =
if null lst
then carryValue
else func (head lst) $ foldr func carryValue (tail lst)

We’ll start by putting this definition inline into findFirst:

findFirst predicate carryValue lst =
if null lst
then carryValue
else findHelper (head lst) $ findFirst predicate carryValue (tail lst)
where

findHelper listElement maybeFound
| predicate listElement = [listElement]
| otherwise = maybeFound

We know that if we don’t find what we’re looking for, then we’ll always return
an empty list. We can use this knowledge to simplify our code a little bit by
removing carryValue and replacing it with an empty list:

findFirst predicate lst =
if null lst
then []
else findHelper (head lst) $ findFirst predicate (tail lst)
where

findHelper listElement maybeFound
| predicate listElement = [listElement]
| otherwise = maybeFound
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Next, let’s also move the definition of findHelper into the body of our function.
We’ll refactor it a little bit, using an if expression rather than guards, so that
we can make the code syntactically valid:

findFirst predicate lst =
if null lst
then []
else

if predicate (head lst)
then [head lst]
else findFirst predicate (tail lst)

Finally, we’re interested in understanding how we can fold over an infinite
list, so we can entirely remove the test to see if we’ve reached the end of our list.
We can also use pattern matching so that we don’t have to keep typing head
and tail. We wouldn’t want to do this in real-world code, since it means our
function would crash if we gave it an empty list, or even any finite list that
doesn’t have a matching element.

findFirst predicate (x:xs) =
if predicate x
then [x]
else findFirst predicate xs

This simplified version of our function is a good starting place to see what
happens when we call it with a real value. Let’s try running through it manu-
ally, looking for the first number greater than two in our list. We could call
it with an infinite list:

findFirst (> 2) [1..]

Let’s replace this infinite list with something a little bit more explicit:

findFirst (> 2) (1 : <thunk>)

This won’t compile or run, but it’ll help us visualize what’s happening. When
we replace our variables in the body of our function we’ll end up with this:

findFirst (> 2) (1 : <thunk>) =
if (> 2) 1
then [1]
else findFirst (> 2) <thunk>

Our value is not greater than two, so the first branch of our expression doesn’t
get evaluated. Instead, we go to our second branch, where we call findFirst
again, and this time we pass in our unevaluated thunk.

In the next step, we’re pattern matching on our thunk. That means we need
to actually evaluate it, so we’ll compute the value. As you’ve seen from earlier
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examples, infinite lists like the one we’re using tend to generate themselves
one step at a time, so when we evaluate the thunk we’ll get the next number
at the head of our list, and the tail will be yet another unevaluated thunk:

findFirst (> 2) (1 : <thunk>) =
if (> 2) 1
then [1]
else findFirst (> 2) (2 : <thunk>)

If we replace the recursive call with the body of our function again, we’ll get
this:

findFirst (> 2) (1 : <thunk>) =
if (> 2) 1
then [1]
else

if (> 2) 2
then [2]
else findFirst (>2) (3 : <thunk>)

The first branch of our if expression is still false (two is equal to, but not
greater than, two), so we follow the second branch again. Let’s expand the
call one last time:

findFirst (> 2) (1 : <thunk>) =
if (> 2) 1
then [1]
else

if (> 2) 2
then [2]
else

if (> 2) 3
then [3]
else findFirst (> 2) <thunk>

Finally, in this case, our predicate is true. Three is greater than two. That
means we will return the value from our first branch, [3]. It also means we’ll
never evaluate the second branch, and never evaluate the thunk. Since we
never evaluate any more of the thunk, we don’t need to concern ourselves
with the fact that we could keep evaluating it forever and not come to the end
of it. As long as we’re not trying to find the end, it doesn’t matter that it might
be infinite in theory.

Hands-On with Infinite Fibonacci Numbers
Thunks, Streams, Recursion, Co-Recursion! There’s been a lot to learn in this
chapter! Before we move on, let’s take a look at one more example to help
reinforce the concepts you’ve learned in this chapter. The Fibonacci series is
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a sequence of numbers that frequently makes an appearance in programming
texts because it has the valuable property of having a simple recursive defini-
tion. In this section, you’ll build an infinite stream of Fibonacci numbers, and
then look at several different ways that you can refactor the code to be more
efficient.

Let’s start by defining the Fibonacci sequence. It’s a sequence of integers
starting with [0,1]. You can calculate each number in the series by adding up
the two numbers that came before it. For example, the third Fibonacci number
can be calculated by adding the first two: fibonacci 3 = fibonacci 2 + fibonacci 1 = 1 +
0 = 1.

You might already recognize that this definition looks a lot like a recursive
program. Let’s create a new module, Fibs, and add a new function, fib, that
will take an index and return back that number in the Fibonacci sequence:

module Fibs where

fib n
| n == 0 = 0
| n == 1 = 1
| otherwise = (fib $ n - 1) + (fib $ n - 2)

Load this program into ghci, and you can see that it works to give you a valid
Fibonacci number. Trying numbers larger than around 20 to 30, depending
on the speed of your particular computer, you will see that there’s a noticeable
delay to calculate the Fibonacci number. Later in this section you’ll learn how
to implement a more efficient algorithm, but for now this slowness is very
useful because it will show you how laziness allows you to avoid calculating
a value until you need it.

Now that you have a function that can find any given Fibonacci number, it’s
easy to create a function that will return a stream of Fibonacci numbers. Let’s
write a new function, fibs, that represents a list of all of the Fibonacci numbers:

fibs = map fib [0..]

This function creates a list of all of the Fibonacci numbers by mapping a
function that finds the nth Fibonacci number of an infinite list of all natural
numbers. Thanks to laziness, only the specific Fibonacci numbers that you
request from the list will ever be calculated. As an example, let’s write a pro-
gram to get a list of all of the Fibonacci numbers that are less than 100. We
can use the takeWhile function to help us. The takeWhile function will return
elements of a list so long as the predicate we pass in is True. Since takeWhile
stops as soon as it encounters a non-matching element, we can use it on
infinite lists, like our infinite list of Fibonacci numbers.
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module Fibs where

fib n
| n == 0 = 0
| n == 1 = 1
| otherwise = (fib $ n - 1) + (fib $ n - 2)

fibs = map fib [0..]

smallFibs =
takeWhile (< 100) fibs

As you can see, generating an infinite list of Fibonacci numbers this way works.
Unfortunately, it’s also extremely inefficient. We’re doing a lot of re-work here,
and our program will get much slower as we want to work with more and
larger Fibonacci numbers. Thankfully, we can use laziness to our advantage
and approach this problem in a different, and much more efficient way.

Creating Lazy Streams
You’ve already implemented a lazy stream of numbers that increment by one
at each step. We can use the same general approach to create the Fibonacci
series, but there’s an additional challenge. We can’t simply add one to each
number, instead we need to calculate the next number using the two previous
values.

When we created an infinite list of numbers, we had the user tell us what
number we should start generating at. Let’s continue with that approach for
now, and ask the user to give us two numbers that start the sequence they
want us to generate:

module Fibs where

fibs firstFib secondFib =
let nextFib = firstFib + secondFib
in firstFib : fibs secondFib nextFib

Let’s walk through a couple of steps of generating this stream to get a feel for
what’s happening. We’ll start at the beginning of the sequence, passing in
the first two numbers, zero and one:

fibs 0 1 =
let nextFib = 0 + 1
in 0 : fibs 1 nextFib

Next, let’s simplify the code and replace nextFib with the result of evaluating
the arithmetic:

fibs 0 1 =
0 : fibs 1 1
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We can expand our call to fibs again to see the next step of the algorithm:

fibs 0 1 =
0 : (let nextFib = 1 + 1

in 1 : fibs 1 nextFib)

Once again, let’s do the arithmetic and compute nextFib:

fibs 0 1 =
0 : 1 : fibs 1 2

After a few steps through this program you might be getting a feel for the
steps we’re taking to calculate each new number, but there are some extra
moving parts coming from the additional number we’re tracking. Let’s look
at a picture to help us see what’s going on:

0 1 0 + 1

f�rstFib secondFib nextFib

? ? ? ���

f�bs secondFib nextFibf�bs 0 1

0 1 1

f�rstFib secondFib

1 + 1 ? ? ���

f�bs secondFib nextFibf�bs 1 1

:

0 1 1

nextFib

2 1 + 2 ? ���

f�bs secondFib nextFibf�bs 1 2

:
f�rstFib secondFib nextFib

nextFib

Output Current Step Next Step

:

As you can see, our Fibonacci stream is following the pattern of the other
streaming lists that you’ve created. At each step we’re creating a new head
with the next computed value, and the tail is a thunk that tells us how to
compute the next list. Unfortunately, there are a couple of minor problems
with the approach that we’re taking. First, it’s inconvenient to ask the user
to pass in the first two numbers in the sequence. A user who wants to know
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what the first two numbers of the series are would be pretty irritated if they
realized our API required them to tell us the first two numbers before we could
return the list back to them. Second, our algorithm is requiring us to calculate
a couple of steps ahead. Instead of looking at the two previous numbers in
the list to generate the next one, we’re effectively generating the list two
numbers ahead. For the Fibonacci series, where this extra work only means
that we’re doing some extra addition, the consequences are pretty minor. If
we were doing a more heavy-weight computation though, it could have a
noticeable impact. In any case, we’d like to build this the right way and avoid
doing unnecessary work.

We can address both of these concerns with one refactor. Let’s take a look at
the code, and then we’ll step through this version to see how it compares to
the previous implementation:

fibs = 0 : 1 : helper fibs (tail fibs)
where

helper (a:as) (b:bs) =
a + b : helper as bs

This version of our algorithm goes all in on taking advantage of thunks and
laziness to help us write a stream that avoids doing any rework, but at first
the implementation might seem a little mind twisting. Let’s step through a
few iterations of it to get a better idea of what’s happening.

We start out with fibs having two values that we’re hard-coding, followed by
a tail that’s being generated thanks to a helper function. The implementation
of helper by itself might not be too confusing now that you’re familiar with
generating streams. The fact that helper is being called with references to fibs,
however, and understanding how that works, can be a challenge.

Let’s start by replacing the references to fibs with their values in the first step
of the program:

fibs = 0 : 1 : helper (0 : 1 : <thunk>) (tail $ 0 : 1 : <thunk>)
where

helper (a:<thunk>) (b:<thunk>) =
a + b : helper <thunk> <thunk>

You can see right away that the two recursive references to fibs that we’re
passing into helper are benefiting from the fact that we’ve provided a couple
of starting values. That means that we have two values to work with before
we need to start doing any actual recursion. Luckily for us, two is exactly
how many values we need in order to generate the next element of the list.
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Let’s simplify a bit by removing the explicit call to tail and replacing the values
of a and b in helper with their actual values:

fibs = 0 : 1 : helper (0 : 1 : <thunk>) (1 : <thunk>)
where

helper (0 : 1 : <thunk>) (1 : <thunk>) =
0 + 1 : helper (1 : <thunk>) <thunk>

When we replace the parameters we passed into helper with their actual values,
we’re able to generate a new list, its head is the new value we just calculated,
and the tail is a thunk that will make another call to helper.

Next, let’s substitute the value we just calculated for our call to helper back
up into the body of fibs. You will notice that the parameters to helper are still
the thunks, but we’ve consumed the first element from each of the lists. The
second argument is now an entirely evaluated thunk:

fibs = 0 : 1 : 1 : helper (1 : <thunk>) <thunk>

So, we need to evaluate the thunk before we can move on. What value should
it have? Let’s rewind for a minute. The value we originally passed in was:

tail fibs

The value of fibs is a list with two hardcoded values, and a tail defined by our
call to helper:

tail fibs = tail $ 0 : 1 : helper fibs (tail fibs)
= 1 : helper fibs (tail fibs)

We’ve already taken one step through our program, so the value of our thunk
is now whatever is returned by our call to helper:

helper fibs (tail fibs) = 1 : helper (1 : <thunk>) <thunk>

We don’t need to evaluate the tail of the list yet, so we can simplify this a bit
further:

helper fibs (tail fibs) = 1 : <thunk>

So, we’ve evaluated the thunk and gotten back a list whose tail is another
thunk. Let’s replace the unevaluated thunk in our call with this newly evalu-
ated one. That will give us:

fibs = 0 : 1 : 1 : helper (1 : <thunk>) (1 : <thunk>)
where

helper (1 : <thunk>) (1 : <thunk>) =
1 + 1 : helper <thunk> <thunk>
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Now we have two unevaluated thunks. Let’s replace our call to helper with the
value we just calculated, and then we’ll look at how to evaluate these two new
thunks:

fibs = 0 : 1 : 1 : 2 : helper <thunk> <thunk>

Just like we did in the last step, we need to evaluate our thunks. Remember
that the thunks here aren’t referring to the original definition of fibs anymore.
Instead, they are referring to the current lists that we’ve been stepping
through. Those lists are actually two different points in the same list. The
first argument is one step behind the second, which is itself always one step
behind the next element that we’re about to generate from our call to helper.

One way to think of this is our function has two head values that are “chasing”
our helper. Each time we take a step forward, they all move one element fur-
ther into the list. The first thunk, which was originally defined as fibs, is always
one step behind the second thunk, which we defined with tail fibs.

An image can also help us visualize what’s happening. Each time we evaluate
the thunks that we’re passing into helper they take one more step into the list
that we’re generating as we go. This means that the list and the two references
are all moving in lockstep, with the thunks always one and two steps behind
the next value that helper is returning as shown in the image on page 87.

If you’re feeling a little bit overwhelmed after working through this section,
it’s okay! Take a deep breath! Understanding the way that lazy evaluation
works, and especially how it interacts with techniques like recursive, co-
recursive, and mutually recursive functions can be a lot to take in. You may
need to revisit this section a few times, or even work ahead and come back
to this section later to give it time to fully sink in.

Summary
In this chapter, you learned about lists, and along the way you had an
opportunity to learn some of Haskell’s more powerful and unique features,
like pattern matching and lazy evaluation. As you learn more about Haskell
you might find yourself using lists less frequently, because there are often
better data structures for the specific problems at hand, but the techniques
you’ve learned for working with lists will extend to these other data structures
naturally and will form a foundational part of the knowledge you’ll use to
write Haskell effectively.
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1 1 thunk thunk+0

0 1 thunk thunk+

1 2 thunk thunk+10 thunk

thunk

thunk

In the next chapter, you’ll learn about Haskell’s type system. Understanding
the type system is one of the most important parts of learning how to use
Haskell effectively. Combining the skills in recursion, pattern matching, and
higher-order functions that you’ve gained from this chapter with the under-
standing of Haskell’s type system that you’ll gain in the next chapter will get
you to a point where you can start to write even more useful programs.

Exercises

Reversing a List with Folds
It’s possible to easily implement a reverse function using folds. Try to implement
a function that will reverse a list using both foldl and foldr. Which one is simpler?
why? Might one be more efficient than the other?
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Zipping Lists
The zip function is a special case of a more general function available in Prelude
called zipWith. The zipWith function combines two lists according to a function.
Consider this implementation of zip in terms of zipWith:

λ let zip' = zipWith (,)
λ zip' [1..5] [5,4..1]
[(1,5),(2,4),(3,3),(4,2),(5,1)]

Implement the zipWith function with and without using list comprehensions.
Can you implement zipWith using foldl?

Implementing concatMap
The concat function joins a list of lists into a single list:

concat [[1,2,3],[4,5,6]]
[1,2,3,4,5,6]

Prelude provides a function named concatMap that can be naively implemented
by composing concat and map:

concatMap f = concat . map f

Try implementing concatMap using foldl and foldr. Which one is better? Why?

Thinking about Maps and Folds
Think about the following two lines of code that use map and foldr. When might
they do the same thing? When might they differ? How might that change if
you used foldl instead of foldr?

λ \f g -> foldr g 0 . map f
λ \f g -> foldr (g . f) 0

Folds and Infinite lists
You learned in this chapter that you can only use foldr on infinite lists, but not
foldl. Try to work manually through calling foldl on an infinite list What happens?
What does this tell you about why you can’t use foldl on an infinite list? Are there
any other benefits to foldr when dealing with large but finite lists?
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CHAPTER 3

Getting Started with Types
Although a formal definition of types is outside of the scope of this book,
informally you can think of a type as a way of identifying some collection of
different values. For example, the Bool type is a way of naming the set of values
True and False; similarly, the Integer type is a way of naming the set of all the
whole numbers. To be precise, you can say the values True and False inhabit
the type Bool, or they are its inhabitants, although informally throughout this
book we’ll simply say “True is a Bool.”

Every value has a type, whether it’s a number, some text, or a function. The way
the value was created doesn’t matter; a literal value of True defined at the top
level of the program, returned by a function, or bound in a let expression will
still have the type of Bool. Since there are many ways of creating a value with
some type, it’s common to say that, for example, an “expression has type Bool.”

Later in this chapter, you’ll learn about some of the commonly used types
defined in the standard library, and after that you’ll learn how to associate a
value with a type.

Working with Basic Haskell Types
The names of types in Haskell always start with a capital letter, for example,
Integer, not integer. You’ll learn about several different built-in types throughout
this chapter, but to get started let’s take a look at a few of the most common
types:

• Integer: A signed integer value. It’s unbounded, meaning it can be arbitrar-
ily large. Integer literals are written as numbers, as in 1234 or -1234.

• Int: A signed integer value. Its size (32-bit or 64-bit) depends on your
platform. Int literals are written as numbers, as in 1234 or -1234.
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• Word: An unsigned integer value. It’s the same size as an Int. Word literals
are written as numbers, as in 1234.

• Float: A single-precision IEEE floating-point value. Float literals may be
written as numbers, with or without a fractional part, as in 1 or 1.2.

• Double: A double-precision IEEE floating-point value.

• Bool: A boolean value. It can be True or False.

• Char: A single character. A character literal is written with single-quotes,
as in 'A'. Specifically, a Char is a Unicode code point.

• String: A string. A Haskell string is a list of characters. A string literal is
written with double quotes, as in "string".

• [Int] : A list of Int values. List types are surrounded by square brackets.

• (Int, String) : A tuple of an Int and a String. Tuples are written as comma-
separated lists of types surrounded by parentheses.

• ([Int],(String,String,String)) : A tuple whose first element is a list of Int and whose
second element is a three-tuple of Strings

Annotating Values with Type Information
Type annotations, which are also sometimes called type signatures, are how
Haskell lets you associate a type with an expression. Type annotations come
after the name of a top-level function, a let or where binding, or after an expression.
A type annotation starts with two colons (::) followed by the type name.

Adding a type annotation to a binding in a source file can be done in two
separate lines. For example, open a new source file and copy in the following
example to create a new top-level binding named pi and give it the Float type:

pi :: Float
pi = 3.14

If you have several bindings with the same type you can add them on multiple
lines, or on a single line separated by commas:

one, two :: Int
one = 1
two = 2

three :: Int
three = 3

four :: Int
four = 4
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You can use this same style to assign type bindings in ghci, but in order to do
so you’ll need to use :{ and :} to enter multiple lines. Note that you’ll need to
do this even if you’ve enabled multiline mode automatically in ghci, since the
type annotation by itself isn’t enough to tell ghci to start a multiline mode.

λ :{
> pi :: Float
> pi = 3.14
> :}

This is inconvenient, and so more often in ghci you’ll want to provide a type to
the expression in a single line. To do that, enter the type on the right hand side
of an assignment, after the expression. Try it out as in the following example:

λ pi = 3.14 :: Float

You can also add type annotations to an expression without binding it to a
name. Try out some of these examples to see it for yourself:

λ 1 :: Integer
1
λ [1,2] :: [Float]
[1.0,2.0]
λ "Hello" :: String
"Hello"

You aren’t limited to just adding type annotations for top-level bindings and
expressions in ghci. You can add type annotations to let and where bindings
too. Try copying this example into a source file and testing it from ghci:

calculateTotalCost basePrice =
let

priceWithServiceFee :: Int
priceWithServiceFee = basePrice + 1
customaryTip = 7 :: Int

in priceWithServiceFee + customaryTip

In this example, you can see both styles of type annotations being used inside
of a let binding. In the case of priceWithServiceFee, you are adding an annotation to
the variable, and in the case of customaryTip, you’re assigning the variable a value
that includes a type annotation. For now, we’ve skipped over adding a type for
calculateTotalCost; in the next section, you’ll learn how to write function types.

Looking Up Type Information
As you’re writing Haskell and working with types, there are two ghci commands
that will be immensely helpful to you. The :type command, which we often
abbreviate :t, will give you the type of an arbitrary Haskell expression, and
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the :info command, which is often abbreviated :i, will give you a bit more
information, but not for an arbitrary expression. :info will only work for func-
tions that you’ve loaded in from a module or source file. Let’s look at a few
examples of using :type to get the type information from some expressions.
You won’t understand many of the types here yet, but as you work your way
through the chapter, you’ll get a chance to use all of the features individually,
and by the end, you’ll be able to fluidly read and understand these sorts of
type signatures.

λ x = 1 :: Int
λ :type x
x :: Int
λ :type "Hello, World"
"Hello, World" :: [Char]
λ :type (True,False)
(True,False) :: (Bool, Bool)
λ :type (.)
(.) :: (b -> c) -> (a -> b) -> a -> c
λ :type (1 + )
(1 + ) :: Num a => a -> a
λ :type \f -> map (f . f)
\f -> map (f . f) :: (b -> b) -> [b] -> [b]
λ :type map (+ 5)
map (+ 5) :: Num b => [b] -> [b]
λ :type \f -> zipWith f [1..10] [10..1]
\f -> zipWith f [1..10] [10..1]

:: (Num a, Num b, Enum a, Enum b) => (a -> b -> c) -> [c]
λ

Writing Type Annotations for Functions
Functions in Haskell have types just like non-function values do. The types
of Haskell functions are written using an arrow (->). Let’s look at an example
of a function that takes an Int and adds 1 to it:

addOne :: Int -> Int
addOne n = n + 1

The type signature for this function says that it is going to accept an Int and
will return an Int. From the type signature, you can also know that the variable
n must be an Int. That’s because n is the first parameter to the function, and
we’ve said in the function’s type that its parameter must be an Int.

It’s also possible to have function types that have parameters even when
you’re not explicitly binding the parameter to a variable. For example, we can
rewrite addOne to not use any intermediate variable, but the type will not
change. Try this example yourself:
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addOne :: Int -> Int
addOne = (+1)

What about functions that take multiple arguments? Let’s take a look at an
example first, and then pick apart why it works:

addThreeNumbers :: Int -> (Int -> (Int -> Int))
addThreeNumbers a b c = a + b + c

The function itself is pretty straightforward: we take in three numbers, add
them together, and return the sum. Looking at the type signature though,
you might notice that there are a lot of parentheses! Why do we need so many
parentheses, and why are they grouped like that? Recall that functions in
Haskell are curried automatically, so we could have written it like this:

addThreeNumbers = \a -> \b -> \c -> a + b + c

Let’s use some let bindings with type annotations here to make sense of what’s
going on:

addThreeNumbers :: Int -> (Int -> (Int -> Int))
addThreeNumbers x y z =

let
f :: Int -> (Int -> (Int -> Int))
f a =

let
g :: Int -> (Int -> Int)
g b =

let
h :: Int -> Int
h c = a + b + c

in h
in g

in f x y z

In this example, we’ve rewritten our function to use explicit names instead
of anonymous functions, and we’ve given each of the functions a type signa-
ture. Let’s walk through this function’s implementation and the type signatures
for each of the functions we’ve defined to try to get a better feel for how the
types and the implementation of the functions match up. Let’s add a comment
above our type annotation to help make it easier for us to see how the
parameters and types line up:

-- :: x -> (y -> (z -> Int))
addThreeNumbers :: Int -> (Int -> (Int -> Int))
addThreeNumbers x y z =

The next thing we do is create a let binding to define a new function, f. Our f
function has the same type as addThreeNumbers, but we’ve only named a single
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one of its parameters, a. If you read through the definition of f, it becomes
clear that the reason for this is that from f we’re returning a new function
named g that has the type (Int -> (Int -> Int)), so f really is taking one parameter
and returning a function.

If we add a comment before the type annotation for f showing the parts of the
annotation that match up with a and g we’d get:

-- a -> (g)
f :: Int -> (Int -> (Int -> Int))
f a =

So f takes an Int and returns a function, and we’ve defined that function as
another nested let binding that we’ve named g. Just like f, the g function takes
a single parameter, in this case b, and returns a new function, which we’ve
defined as h. Let’s add comments to these functions as well:

-- b -> (h)
g :: Int -> (Int -> Int)
g b =

let
-- c -> (a + b + c)
h :: Int -> Int
h c = a + b + c

As a last step in our function, we call f with our three top level function
parameters:

in f x y z

If this call to f with three parameters looks a little confusing, you can try re-
writing it with parentheses to get a better idea of what’s going on:

in ((f x) y) z

These parentheses are optional because function application in Haskell is
left-to-right associative, so saying (f x) y is the same as saying f x y.

Just like function application at the value level, we can usually drop the extra
parentheses when we’re writing types for Haskell functions. Unlike function
application, function types are right associative, so instead of Int -> (Int -> Int)
we can write Int -> Int -> Int. In the case of addThreeNumbers, we can drop all of our
parentheses and simply write:

addThreeNumbers :: Int -> Int -> Int -> Int
addThreeNumbers a b c = a + b + c
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When you’re passing a function as an argument to another function, you will
need to use parentheses to capture the type of the function that’s being passed
in as an argument:

incrementAndShow :: Int -> (Int -> String) -> String
incrementAndShow num formatter = formatter (num + 1)

In this function, the formatter argument is a function with the type Int -> String. In
the type annotation for the function we need to use parentheses to show the
type of the second argument is a function type. If we omitted the parentheses
here, we’d be telling the compiler that our function takes three non-function
arguments.

As you might expect, you can also nest parentheses in types if you are passing
higher-order functions to other higher order functions. To see an example of
how this works, let’s make a function that we can pass incrementAndShow into:

incrementAndShow' :: Int -> (Int -> (Int -> String) -> String) -> String
incrementAndShow' num f = f (num + 1) show

From the example you can see how we’ve taken the original type for incrementAnd-
Show, put parentheses around it, and made it the second argument of our new
incrementAndShow' function.

Considering Readability of η-Reduced and Pointfree Functions
So far we’ve looked at examples of type annotations for functions that bind
names to all of their arguments, but one area where function type annotations
particularly improve readability is in functions that have been η-reduced or
are written in pointfree style. Let’s look at how type annotations can make
functions like this easier to read. We’ll start with a function named pointful
that calculates the sum of a list of numbers and then multiplies that sum by
some constant:

pointful :: [Int] -> Int -> Int
pointful xs n = foldr (+) 0 xs * n

The type annotation here looks like you’d expect, with two named function
arguments in the function definition associated with the two arguments shown
in the type annotation. We can η-reduce this function to remove the binding
for n, giving us this new implementation of the function:

etaReduced xs = (*) (foldr (+) 0 xs)

What should the type for this function look like? Our refactored function now
takes a single named argument, xs, which holds the list of numbers we’ll sum.
We’re partially applying the result of our sum to (*), and returning a function
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that will take the second argument to (*) and return an Int, so the type of our
function should be:

etaReduced :: [Int] -> (Int -> Int)

As you’ve already seen, because arrows in function types are left-to-right
associative, we can drop the parentheses:

etaReduced :: [Int] -> Int -> Int

The type of the η-reduced function is the same as our original function! In
fact, the type signature will again be unchanged if we create a completely
pointfree definition of our function. We can write a pointfree version by once
again performing η-reduction to remove the binding for xs and instead using
function composition:

pointfree :: [Int] -> Int -> Int
pointfree = (*) . foldr (+) 0

The type annotation of the pointfree version of the function in this case can
significantly improve the ease of understanding the function by giving you a
good starting point for thinking through the function composition.

Reading Type Errors
One of the most beneficial aspects of Haskell’s type system is in its ability to
generate type errors. Errors might sound like a bad thing, but Haskell’s type
errors help you refactor your code more quickly and find problems with your
program early on in the development cycle before your code gets to users. In
this section, you’ll see some simple type errors and learn how to read the
compiler’s output and use it to fix errors in your program. Haskell type errors
can grow quite long and become complex to read as you introduce more fea-
tures of the type system into your program. For now, we’ll start out with some
minimal examples, and throughout this book we’ll return to type errors that
might come up as you’re using new features of the language, so your under-
standing of these messages can grow along with your comfort in the language.

To start, let’s bring up ghci and look at some simple examples of type errors
we could introduce in a program and see how the compiler will tell us about
them. Type out each of these examples and read the error messages yourself,
and try to get comfortable with the format and spot the common elements of
the messages. Afterwards, we’ll review each of these errors one by one:

λ "one" :: Int
λ (True, False) :: (Bool, Int)
λ let f = (+) :: Int -> Int -> Int in f 1 (2 :: Float)
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Now that you’ve gotten the error messages yourself, let’s look at them individ-
ually, starting with the first of our erroneous expressions:

λ "one" :: Int

<interactive>:1:1: error:
• No instance for (Data.String.IsString Int)

arising from the literal ‘"one "’
• In the expression: "one " :: Int
In an equation for ‘it’: it = "one " :: Int

We’re getting this error because we’ve added a type annotation saying that
we expect our expression to have type Int, but the value we’re supplying is
actually a [Char] (plain Haskell strings are stored as a list of characters).
Everything that we need to diagnose the problem is in the error message, so
let’s go line by line:

<interactive>:1:1: error:

The very first part of our error message is telling us what happened (an error),
and where. The <interactive> marker is telling us that this error ocurred in an
interactive session through ghci. If your error message was in a file, then it
would have the full path to the file containing the error. The next two numbers
are the line number of the error and the column of text where the expression
containing the error started. In this case, the error occurred starting with the
first character, on the first line of our ghci session. If you ran this command
in an existing ghci session, or typed the example into a file instead of the REPL,
then you might have had a different location in your error message.

• Couldn't match expected type ‘Int’ with actual type ‘[Char]’

The next line of the error message tells exactly what went wrong. The compiler
expected an Int, because we told it that’s what it should expect with our type
annotation, but the actual value of the expression was [Char]. The way the
compiler phrases this error message gives you a hint into how it detects errors.
A lot of error messages that the compiler will find for you happen because
you have a value that the compiler has inferred a type for, and you’re trying
to use it in an expression that has some other type, and the compiler can’t
figure out how the two types can match up.

• In the expression: "one" :: Int

The next line of the error message tells you what expression contained the
error. In this case, the entire line only contained a single expression. When
you have errors in longer programs, this section of the error message can
become quite long, and it can take some practice to get a better understanding
of how to read it effectively.
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In an equation for ‘it’: it = "one" :: Int

The final line of the error message is providing some additional context to the
error. In this case, it’s telling you that the expression was being assigned to
a variable called it. The it variable is how ghci refers to your current statement
in the REPL, so you won’t see it in errors you are building from a source file.

Going through this information line by line gives you all of the information
you need to understand what your error was, where it was introduced in the
source file, and what expressions it was a part of. Now let’s move on to the next
error and see how it compares to this one:

λ (True, False) :: (Bool, Int)

<interactive>:2:8: error:
• Couldn't match expected type ‘Int’ with actual type ‘Bool’
• In the expression: False
In the expression: (True, False) :: (Bool, Int)
In an equation for ‘it’: it = (True, False3) :: (Bool, Int)

In this line of code we’ve mistakenly used False as the second element of a
tuple, where our type annotation says that it should be an Int. You can see
that the shape of the error message is similar to the previous error message,
but there are a few key differences. Let’s walk through this message, and note
where there are similarities or differences so you can get a better handle on
the subtleties of how error messages are displayed.

<interactive>:2:8: error:

The first obvious change in our new error message is in the line and column
number. Note that column 8 is the start of the second tuple element, False.
The error location is helpfully giving you the location of the start of the inner-
most expression where the error occurred.

• Couldn't match expected type ‘Int’ with actual type ‘Bool’

The second line of our new error message calls out that we’ve tried to use a
Bool where the compiler expected an Int. Notice in this case that the compiler
doesn’t consider the entire tuple type, (Bool,Int) as a single type, but is able to
look inside of the tuple and identify the part of it that doesn’t match. In many
cases this can be extremely helpful, since it will allow you to see what specific
part of a larger type doesn’t match.

• In the expression: False

This line is giving you a narrow view of the specific part of the expression that
contains the error. In this case, the error tells you that you had an expression
False that caused the error. Thankfully, the next line of the error message adds
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some additional detail that can make it easier for us to understand what’s
going on.

In the expression: (True, False) :: (Bool, Int)

The previous two lines of our error message were quite specific about the part
of the code that had an error in it. In some cases, such a specific view into
the code might not be helpful because it can be hard to see what the nature
of the error is. The next line here is providing us with some additional context
by giving us a view into the expression that contains our erroneous expression.
Since our first error message didn’t have any nested expressions, we didn’t
get this additional line.

In an equation for ‘it’: it = (True, False) :: (Bool, Int)

The final line of our second error message again contains a reference to our
interactive session.

Now let’s take a look at the last of our error messages. In this error, we’ve
defined a function named f that performs addition on two Int values. We are
calling this function with a type-inferred Int value and a Float. Unlike the pre-
vious examples we’ve looked at, the function and the values we’re passing it
are all well typed. The error here is that we’re calling f with a Float value when
it expects an Int.

λ let f = (+) :: Int -> Int -> Int in f 1 (2 :: Float)

<interactive>:3:42: error:
• Couldn't match expected type ‘Int’ with actual type ‘Float’
• In the second argument of ‘f’, namely ‘(2 :: Float)’
In the expression: f 1 (2 :: Float)
In the expression:

let f = (+) :: Int -> Int -> Int in f 1 (2 :: Float)

Once again, the general shape of this error message follows the pattern of the
other errors you’ve seen, with the first line showing the location of the error,
the second explaining the nature of the error, and the remaining lines giving
you some context about where in the source code the error was found. Let’s
walk through this last error line by line to look at how it compares to the
errors you’ve seen before.

<interactive>:3:42: error:
• Couldn't match expected type ‘Int’ with actual type ‘Float’

Just like all of the other errors that you’ve seen so far, this one starts with
the line number and column of the error. Based on the column number of
this error, we can see that the problem starts at the number 2.
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The second line of the error message shows the specific type mismatch. Just
like with the error caused by an invalid tuple field, our function call error
starts by focusing on the inner-mode expression that contains the error, in
this case the use of a Float where it expected an Int.

• In the second argument of ‘f’, namely ‘(2 :: Float)’

In this line of our error we have something different than we’ve seen before.
The compiler is giving us the information that the error was in the second
argument of our call to f. This might seem a bit odd given our focus on
understanding currying, but it certainly results in much more readable error
messages.

In the expression: f 1 (2 :: Float)
In the expression:

let f = (+) :: Int -> Int -> Int in f 1 (2 :: Float)

The remainder of the function call error again follows the familiar pattern of
providing some additional context clues to where the error ocurred. You might
notice that in this case we didn’t get any reference to ghci’s it value. Error
messages have an upper limit to the amount of context provided in the error,
so as you add more expressions you might no longer see the outermost
expression.

Working with Polymorphic Functions
So far we’ve looked at types that represent a specific sort of value like an Int or a
String. A value with a single type like this is called monomorphic. Monomorphic
functions are great when you know exactly what kind of values you’ll be
working with, but in many cases they’re unnecessarily restrictive. You can
get around these restrictions and write more general functions by using
polymorphism. In this section, you’ll learn about parametric polymorphism,
which is the most common sort of polymorphism that you’ll encounter while
writing Haskell. Later on in this book, you’ll be introduced to another kind
of polymorphism called ad hoc polymorphism.

To understand how polymorphism works and how it can help us write better
code, let’s start by looking at a problem that we can’t solve without polymor-
phism. There’s a standard library function called id that will return any value
you pass into it unmodified. This might sound a bit useless, but it turns out
to have some utility, for example, when you’re working with higher-order
functions that can optionally transform your data when you don’t want any
transformation. We’d like to implement a version of this function ourselves;
we’ll call ours identity. Without using polymorphism there’s no way we can
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implement a single function like this. To prove this to yourself, try to write
the identity function yourself without polymorphism.

No matter what monomorphic type we assign to the function, you’re limiting
yourself to only working with that particular type of data. To implement a
single function that works with any type, we’ll need to use polymorphism.
Let’s take a look at the implementation with the type signature first, and then
dive in to understand the type annotation and what it tells us about polymor-
phic functions in Haskell.

identity :: a -> a
identity val = val

The type of identity function, a -> a is making use of a type variable, in this
case a. Type variables in Haskell are a way of representing polymorphic types.
Just like a regular variable in Haskell can represent any value of the appro-
priate type, a type variable in Haskell can represent any type of the appropriate
kind. You’ll learn more about kinds later. Just like regular variables, type
variables in Haskell start with a lowercase letter. You can use longer names
for type variables in Haskell:

identity :: someValue -> someValue

Although you can use longer names for type variables, you’ll find that single-
letter variable names are quite common in Haskell, with the vast majority of
type variable names in most Haskell code bases being between one and three
letters long. In most cases, because type variables are representing very
abstract concepts, it’s hard to come up with a better variable name than you
get with a single-letter identifier anyway.

The scope of a type variable is the type annotation in which it appears. That
means that if you have two different functions, each with type variables, they
can refer to different types, but within a single type expression, a given variable
will always refer to the same type. Let’s look at a couple of examples of type
annotations:

len :: [a] -> Int
identity :: a -> a
uncurry :: (a -> b -> c) -> (a, b) -> c

You’ll notice that we’re using the type variable a in each of these functions,
but they aren’t related. The scope of a is limited to each individual type
annotation. The a in the type annotation for len is completely unrelated to the
a in identity or uncurry. On the other hand, within the type for identity or uncurry,
each time a type variable appears we know that it has to hold the same type.
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The fact that a type variable has to always represent the same type within a
type expression means that we know some information about how a function
behaves, even though we don’t know what type it might be operating on for
any given call. In the identity function for instance, we know that the type of
the value that is returned will always be the same as the type of the value
applied to it.

This is an important concept to understand, so let’s take a deeper look at
another example. In this example, we’ll write a function that takes a function
and a value and applies the function to the value and returns the results:

apply :: (a -> b) -> a -> b
apply f val = f val

In this example, our first parameter is a function from a to b, and our second
parameter is a value of type a. The a in the first parameter and the a in our
second parameter can be anything as long as they are the same. Likewise,
the return value of the first parameter and the return value of our function
are both b; again, they can be anything as long as they match.

Keep in mind that in apply :: (a -> b) -> a -> b the occurrences of a have to refer
to the same type, and the occurrences of b have to refer to the same type, but
a and b may or may not be the same type. It’s easy to think at first glance
that they have to to be different.

Let’s look at a short example. We’ll start by adding a new function, incrementInt,
and then using it with apply:

incrementInt :: Int -> Int
incrementInt n = n + 1

incremented :: Int
incremented = apply incrementInt 1

If you replace the type variables in the type of apply with the types from incre-
mentInt, you’ll end up with this:

(Int -> Int) -> Int -> Int

So in this case, the a and b in apply are both Int.

A type variable can stand in for any type. In the examples you’ve seen so far,
we’ve used basic types like Int and String as examples for what a type variable
might be standing in for, but a type variable can also be satisfied by more
sophisticated types, like lists or function types.
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An easy way to demonstrate this is by looking back at the id function, which
has the type id :: a -> a. The a in the type signature can stand in for a list if we
pass one into id.

λ id ([1,2,3] :: [Int])
[1,2,3]

Exploring the Type Space of an Application
with Undefined
As you get more accustomed to using types to help you write correct programs,
you’ll start to find that sometimes you want to test if the types for your
functions are right before you spend the time implementing them. To help
with that, Prelude includes the undefined function, which has the type undefined
:: a. In other words, undefined is a value that inhabits all types. Of course it’s
impossible to actually write a pure function that can have any value of any
type, given no inputs, and indeed, if you try to use an undefined value you’ll
get a runtime error:

λ undefined
*** Exception: Prelude.undefined
CallStack (from HasCallStack):

error, called at libraries/base/GHC/Err.hs:80:14 in base:GHC.Err
undefined, called at <interactive>:63:1 in interactive:Ghci6

This might seem like it would make undefined useless, but it turns out that it
can be far more helpful than you might expect, thanks to Haskell’s laziness
and strong type system. In this section, you’ll learn how to make use of undefined
to iterate on the design of your application before you invest a large amount
of time implementing your code.

We’ll start with a problem: we need to write a program that will take a list of
lists of numbers. We want to return a string with a comma-separated list of
numbers, where each number is the sum of all occurrences of the biggest
number, minus the sum of all occurrences of the smallest number. We’ll call
our function sumBiggest.

There are a lot of sub-computations that we’ll want to do with this function,
and we’ll be juggling types a lot throughout. To avoid having to deal with too
many different things at once, we’ll use undefined to help us incrementally work
on this function.

Let’s start by defining the basic function as an undefined stub:

sumBiggest :: [[Int]] -> String
sumBiggest allNums = undefined
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You can now compile the program, or load it into ghci. You can also write a
function that uses sumBiggest:

showBiggest =
let biggestInfo = sumBiggest [[1,1,2,3,4,4],[1,2,5,5],[-1,-2,5,-10,5]]
in print $ "sumBiggest says: " <> biggestInfo

Although this will still fail if you try to call sumBiggest, either directly or indi-
rectly through showBiggest, we’ve still gained the ability to typecheck our pro-
gram while deferring writing the full implementation.

The next step is to think through the steps of the transformations that we
want to make on the list, and add some intermediate functions in a let or
where binding. We know that we’ll need a way to get the biggest and smallest
values, so let’s start there:

sumBiggest :: [[Int]] -> String
sumBiggest allNums =

let
getBiggests :: [Int] -> [Int]
getBiggests = undefined

getSmallests :: [Int] -> [Int]
getSmallests = undefined

in undefined

We can also create some intermediate values that use these functions, even
if we can’t actually run them yet:

allBiggests :: [[Int]]
allBiggests = map getBiggests allNums

allSmallests :: [[Int]]
allSmallests = map getSmallests allNums

We need to calculate the difference of the sums of the biggest and smallest
values, so the next step is to create another function that will give us a tuple
of the biggest and smallest values. Let’s call that zipSizes and add another
value that uses it:

zipSizes :: [[Int]] -> [[Int]] -> [([Int],[Int])]
zipSizes = undefined

sizePairs :: [([Int],[Int])]
sizePairs = zipSizes allBiggests allSmallests

At this point, you can look at the type of zipSizes and realize that [[Int]] -> [[Int]]
-> [([Int],[Int])] is a special case of [a] -> [b] -> [(a,b)], which is the type of zip. Let’s
fix that now:
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sizePairs :: [([Int],[Int])]
sizePairs = zip allBiggests allSmallests

By stubbing out our intermediate functions first, we’ve been able to see an
opportunity to use a built-in function that we might not have seen right away.
Next, we’ll want a way of actually calculating the sum of differences, and we’ll
want to convert those sums to strings:

differences :: ([Int],[Int]) -> Int
differences = undefined

differences' :: [String]
differences' = map (show . differences) sizePairs

Finally, we’ll use the intercalate function from Data.List to join the strings
together with commas and return our overall string. At this point, your full
function should look something like this:

sumBiggest :: [[Int]] -> String
sumBiggest allNums =

let
getBiggests :: [Int] -> [Int]
getBiggests nums = undefined

getSmallests :: [Int] -> [Int]
getSmallests nums = undefined

differences :: ([Int],[Int]) -> Int
differences pairs = undefined

allBiggests :: [[Int]]
allBiggests = map getBiggests allNums

allSmallests :: [[Int]]
allSmallests = map getSmallests allNums

sizePairs :: [([Int],[Int])]
sizePairs = zip allBiggests allSmallests

differences' :: [String]
differences' = map (show . differences) sizePairs

in Data.List.intercalate "," differences'

As an exercise, work through the remaining functions and implement them.
If you add any additional intermediate values, try to start with having them
be undefined.

Getting Help from Type Holes
Throughout this chapter, we’ve put types and type annotations at the forefront
of our examples. Adding explicit type annotations to all our let and where has
been helpful as a learning exercise, but it’s not a common style in real-world
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applications. Most Haskell code you’ll see in the wild will include explicit type-
level annotations for top-level bindings, but it’s common to leave off the
annotations inside of a function body and instead rely on type inference.

Omitting the type annotations inside of a function offers some substantial
benefits. First, it means that we don’t have to spend time updating type
annotations when we’re refactoring our code. In a larger code base this can
be a substantial win for refactoring speed. Second, when we don’t have to
worry about adding annotations for all of our intermediate values, we often
end up creating fewer intermediate values, and the resulting code ends up
shorter and, in practice, is often easier to read and maintain.

All of these benefits also come with one major drawback: the compiler is good
at doing type inference and figuring out what the type of any particular
expression should be, but the human brain sometimes isn’t. It’s easy to get
lost in a larger function and find yourself struggling to keep track of what
types are what. Type holes solve this problem by giving us a way to use
Haskell’s type inference system more interactively, letting us ask the compiler
directly what the type should be for a particular expression.

You can create a type hole by replacing any expression with an underscore
(_), or a name that starts with an underscore. When you compile the code,
the compiler will notice the type hole and will give you an error message that
tells you exactly what the type of the expression should be in order to fill in
the type hole. You can create type holes in regular source files, or add them
into expressions in ghci. Similarly, you can get information about type holes
by compiling a program or loading it into ghci.

Let’s start by creating a new file, TypeHoleDemo.hs:

module TypeHoleDemo where

exampleNumbers :: [Int]
exampleNumbers = [1..10]

getFiveNumbers :: [Int]
getFiveNumbers = take 5 _

In this example, we’ve created a list of numbers, exampleNumbers, and a function,
getFiveNumbers, which is using a type hole in place of the second argument to
take. If we load this into ghci we can see that, as we expect, we’ll get an error
message telling us about the type hole:

λ :load TypeHoleDemo.hs
[1 of 1] Compiling TypeHoleDemo ( TypeHoleDemo.hs, interpreted )

TypeHoleDemo.hs:7:25: error:
• Found hole: _ :: [Int]
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• In the second argument of ‘take’, namely ‘_’
In the expression: take 5 _
In an equation for ‘getFiveNumbers’: getFiveNumbers = take 5 _

• Relevant bindings include
getFiveNumbers :: [Int] (bound at TypeHoleDemo.hs:7:1)

Valid hole fits include
getFiveNumbers :: [Int] (bound at TypeHoleDemo.hs:7:1)
exampleNumbers :: [Int] (defined at TypeHoleDemo.hs:4:1)
[] :: forall a. [a]

with [] @Int
(bound at <wired into compiler>)

mempty :: forall a. Monoid a => a
with mempty @[Int]
(imported from ‘Prelude’ at TypeHoleDemo.hs:1:8-19
(and originally defined in ‘GHC.Base’))

|
7 | getFiveNumbers = take 5 _

| ^
Failed, no modules loaded.

At first glance the type hole error that we get looks similar to the type errors
we’ve already seen, but there are some differences. Let’s walk through this
and see what we can learn about type hole errors:

TypeHoleDemo.hs:7:25: error:

The first thing you’ll notice is that, just like standard type errors, our type hole
error message starts with the line and column of our error. In this case, the
type hole was in the file TypeHoleDemo.hs on line 7 and started in column 25.

• Found hole: _ :: [Int]

In the type errors we’ve looked at up until now, the compiler has typically
given us two pieces of information: the type it expected, and the type it actu-
ally saw. When we create a type hole, there’s no actual type found, so the
compiler only needs to tell us what type it expects. In practice, this can make
error messages a lot easier to follow by removing some extraneous information.

• In the second argument of ‘take’, namely ‘_’
In the expression: take 5 _
In an equation for ‘getFiveNumbers’: getFiveNumbers = take 5 _

Like other type errors, the compiler gives us some information about the
expression where our error has occurred. In this case, it’s showing us which
argument of take had the type hole, along with some expressions to help us
spot where the type hole is.

• Relevant bindings include
getFiveNumbers :: [Int] (bound at TypeHoleDemo.hs:7:1)
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The type hole error also shows us information about any other bindings that
have been defined. In our simple example, we haven’t created any let bindings,
so the only thing in scope that is relevant is the function we’re trying to define.
If we added a let binding, we would also see it show up here. For example,
we can change the definition of our function to this:

getFiveNumbers :: [Int]
getFiveNumbers = let quantity = 5 in take quantity _

If we reload our file in ghci now, you’ll see that quantity is now also a relevant
binding included in the error message:

• Relevant bindings include
quantity :: Int (bound at TypeHoleDemo.hs:7:22)
getFiveNumbers :: [Int] (bound at TypeHoleDemo.hs:7:1)

The final part of the error message is a list of values that are defined that
have the right type, and so could be potential values to make the program
typecheck:

Valid hole fits include
getFiveNumbers :: [Int] (bound at TypeHoleDemo.hs:7:1)
exampleNumbers :: [Int] (defined at TypeHoleDemo.hs:4:1)
[] :: forall a. [a]

with [] @Int
(bound at <wired into compiler>)

mempty :: forall a. Monoid a => a
with mempty @[Int]
(imported from ‘Prelude’ at TypeHoleDemo.hs:1:8-19
(and originally defined in ‘GHC.Base’))

In this example, the compiler is telling us that both getFiveNumbers and exam-
pleNumbers from our module are values that would let our program typecheck.
An empty list would work too, along with mempty, which comes from Prelude.

Using type holes like this to figure out the particular type of an argument to
a function can be particularly helpful when you are dealing with polymorphic
functions. Let’s write a bit more code to see exactly how we can get some
value out of type holes when we’re dealing with polymorphism.

We’ll start by adding two functions, one that computes the permutations of
a thruple, and another that combines the first two elements of a thruple using
some combining function:

permuteThruple ::
(a,b,c) ->
((a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a))

permuteThruple (a,b,c) =
((a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a))
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mergeFirstTwo :: (a,b,c) -> (a -> b -> d) -> (d,c)
mergeFirstTwo (a,b,c) f = (f a b, c)

Working with functions like this could be tricky. Although the functions themselves
are polymorphic, the code that calls them might introduce some constraints that
narrow down the possible types. With so many type variables, we can start to get
lost. Using a type hole can help us recover some helpful information. Let’s add a
new function that uses a type hole to help us figure out what’s going on:

showFields :: String
showFields =

let (a,b) = combinePermutations . permuteThruple $ _
in unlines [fst a, fst b]
where

joinFields a b = show a <> " - " <> b
combinePermutations (a,b,c,d,e,f) =
( mergeFirstTwo a joinFields
, mergeFirstTwo c joinFields
)

You can try to manually review this code to figure out what type we should
use in the type hole, but it quickly becomes apparent that it’s going to be a
lot of work. If we load the code up in ghci, the compiler immediately tells us
what we need to know:

TypeHoleDemo.hs:20:54: error:
• Found hole: _ :: (String, String, c)
Where: ‘c’ is a rigid type variable bound by

the inferred types of
a :: (String, c)
b :: (String, c)

at TypeHoleDemo.hs:20:7-54
• In the second argument of ‘($)’, namely ‘_’
In the expression: combinePermutations . permuteThruple $ _
In a pattern binding:

(a, b) = combinePermutations . permuteThruple $ _
• Relevant bindings include

combinePermutations :: forall {a1} {a2} {c1} {b} {c2} {d} {e} {f}.
(Show a1, Show a2) =>
((a1, String, c1), b, (a2, String, c2), d, e, f)
-> ((String, c1), (String, c2))

(bound at TypeHoleDemo.hs:24:5)
joinFields :: forall {a}. Show a => a -> String -> String

(bound at TypeHoleDemo.hs:23:5)
showFields :: String (bound at TypeHoleDemo.hs:19:1)

|
20 | let (a,b) = combinePermutations . permuteThruple $ _

| ^
Failed, no modules loaded.
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In the second line of the error, the compiler tells us exactly what kind of tuple
we should pass in:

• Found hole: _ :: (String, String, c)

The first two elements of our tuple need to be strings, and the final element
appears to not be used at all, and so it can be any type that we want. Let’s
test it out by adding some hardcoded thruple argument:

showFields :: String
showFields =

let (a,b) = combinePermutations . permuteThruple $ ("hello", "world", 10)
in unlines [fst a, fst b]
where

joinFields a b = show a <> " - " <> b
combinePermutations (a,b,c,d,e,f) =
( mergeFirstTwo a joinFields
, mergeFirstTwo c joinFields
)

If we load this in ghci and run it, we’ll get a message back:

λ putStrLn showFields
"hello" - world
"world" - hello

Another case where type holes can come in handy is when the compiler finds
a type error in your program, but attributes the error to the wrong part of the
expression. Let’s add some more code to our example file. This time we’ll write
code that has a type error, but we won’t use a type hole just yet:

showStringPair :: (String,String) -> String
showStringPair (a,b) = "fst: " <> a <> ", snd: " <> b

doubleField :: a -> (a,a)
doubleField a = (a,a)

showValues :: String
showValues = unlines $ map (showStringPair . doubleField) [1..10]

If we load this into ghci we’ll get a type error, but it’s not the one we’d expect:

λ :load TypeHoleDemo.hs
[1 of 1] Compiling TypeHoleDemo ( TypeHoleDemo.hs, interpreted )

TypeHoleDemo.hs:36:59: error:
• No instance for (Enum String)

arising from the arithmetic sequence ‘1 .. 10’
• In the second argument of ‘map’, namely ‘[1 .. 10]’
In the second argument of ‘($)’, namely

‘map (showStringPair . doubleField) [1 .. 10]’
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In the expression:
unlines $ map (showStringPair . doubleField) [1 .. 10]

|
36 | showValues = unlines $ map (showStringPair . doubleField) [1..10]

| ^^^^^^^

TypeHoleDemo.hs:36:60: error:
• No instance for (Num String) arising from the literal ‘1’
• In the expression: 1
In the second argument of ‘map’, namely ‘[1 .. 10]’
In the second argument of ‘($)’, namely

‘map (showStringPair . doubleField) [1 .. 10]’
|

36 | showValues = unlines $ map (showStringPair . doubleField) [1..10]
| ^

Failed, no modules loaded.

In this example, the actual bug that we have is due to the function we’re
passing to map. It should call show before it calls doubleField. The compiler is
assuming this is well typed, and instead thinks we’re passing the wrong value
into map. With type inference, this is a problem you’ll encounter from time
to time. Two types don’t match, but the compiler makes the wrong decision
about which one is correct, and tries to suggest that you change the wrong
thing.

When this happens, we can sometimes use a type hole to narrow down the
problem. In this case, let’s try turning doubleField into a type hole. Rather than
replacing it entirely with an underscore, we can add an underscore prefix.
This gives us a named type hole, and it will be easier when we want to remove
the type hole and go back to the actual function call later:

showValues :: String
showValues = unlines $ map (showStringPair . _doubleField) [1..10]

When we load this version of the program into ghci, our error is much more
clear:

λ :load TypeHoleDemo.hs
[1 of 1] Compiling TypeHoleDemo ( TypeHoleDemo.hs, interpreted )

TypeHoleDemo.hs:36:46: error:
• Found hole: _doubleField :: Integer -> (String, String)
Or perhaps ‘_doubleField’ is mis-spelled, or not in scope

• In the second argument of ‘(.)’, namely ‘_doubleField’
In the first argument of ‘map’, namely

‘(showStringPair . _doubleField)’
In the second argument of ‘($)’, namely

‘map (showStringPair . _doubleField) [1 .. 10]’
• Relevant bindings include

showValues :: String (bound at TypeHoleDemo.hs:36:1)
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Valid hole fits include
mempty :: forall a. Monoid a => a

with mempty @(Integer -> (String, String))
(imported from ‘Prelude’ at TypeHoleDemo.hs:1:8-19
(and originally defined in ‘GHC.Base’))

|
36 | showValues = unlines $ map (showStringPair . _doubleField) [1..10]

| ^^^^^^^^^^^^
Failed, no modules loaded.

Now that we’ve told the compiler where to look, the type hole is telling us that for
our code to be valid, doubleField would need to have the type Integer -> (String,String):

• Found hole: _doubleField :: Integer -> (String, String)

Of course, doubleField returns a tuple of whatever type we pass into it, so we’ll
need to replace doubleField with a new function that both converts the value to
a String and then creates the tuple. Let’s try keeping our type hole around, but
adding show to our function:

TypeHoleDemo.hs:36:46: error:
• Found hole: _doubleField :: String -> (String, String)
Or perhaps ‘_doubleField’ is mis-spelled, or not in scope

• In the first argument of ‘(.)’, namely ‘_doubleField’
In the second argument of ‘(.)’, namely ‘_doubleField . show’
In the first argument of ‘map’, namely

‘(showStringPair . _doubleField . show)’
• Relevant bindings include

showValues :: String (bound at TypeHoleDemo.hs:36:1)
Valid hole fits include

doubleField :: forall a. a -> (a, a)
with doubleField @String
(bound at TypeHoleDemo.hs:33:1)

return :: forall (m :: * -> *) a. Monad m => a -> m a
with return @((,) String) @String
(imported from ‘Prelude’ at TypeHoleDemo.hs:1:8-19
(and originally defined in ‘GHC.Base’))

pure :: forall (f :: * -> *) a. Applicative f => a -> f a
with pure @((,) String) @String
(imported from ‘Prelude’ at TypeHoleDemo.hs:1:8-19
(and originally defined in ‘GHC.Base’))

read :: forall a. Read a => String -> a
with read @(String, String)
(imported from ‘Prelude’ at TypeHoleDemo.hs:1:8-19
(and originally defined in ‘Text.Read’))

mempty :: forall a. Monoid a => a
with mempty @(String -> (String, String))
(imported from ‘Prelude’ at TypeHoleDemo.hs:1:8-19
(and originally defined in ‘GHC.Base’))
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|
36 | showValues = unlines $ map (showStringPair . _doubleField . show) [1..10]

| ^^^^^^^^^^^^

Now the type hole needs to have the type String -> (String,String):

• Found hole: _doubleField :: String -> (String, String)

That lines up perfectly with the type of doubleField, and in fact the compiler
even recognizes that and suggests that it might be a valid fit:

Valid hole fits include
doubleField :: forall a. a -> (a, a)

with doubleField @String
(bound at TypeHoleDemo.hs:33:1)

Let’s take the compiler’s advice and fill our type hole in with doubleField:

showValues :: String
showValues = unlines $ map (showStringPair . doubleField . show) [1..10]

If we load this in ghci it seems to work, and we can call showValues:

λ :load TypeHoleDemo.hs
[1 of 1] Compiling TypeHoleDemo ( TypeHoleDemo.hs, interpreted )
Ok, one module loaded.
λ putStrLn showValues
fst: 1, snd: 1
fst: 2, snd: 2
fst: 3, snd: 3
fst: 4, snd: 4
fst: 5, snd: 5
fst: 6, snd: 6
fst: 7, snd: 7
fst: 8, snd: 8
fst: 9, snd: 9
fst: 10, snd: 10

As you are working through the examples in this book or trying out the
exercises, be sure to keep type holes in mind as a helpful tool for narrowing
down type errors and figuring out how to fix code that doesn’t compile.

Looking at the Type of main
So far we’ve skimmed past the type of one important function: main. In all
Haskell executables, there should be a single main function and it should have
the type main :: IO (). This is called an IO action. You’ll learn more about IO
actions on page 263. For now, it’s sufficient to know that functions with the
type IO a are functions that do some sort of interaction with the real world,
like printing a value to a screen or reading a file.
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Summary
In this chapter, you’ve seen how Haskell’s type system is integrated into the
language. You’ve learned how to add type annotations to your own programs
to help them be more readable and easier to use correctly, and you’ve learned
how to use the type system to look up information about how functions work,
and to troubleshoot your own programs using type holes. As you spend more
time with Haskell, and improve your understanding of the type system and
its capabilities, you will learn to see types as an invaluable tool to help you
understand and express your code. Much of the rest of this book will be
devoted to understanding how to best make use of Haskell’s type system to
write effective and maintainable programs, and investing early in making sure
that you are comfortable with types and how to use them will pay dividends
as you continue on your path toward mastering Haskell.

In the next chapter, you’ll learn how to create your own types and how the
way you define types can profoundly impact the way you write your programs.
Having a good understanding of the way Haskell’s built-in types work will be
instrumental in being able to easily combine them when you build your own
types, and will give you an effective starting point when you start to think
about how you want to design and build your own types.

Exercises

Undefined
Consider a function that takes three integers but hasn’t been defined:

addThree :: Int -> Int -> Int -> Int

There are several different ways that you could write a function like this. For
example, here are two possible definitions:

-- definition 1
addThree = undefined

-- definition 2
addThree a b c = undefined

There are many other ways we could use undefined to write a version of
addThree that type checks. Why are there so many different versions?

Understanding Functions by Their Type
The behavior of the following functions from base can be easily predicted
based on their type. Review the type of each of these functions and try to
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guess at how they are implemented. Use ghci to see if you were right. Are there
other ways you could have implemented them? Why or why not?

• Data.Tuple.swap :: (a,b) -> (b,a)
• concat :: [[a]] -> [a]
• id :: a -> a

Filling In Type Holes
Consider the following example code:

mapApply :: [a -> b] -> [a] -> [b]
mapApply toApply =

concatMap (\input -> map ($ input) toApply)

example :: [Int] -> String
example = mapApply undefined

where
letters :: [Char]
letters = ['a'..'z']

lookupLetter :: Int -> Char
lookupLetter n = letters !! n

offsets :: [Int -> Int]
offsets = [rot13, swap10, mixupVowels]

rot13 :: Int -> Int
rot13 n = (n + 13) `rem` 26

swap10 :: Int -> Int
swap10 n
| n <= 10 = n + 10
| n <= 20 = n - 10
| otherwise = n

mixupVowels :: Int -> Int
mixupVowels n =

case n of
0 -> 8
4 -> 14
8 -> 20
14 -> 0
20 -> 4
n' -> n'

Try to fill in the value of undefined so that you get the following output:

λ example [5..15]
"spftqgurhvsuwtjxukyblzcmadnbeacfp"

Use type holes to help you figure out the type of the value you’ll need to use.
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CHAPTER 4

Creating New Types
In the last chapter, you learned the basics of how Haskell’s type system works,
and you wrote some programs that made use of some of the common prede-
fined types available in the standard library. Those fundamentals are an
important building block to making effective use of Haskell’s type system,
but the real power comes in creating your own types that let you precisely
describe the structure and behavior of the data in your application. In this
chapter, you’ll learn how to create your own types that accurately represent
the structure of your data. Later, on page 209, you’ll learn to go a step further
and describe the behavior of your types as well.

Creating Data Types and Records
One of the most common reasons to make your own data types in Haskell is
to create named and structured collections of some other types. For example,
you might want to create a type that represents some information about a
customer like their first and last name, the number of products they’ve
ordered, and their current outstanding account balance. You can create a
new type with the data keyword. For example, to create a new CustomerInfo you
can simply say:

data CustomerInfo

This defines the existence of a new type called CustomerInfo. Unfortunately, as
we’ve written the code, the only thing it does is define a new type. We don’t
have any way to create a value of our new type, in other words we’ve created
a type that doesn’t have any inhabitants. That might sound a little bit useless,
but there’s a commonly used type that doesn’t have any inhabitants called
Void and its definition is simply:

data Void
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Later on in this book, you’ll learn about some cases where types that don’t
have any inhabitants can come in handy. For now we need to a way to create
some customer information. We’ll start by creating a value constructor. A
value constructor is a special function that lets us create a new value of a
certain type.

Like types, value constructors in Haskell start with a capital letter. Let’s create
a new value constructor for our type:

data CustomerInfo = CustomerInfo

Here we’ve created a new value constructor for our CustomerInfo type and called
it CustomerInfo. Although the names are the same, it’s important to remember
that the identifier on the left is the name of a type, and the one on the right
is a normal (value level) function. This is an example of punning, and it’s quite
common in most Haskell code bases.

You can use your new value constructor to create a value with the type Cus-
tomerInfo:

someCustomerInfo = CustomerInfo

Unfortunately, right now our CustomerInfo type only has a single inhabitant,
which is the value we create when we call CustomerInfo. Values with a single
inhabitant can also be quite useful in practice. The type with a single inhab-
itant in Haskell is often called Unit, or (). Although we can’t actually define ()
ourselves since it’s special syntax that’s built into the language, you can think
of it as being defined like this:

data () = ()

To add some inhabitants to our new type, we can add some parameters to
our value constructor function. For example, if we wanted to add a single
boolean flag to say whether the user was active or not, we could say:

data CustomerInfo = CustomerInfo Bool

Now our CustomerInfo value constructor becomes a function that takes a single
Bool and returns some new CustomerInfo value:

λ :type CustomerInfo
CustomerInfo :: Bool -> CustomerInfo
λ :type CustomerInfo True
CustomerInfo True :: CustomerInfo
λ :type CustomerInfo False
CustomerInfo False :: CustomerInfo
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When we add a single parameter, the number of inhabitants for our new type
is equal to the number of inhabitants of the value it contains. In our example,
we can have two different CustomerInfo values, one that we created by passing
in True and one we created by passing in False.

You can add more parameters to your constructor by listing them after the
first. Let’s add another boolean value:

data CustomerInfo = CustomerInfo Bool Bool

Our new type now contains two boolean values, and it has four inhabitants:

CustomerInfo True True
CustomerInfo True False
CustomerInfo False True
CustomerInfo False False

In fact, each time you add a new parameter to your value constructor, the
number of inhabitants of your type gets multiplied by the number of inhabi-
tants of the new type. Because the number of inhabitants of a type increases
multiplicatively, we often refer to these types in Haskell as product types.

Let’s dump our booleans and create a CustomerInfo that holds data for our
customer’s first and last name, the number of items they’ve ordered, and
their account balance:

data CustomerInfo = CustomerInfo String String Int Int

Next, let’s create a useful example customer that we can work with, by
applying some values to our value constructor function:

customerGeorge :: CustomerInfo
customerGeorge =

CustomerInfo "Georgie" "Bird" 10 100

Creating a new CustomerInfo value like this doesn’t do much good if we can’t
look at or do anything with the data once we’ve created it. To do anything
useful with our new value, we need to be able to get at the data that we passed
in to create it in the first place.

You’ve used pattern matching already with lists and values like numbers and
strings. Pattern matching for data types works much the same way. To pattern
match the fields of a type you can use the type data name, followed by the
names you want to bind to each type field, or an underscore for fields you
want to ignore. Let’s look at an example where we use pattern matching to
extract the fields of a customer type and generate a string:
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showCustomer :: CustomerInfo -> String
showCustomer (CustomerInfo first last count balance) =

let fullName = first <> " " <> last
name = "name: " <> fullName
count' = "count: " <> (show count)
balance' = "balance: " <> (show balance)

in name <> " " <> count' <> " " <> balance'

λ showCustomer customerGeorge
"name: Georgie Bird count: 10 balance: 100"

You can also match values in specific fields. For example, let’s write a function
that applies a discount to certain customers based on their first and last name:

applyDiscount :: CustomerInfo -> CustomerInfo
applyDiscount customer =

case customer of
(CustomerInfo "Georgie" "Bird" count balance) ->

CustomerInfo "Georgie" "Bird" count (balance `div` 4)
(CustomerInfo "Porter" "Pupper" count balance) ->

CustomerInfo "Porter" "Pupper" count (balance `div` 2)
otherCustomer -> otherCustomer

This approach to pattern matching out fields works well for small data types
where you will generally want access to all or most fields, but as you can
imagine it can become cumbersome for larger types or cases where you fre-
quently only want to access a single field. You can work around this by writing
a function to access each field of your value:

firstName :: CustomerInfo -> String
firstName (CustomerInfo name _ _ _) = name

lastName :: CustomerInfo -> String
lastName (CustomerInfo _ name _ _) = name

widgetCount :: CustomerInfo -> Int
widgetCount (CustomerInfo _ _ count _) = count

balance :: CustomerInfo -> Int
balance (CustomerInfo _ _ _ balance) = balance

Updating values follows a similar pattern. An example function that updates
a customer’s first name is provided here. As an exercise, implement update
functions for the rest of the fields in CustomerInfo.

updateFirstName :: CustomerInfo -> String -> CustomerInfo
updateFirstName (CustomerInfo _ lastName count balance) firstName =

CustomerInfo firstName lastName count balance

Thankfully, although this process of adding getter and setter functions for
each field of a datatype is a good learning experience, it isn’t necessary in
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practice because Haskell has a special syntax for dealing with product types
with named parameters. These data types are called records, and you’ll often
see the syntax used to work with records referred to as record syntax.

In record syntax you create a product type, but each field of the datatype is
assigned a name as well as a type. The names are used to automatically
generate functions to get fields from the record. These functions are called
field selectors, or often just selectors. There is also special syntax to generate
a record with new fields. Let’s rewrite our CustomerInfo type using record syntax:

data CustomerInfo = CustomerInfo
{ firstName :: String
, lastName :: String
, widgetCount :: Int
, balance :: Int
}

When using record syntax we follow the name of the data constructor with
curly braces, and then a list of each named record field, with an annotation
for its type. The type annotations in the record aren’t optional here; you need
them for the expression to be valid. When you define a record this way, you once
again get a function named after your data constructor, in this case CustomerInfo,
whose arguments are the fields of the record in the order they appear:

CustomerInfo :: String -> String -> Int -> Int -> CustomerInfo

Additionally, you get a new way of constructing a value using named argu-
ments. To construct a value using named arguments, you follow the data
constructor name with curly braces, and then list the fields that you want to
assign and the values:

customerGeorge :: CustomerInfo
customerGeorge =

CustomerInfo
{ balance = 100
, lastName = "Bird"
, firstName = "George"
, widgetCount = 10
}

Notice here the named arguments appear in a different order than they do
when you defined the record. One advantage to using named arguments is
you don’t have to remember the positions of individual arguments. A disad-
vantage to constructing records this way is you can’t partially apply fields to
the data constructor using record syntax. For example, if we wanted to create
some function to initialize new customers with some bonus items using record
syntax, we would need to manually accept the missing fields as parameters:
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customerFactory :: String -> String -> CustomerInfo
customerFactory fname lname =

CustomerInfo { balance = 0
, widgetCount = 5
, firstName = fname
, lastName = lname
}

Record field names can also be used to access fields of a record. Each record
field becomes a function to extract that field from your record. This means
that you no longer need to manually write functions to extract record fields.
We can see this in action by looking at fields from customerGeorge in ghci:

λ firstName customerGeorge
"George"
λ lastName customerGeorge
"Bird"
λ widgetCount customerGeorge
10
λ balance customerGeorge
100

These record field functions are ordinary functions that can be composed,
passed as arguments to higher-order functions, and so on. For example, if
we wanted to write a function that calculated the total number of widgets
that we needed to assemble for a group of customers we could write:

totalWidgetCount :: [CustomerInfo] -> Int
totalWidgetCount =

sum . map widgetCount

Updating records can also be done easily using record update syntax. With
record update syntax you can update a specific field of your record based on
its name. Let’s use record update syntax to write a function that clears out
a user’s widget count and balance:

emptyCart :: CustomerInfo -> CustomerInfo
emptyCart customer =

customer { widgetCount = 0
, balance = 0
}

You can see in this example that record update syntax mirrors other record
syntax. Keep in mind that, in spite of the name, record update syntax does
not change the original record value. The record update syntax returns a new
record with the specified fields updated to their new values. You can see this
in action in ghci:

λ george = emptyCart customerGeorge
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λ balance george
0
λ balance customerGeorge
100

Creating Bindings for All Record Fields with Wildcards
Record syntax can make it easier to deal with cases where you want to work
with small records, or only want to regularly access a couple of record fields.
For functions that need to regularly access all of the fields of a record, pattern
matching out all of the fields, or using record syntax to construct new records,
can start to feel like it involves a lot of boilerplate. You can reduce some of this
boilerplate by enabling a language extension to add a new feature to Haskell.

A language extension lets you turn on features that extend the core Haskell
language, giving you new ways to write programs. GHC supports over a hundred
different language extensions as of version 9.4. As new features are added to the
compiler, they are almost always enabled through a language extension to start
with. Over time, some extensions have become quite popular and are used in
nearly all new Haskell projects. Other extensions are deprecated, superseded by
newer extensions that provide expanded capabilities, or no longer in favor.
Finally, many of the extensions you’ll see throughout this book are popular
but only useful in particular circumstances. Throughout this book you’ll learn
about several new language extensions you might want to enable. You can
refer to the GHC manual1 for a complete list of all language extensions.

For now, let’s enable the RecordWildCards extension. There are several different
ways that we can enable extensions in GHC. For now we’ll look at two.

RecordWildCards

The RecordWildCards extension has been available since GHC 6.8.1. It
isn’t enabled by default in either GHC2021 or Haskell2010 so you’ll need
to enable it manually. Simply enabling this extension extension
shouldn’t break any existing code, however, be aware that in some
cases, introducing record wildcards into an existing application
might introduce unexpected bugs due to name shadowing. Many
projects either enable this extension globally, or prohibit its use
altogether. Enabling this extension on a module-by-module basis
can end up causing a maintenance burden on the application long
term since applications that use RecordWildCards need to be somewhat
more careful about naming conventions and name shadowing.

1. https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts.html
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The first way to enable extensions is on a per-file basis using a language
pragma. Language pragmas should be placed at the top of each source file,
and they will enable the extensions listed only for the current file. To use a
language pragma to enable the RecordWildCards extension, add this to the top
of your source file:

{-# LANGUAGE RecordWildCards #-}

You can also enable language extensions in ghci with :set or :seti. When you
are enabling a language extension from ghci (or on the command line) prefix
the extension name with -X, for example:

λ :seti -XRecordWildCards

Using :set will enable the extension for both code that you are typing directly
into ghci as well as new code that you load; :seti will only apply the extension
to the code that you type into ghci. In general, it’s best to use :seti for enabling
language extensions. If you use :set you might forget to include a language
extension needed to compile a file in the file itself, and then you’ll find that
your program fails to compile even though you can load it interactively.

Now that you have the RecordWildCards extension enabled, let’s use it to refactor
two of our existing functions: customerGeorge and showCustomer. The RecordWildCards
extension allows you take all of the fields of a record and turn them into
variables that are bound inside of an expression by using TypeConstructor {..}.
You can use this to either destructure a record or to construct one. We’ll do
both during our refactoring.

Let’s start by refactoring showCustomer. Now instead of pattern matching out
all of the fields, we’ll use the record wildcards to automatically bring all of
the fields into scope:

showCustomer :: CustomerInfo -> String
showCustomer CustomerInfo{..} =

firstName
<> " "
<> lastName
<> " "
<> show widgetCount
<> " "
<> show balance

You can see in this example that we’re bringing into scope all the fields of our
record as variables that we can use however we like. We can also use record
wildcards to create a new value. In that case, we still need to use bindings to
define our variables with names that match the record fields, but by using
record wildcards we can forgo explicitly setting each field. Let’s refactor our
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customerGeorge function to use record wildcards to create the value that we’re
returning:

customerGeorge =
let firstName = "George"

lastName = "Bird"
widgetCount = 10
balance = 100

in CustomerInfo {..}

The field names don’t necessarily need to be defined as let bindings; you can
also use names bound to function parameters in wildcards. As an example,
let’s refactor our customer factory function:

customerFactory firstName lastName =
let widgetCount = 10

balance = 100
in CustomerInfo {..}

Record wildcards can be handy, especially in longer functions or functions
where you have large records that you are working with. They also can make
code somewhat harder to read because it becomes less clear where variables
are being defined, and it requires that the reader be familiar with the fields
of any given record. Try it out and decide for yourself if or when it works best
in your applications.

Dealing with Duplicate Record Fields
In some cases, you might find yourself wanting to have two records in a
module that share some or all of their field names. Imagine that we wanted
to add a new record that would keep track of employee information; we’ll call
it EmployeeInfo. This record will also need to have an employee’s first and last
name, along with their timezone and their preferred contact info:

data CustomerInfo = CustomerInfo
{ firstName :: String
, lastName :: String
, widgetCount :: Int
, balance :: Int
}

data EmployeeInfo = EmployeeInfo
{ firstName :: String
, lastName :: String
, timezone :: String
, contactInfo :: String
}
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If we try to build a module with both of these records, we’ll get an error:

[1 of 1] Compiling CustomerInfoDuplicateFields
( src/CustomerInfoDuplicateFields.hs, interpreted )

src/CustomerInfoDuplicateFields.hs:11:7: error:
Multiple declarations of ‘firstName’
Declared at: src/CustomerInfoDuplicateFields.hs:4:7

src/CustomerInfoDuplicateFields.hs:11:7
|

11 | { firstName :: String
| ^^^^^^^^^

src/CustomerInfoDuplicateFields.hs:12:7: error:
Multiple declarations of ‘lastName’
Declared at: src/CustomerInfoDuplicateFields.hs:5:7

src/CustomerInfoDuplicateFields.hs:12:7
|

12 | , lastName :: String
| ^^^^^^^^

Failed, no modules loaded.

The compiler is telling us here that the error is caused by multiple declarations
of the same two fields, firstName and lastName. Helpfully, it also tells us where
the declarations are.

The reason we’re getting an error here is that field selectors are treated as
normal functions, so if we define two records with two field selectors that
have the same name, it’s effectively the same as if we’d tried to create two
regular functions with the same name. We can’t give two functions in the
same module the same name.

The problem of duplicate record fields is a common one in larger Haskell
applications, and there are a few different approaches that people have come
up with to work around the problem. You’ll learn how to use Haskell’s module
system on page 155 to work around the problem of duplicate record fields, but
for now let’s focus on one of the more common ways to address the problem of
duplicate record fields: using naming conventions to avoid collisions.

Naming Record Fields
The choice of how to name your record fields can have a big impact on the
way that you write your code. As you just learned, choosing overly generic
names can lead you to refactoring the structure of your source code so that
you can use qualified imports to disambiguate names. Another way to disam-
biguate names is to choose different names for your record fields. A common
idiom in Haskell applications is to simply prefix the record field name with
the name of the type, so for example, your CustomerInfo record would become:
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data CustomerInfo = CustomerInfo
{ customerInfoFirstName :: String
, customerInfoLastName :: String
, customerInfoWidgetCount :: Int
, customerInfoBalance :: Int
}

Creating Sum Types
Records are a useful feature of Haskell’s type system, and you’ll use them
regularly in the code you write, but they are just a small part of the power of
types in Haskell. In this section, you’ll learn about several other useful features
of Haskell’s type system, which broadly fall under the term algebraic datatypes,
or ADTs.

The name algebraic datatype comes from the formal study of types and type
systems. We won’t get into the details of the name or the underlying theory in
this book, but we’ll continue to use the term, along with some related terms like
sum type and product type when we’re referring to particular types of features.
These are commonly used terms when working with Haskell, but you can learn
what they mean and how to use them in the context of writing Haskell programs
without needing to understand the theory that gave them their names.

Using Sum Types as Enums
Earlier in this chapter, you learned about product types and records. Product
types let you combine many other types together. Another way you can
use types to help you better structure data is to use them to represent a
choice between two types. We call these types sum types. Let’s work through
a simple example by looking at an implementation of Bool, which is one of the
simplest sum types that we can define.

data Bool = True | False

In this example, we’ve defined a new type, Bool, which has two value construc-
tors, True and False. Neither of these value constructors take any parameters,
so they each have a single inhabitant.

A Bool can be either True or False, and so the type has two inhabitants.

Of course, we can extend this beyond a choice between two options. Haskell
programs frequently use sum types to enumerate all of the inhabitants of a
specific type. For example, if we wanted to create a type to represent the
cardinal directions, we can easily list out all of them as a sum type:

data Direction = North | South | East | West
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Creating Sum Types with Data
In many cases, we don’t want to choose between product or sum types. Con-
sider the problem of storing some contact information for a user who might
want to provide a phone number for receiving text messages or, alternatively,
a mailing address for receiving written correspondence. As with the examples
of sum types you’ve already looked at, we have a clear choice between two
different value constructors, which in this case we can call TextMessage and
Mail. However, each of these value constructors need to take some parameters:
a phone number for text messages, or a mailing address for sending mail.
The syntax for doing this follows naturally from the syntax of sum and product
types. We create a value constructor for each branch as we’ve done for previous
sum types, but for each of these value constructors we can add any number
of parameters, just like we did for product types.

Let’s look at a concrete example:

data PreferredContactMethod = Email String
| TextMessage String
| Mail String String String Int

emailContact :: PreferredContactMethod
emailContact = Email "me@example.com"

textContact :: PreferredContactMethod
textContact = TextMessage "+1 307 555 0100"

mailContact :: PreferredContactMethod
mailContact = Mail "1123 S. Road St." "Suite 712" "Examplesville, OH" 98142

This pattern of combining multiple product types into a single new type is
sometimes referred to as a sum of products, although the pattern is so common
that in practice most Haskell developers will casually just refer to sum,
product, or sum-of-product types as “a type.”

Using Sum Types in Practice
Now that you’ve created some contact information, it would be useful to be
able to do something with it. Let’s continue with the example by writing a
function called confirmContact that will generate some confirmation text that we
could display to a user, letting them know that we’ll use their preferred contact
method for future communications.

Just like the data types you created in the previous section, you can use
pattern matching to extract the values from your new type. When you were
working with a single data constructor, you only needed to pattern match for
it, and so it made sense to use a pattern to match values at the function
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argument level. When you are working with sum types you can still pattern
match function arguments directly, but it’s more common to use a case
statement. In this example, we’re using a case statement to both select the
specific constructor as well as to extract its arguments.

confirmContact :: PreferredContactMethod -> String
confirmContact contact =

case contact of
Email emailAddress ->

"Okay, I'll email you at " <> emailAddress
TextMessage number ->

"Okay, I'll text you at " <> number
Mail street1 street2 citystate zip ->

"Okay, I'll send a letter to\n"
<> street1 <> "\n"
<> street2 <> "\n"
<> citystate <> " " <> show zip

In some circumstances, you might not care about all of the fields when pattern
matching in sum types. In that case, you can use a pair of empty brackets
to represent the parameters to the data constructor without having to type
them all out. Although this looks similar to the syntax for record wildcards,
it doesn’t require any language extensions. Let’s look at an example. If you did
not want to print out a user’s actual contact information for privacy reasons,
you could write a variant of confirmContact that only looks at the constructor:

confirmContact' :: PreferredContactMethod -> String
confirmContact' contact =

case contact of
Mail{} -> "Okay, I'll send you a letter!"
Email{} -> "Okay, I'll email you!"
TextMessage{} -> "Okay, I'll text you!"

You might find yourself wondering what the benefit is of using a single sum
type here rather than three different data types. You could, after all, write
each branch of the case statement in our example as a function that takes
some unique type and generates the right output:

data Email = Email String
data TextMessage = TextMessage String
data Mail = Mail String String String Int

emailContact :: Email
emailContact = Email "me@example.com"

textContact :: TextMessage
textContact = TextMessage "+1 307 555 0100"

mailContact :: Mail
mailContact = Mail "1123 S. Road St." "Suite 712" "Examplesville, OH" 98142
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confirmEmailContact (Email emailAddress) =
"Okay, I'll email you at " <> emailAddress

confirmTextContact (TextMessage number) =
"Okay, I'll text you at " <> number

confirmMailContact (Mail street1 street2 citystate zip) =
"Okay, I' ll send a letter to\n"
<> street1 <> "\n"
<> street2 <> "\n"
<> citystate <> " " <> show zip

This second approach might look appealing, and seems to offer even better
type safety, but now consider the problem of writing a function that returns
a preferred contact method for several different users. Using distinct types
for each contact method makes this difficult because the function would need
to return a value with a different type depending on the preferred contact
method. Using sum types, however, we can easily express this function since
all of our different values are still of type PreferredContactMethod:

contactForUser :: String -> PreferredContactMethod
contactForUser username =

case username of
"George" ->

Email "george@example.com"
"Porter" ->

TextMessage "+1 307 555 0100"
"Remmy" ->

Mail "1123 S. Road St." "Suite 712" "Examplesville, OH" 98142
name ->

Email $ name <> "@example.com"

Another example where sum types can help you get around restrictions you
might face with multiple types is when dealing with lists. You know that you
can only store a single type in a list, but if you have different types of values
that you need to store, you can wrap them in a sum type.

Let’s look at one more example, using sum types to store a list of strings and
numbers:

data StringOrNumber = S String | N Int

stringsAndNumbers :: [StringOrNumber]
stringsAndNumbers =

[ S "This list has"
, N 2
, S "different types of values"
]
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Summing Records
Just as you were able to use record syntax to provide field names and get field
selectors for data types with a single constructor, you can also use record syntax
for sum types. The syntax for this is a combination of the record syntax you’ve
seen using curly braces and field names, and the sum type syntax using |. Let’s
look at an example of combining sum types and records to create a sum type
over customers and employees, along with a couple of example values:

data Person = Customer
{ name :: String
, balance :: Int
}
| Employee
{ name :: String
, managerName :: String
, salary :: Int
}

george =
Customer { name = "Georgie Bird"

, balance = 100 }

porter =
Employee { name = "Porter P. Pupper"

, managerName = "Remi"
, salary = 10 }

Using sum types with records gets you the same benefits as using records. As
you saw in the example, you can use record syntax to make use of named fields
when you construct a value. You can also use the field names to access values:

λ name george
"Georgie Bird"
λ name porter
"Porter P. Pupper"

Unfortunately, record syntax when combined with sum types introduces a
source for potential errors. Record fields that exist only for certain data con-
structors are partial functions—if you try to access a field that doesn’t exist
for the value you’ve constructed, you’ll get a runtime exception:

λ balance george
100
λ balance porter
*** Exception: No match in record selector balance
λ managerName porter
"Remi"
λ managerName george
"*** Exception: No match in record selector managerName
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The risk of runtime errors from these partial record selectors means that most
Haskell developers generally avoid directly combining sum types and records.
Instead of directly mixing records and sum types, we can create a new record
for each constructor. This will prevent us from ever trying to access fields
that don’t exist in a particular branch of our sum type. Let’s look at an
example:

data CustomerInfo = CustomerInfo
{ customerName :: String
, customerBalance :: Int
}

data EmployeeInfo = EmployeeInfo
{ employeeName :: String
, employeeManagerName :: String
, employeeSalary :: Int
}

data Person
= Customer CustomerInfo
| Employee EmployeeInfo

george = Customer $
CustomerInfo { customerName = "Georgie Bird"

, customerBalance = 100 }

porter = Employee $
EmployeeInfo { employeeName = "Porter P. Pupper"

, employeeManagerName = "Remi"
, employeeSalary = 10
}

In this example, we’ve added records to hold the particular values associated
with customers and employees independently. This avoids problems with
partial field selectors, but now getting at any of our data means that we need
to pattern match on Person and then call the appropriate field selector.

One way that we can work around this is to add functions to our API to make
it easier to get at data that exists for all of the different potential values in
our sum type. For example, since both customers and employees have names,
we can add a function getPersonName to get the name for any person:

getPersonName :: Person -> String
getPersonName person =

case person of
Employee employee -> employeeName employee
Customer customer -> customerName customer

What about functions to access fields that only exist in one constructor? Let’s
take a look at the employeeManager field to start with. The employeeManager field
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is a String, and it only exists in EmployeeInfo, which we have when we’ve con-
structed a person using the Employee constructor.

getPersonManager :: Person -> String
getPersonManager person =

case person of
Employee employee -> employeeManagerName employee
Customer customer -> undefined

Now it seems like we’re back in the land of partial functions. As long as we
get an employee passed in, we can get the manager, but as soon as we get a
customer we’ll fail, because we’ll encounter an undefined value. What we need
to do is return the name of a manager if the person is an employee, but if
they are a customer we need some value that says “nothing to see here, move
along.” That sounds a lot like a sum type! Let’s create a new type called
MaybeString to capture this:

data MaybeString = NoString | SomeString String

With the new type in hand, you can write a function that returns SomeString if
there’s a valid value, or NoString if there isn’t:

getPersonManager :: Person -> MaybeString
getPersonManager person =

case person of
Employee employee -> SomeString (employeeManagerName employee)
Customer _customer -> NoString

We can take the same approach with customerBalance and employeeSalary. You
can imagine that we could create a new type named MaybeInt that works just
like MaybeString, and use it to create functions to get a person’s balance and
salary:

getPersonBalance, getPersonSalary :: Person -> MaybeInt

As an exercise, implement the MaybeInt type and the getPersonBalance and getPer-
sonSalary functions yourself. When you’re finished, you can move on to the
next section where you’ll learn about another more general way to implement
this pattern.

Creating Polymorphic Types
Having separate implementations for optional values of each type that we
might return works, but it can quickly get out of hand. Not only do we have
to create, and export, many new types, we also must write variations of many
utility functions several times, require that our users learn about and
remember the name of several types, and in general make a lot of extra work
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for ourselves. Thankfully we can avoid all of this additional work by making
use of type parameters. Type parameters allow you to make a type constructor
that takes some types as parameters. When you pass some parameters to a
type constructor, you end up with a type. You have already worked with
parameterized types when you’ve created lists and tuples, but until now we’ve
glossed over the details.

Let’s start by looking at the definition of the Maybe type. This will already be
defined for you when you start a new program, since it’s part of the Prelude.
The Prelude is a module that’s imported by default in all Haskell programs,
and it contains all of the things from the standard library that are available
by default. If you want to write this yourself as you follow along, you can pick
another name, like MyMaybe.

data Maybe a = Nothing | Just a

In this example, Maybe by itself isn’t a full type, so we call it a type constructor.
When we pass a parameter to Maybe, we’ll end up with a type like Maybe Int or
Maybe String. The type variable a is a type parameter. Just like with polymorphic
functions, the type variable a here can represent any type, but it will always
represent the same type everywhere in our type definition. In many cases,
you’ll want to work with some specific instance of a type, like in the following
examples where we implement balance, salary, and manager in terms of Maybe:

getPersonBalance :: Person -> Maybe Int
getPersonBalance person =

case person of
Customer customerInfo ->

Just $ customerBalance customerInfo
_ ->

Nothing

getPersonSalary :: Person -> Maybe Int
getPersonSalary person =

case person of
Employee employeeInfo ->

Just $ employeeSalary employeeInfo
_ ->

Nothing

getPersonManager :: Person -> Maybe String
getPersonManager person =

case person of
Employee employeeInfo ->

Just $ employeeManagerName employeeInfo
_ ->

Nothing
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In other cases, however, you may want to work with polymorphic versions of
parameterized types. In this case, you can use a type variable just like you
would with any other polymorphic function. For example, we can write a
function that will take any type of Maybe value and convert it to a list of the
appropriate type:

maybeToList :: Maybe a -> [a]
maybeToList (Just val) = [val]
maybeToList Nothing = []

The Maybe type generalizes a single optional value. It’s frequently used both to
signal optional inputs to a function as well as to make partial functions safe by
indicating that there might not be a valid output for some input. Although useful,
sometimes we want a slightly richer choice between two types, especially when
we might want to represent success or detailed failure, or a choice between two
paths. In this case, you can use another common type defined in Prelude, the
Either type. Either takes two type parameters, representing the types of a left and
right value. By convention in Haskell applications, Left typically represents an
error case, and Right represents a success case.

data Either a b = Left a | Right b

Let’s look at a couple of examples. We’ll start by writing a function that tries
to get the Right value of an Either:

eitherToMaybe :: Either b a -> Maybe a
eitherToMaybe e =

case e of
Left _ -> Nothing
Right val -> Just val

In some cases, you might want to pass a parameterized type as an argument
to another parameterized type. In that case, you need to use parentheses to
group the types. Let’s look at a concrete example by writing a function that
takes an Either value to its Right constructor.

handleMissingRight :: Either String (Maybe a) -> Either String a
handleMissingRight e =

case e of
Left err -> Left err
Right (Just val) -> Right val
Right Nothing -> Left "Missing value"

Of course you can keep adding parameters as you need. Most of the time one
or two parameters are enough, but you’ll occasionally see types with three,
four, or even five parameters in some common Haskell libraries.
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Creating Inductively Defined Data Structures
Data types in Haskell are also how we express data structures. Thanks to
laziness, writing data structures in Haskell can present some interesting
opportunities for thinking about new ways to express the structures of data.
Most data structures that you’ll build in Haskell are recursive, or as we
sometimes call them, inductively defined. In this section, you’ll implement
several different inductively defined data structures.

Counting With Peano Numbers
The simplest type of inductively defined data structure that you can implement
is a type that represents a peano number. Peano numbers are a way of repre-
senting whole numbers as a recursive function, where a given peano number
is either “zero” or “a successor to a peano number.” Peano numbers will have
some use later on in this book when you learn about writing more advanced
programs inside of the type system, but for now we won’t focus on a practical
use for them. Instead, they’ll serve as a simple introduction to the idea of
inductively defined data structures.

You can implement peano numbers as a sum type with two constructors.
We’ll call our data type Peano and we’ll begin by adding a single value construc-
tor. The first constructor we’ll call Z, and it represents zero. It won’t need to
have any values associated with it, since it represents the single unit value
of zero:

data Peano = Z

The successor constructor, which we’ll call S will have a value, which is the
peano number that it’s a successor to:

data Peano = Z | S Peano

With this definition you can write functions like toPeano and fromPeano to walk
the inductively defined data structure to get a numeric value. Let’s implement
those two functions to start with, so that it’s easy to test with different values:

toPeano :: Int -> Peano
toPeano 0 = Z
toPeano n = S (toPeano $ n - 1)

fromPeano :: Peano -> Int
fromPeano Z = 0
fromPeano (S p) = succ (fromPeano p)

If you look closely, you’ll see that there’s a lot of similarity between the two
functions. Both are recursive functions with a base case at zero. The successor
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functions in both cases reduce their input while growing their output. In
toPeano each recursive call adds a new S constructor. In fromPeano we’re using
the succ function, from Prelude, which increments an enumeration. In our case
we’re using Int values, so succ n is another way of saying n + 1, but the name
in this case serves to illustrate the similarities between the two functions.

You can load these functions up into ghci and play around with them, but it’s
hard to do much when you’re limited to just converting back and forth between
the different ways of representing a number. Let’s add a couple of functions
to make things a little more interesting. We’ll start by adding an equality test
for two peano numbers. Although we could of course convert them to Int and
compare them with (==), it will be more illustrative to instead implement
equality by traversing the data structure.

To test for equality, we’ll create another recursive function that will traverse
our data structure, but in this case we’re taking two parameters, and we’ll
want to traverse them at the same time. By definition, Z values are always
equal to one another, so we’ll use that as our base case:

eqPeano :: Peano -> Peano -> Bool
eqPeano p p' =

case (p,p') of
(Z,Z) -> True

If we have two non-zero values, we can’t directly test them for equality, but
we can test whether their predecessors are equal recursively. Since at each
step we’re reducing each side by one, if they are equal, the call should termi-
nate at zero for both values at the same time:

(S n, S n') -> eqPeano n n'

Finally, if one of the values is Z, but not the other, then they are not equal,
because Z is only equal to Z. With that change, the full function will look like:

eqPeano :: Peano -> Peano -> Bool
eqPeano p p' =

case (p,p') of
(Z,Z) -> True
(S n, S n') -> eqPeano n n'
_ -> False

Lastly, let’s add a function to add two peano numbers. Try to implement this
function yourself as an exercise before continuing on to the solution:

addPeano :: Peano -> Peano -> Peano
addPeano Z b = b
addPeano (S a) b = addPeano a (S b)
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In this example, we’re recursively destructuring the first parameter and for
each successor constructor we remove from the left-hand side, we add one
to the right-hand side.

Inductively Defined Lists
The structure of the peano numbers, and the patterns you used for working
with them, might have brought to mind the patterns that you’ve used when
writing functions that work with lists. In fact, the structure of a linked list in
Haskell very closely resembles that of the peano numbers. An inductively
defined list will have two constructors, one representing an empty list, and
another representing the value of the head of the list, and the tail of the list.
One big difference is that for lists, we’ll want to add an additional type
parameter so that we can hold any sort of value. Let’s write a linked list
implementation to see it in action:

data List a = Empty | Cons a (List a)

You can implement toList and fromList functions using a similar pattern to the
one that you used to implement toPeano and fromPeano. Try to write these
functions yourself before you look at the example implementations:

toList :: [a] -> List a
toList [] = Empty
toList (x:xs) = Cons x (toList xs)

fromList :: List a -> [a]
fromList Empty = []
fromList (Cons x xs) = x : fromList xs

Manually implementing recursion on our lists is fine for these two functions,
but if you were going to use them to write a longer program, it would start to
get frustrating. Let’s try to refactor the recursion out of these implementations
and, in the process, look at how we can implement our own higher order
functions on top of inductively defined data structures. We’ll start with toList,
which we can write using our friend foldr from Prelude:

toList :: [a] -> List a
toList = foldr Cons Empty

Going the other way, writing fromList, the algorithm that we want is the same:

fromList :: List a -> [a]
fromList = listFoldr (:) []

The problem here is that we haven’t defined a fold function for our custom
list type. Let’s write one now. You can try to implementing this yourself before
you look at the example:
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listFoldr :: (a -> b -> b) -> b -> List a -> b
listFoldr _ b Empty = b
listFoldr f b (Cons x xs) =

f x $ listFoldr f b xs

You can see in your implementation of the fold function, just like when you
were working with peano numbers or manually implementing your list con-
version functions, that the structure of the functions matches the structure
of the recursion in the data types. This is a pattern that you’ll see repeated
across many different data structures as you work with Haskell applications.

For the sake of completeness, try implementing the following functions based
on their type signatures and the behavior of the list functions in Prelude:

listFoldl :: (b -> a -> b) -> b -> List a -> b
listHead :: List a -> Maybe a
listTail :: List a -> List a
listReverse :: List a -> List a
listMap :: (a -> b) -> List a -> List b

Building a Calculator
Now that you have some experience working with sum types and implementing
inductively defined data structures, let’s put that knowledge into action and
build a more sophisticated application. In this section, you’ll build a small
program to parse and evaluate arithmetic expressions in prefix notation.
Before you start building the program, let’s look at some examples of the
application running:

λ run "+ 3 5"
"The answer is: 8"
λ run "/ 16 4"
"The answer is: 4"
λ run "* 2 / 16 4"
"The answer is: 8"
λ run "- 10 + 1 * 2 / 8 4"
"The answer is: 5"

As you can see in the examples, you’ll need to support four different opera-
tions: addition, subtraction, multiplication, and division. Whenever you find
yourself wanting to work with a fixed number of operations, like your arith-
metic operations in this case, a sum type is a good first thing to start thinking
about. Let’s start by building a basic sum type that will capture these opera-
tions. Our type represents an arithmetic expression, so we’ll call it Expr:

data Expr = Add | Sub | Mul | Div
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Next, let’s think about what fields we might want to associate with each of
the constructors. These constructors all represent a binary operation. For
now we’ll only worry about Int types, so we can add the operands as fields to
each constructor:

data Expr = Add Int Int
| Sub Int Int
| Mul Int Int
| Div Int Int

This is a step forward. We have a data type that we could put data in and get
data out of, but it’s pretty limiting because we can’t nest expressions. In our
examples we were able to express several different operations in a single
expression. To do that we’ll want to make our data type recursive, meaning
the operands for each constructor are themselves sub-expressions. That
means that we need a base case. Luckily, there’s one sitting in front of us
that we overlooked when we originally enumerated our operations. Not only
do we have our four binary operations, we also have literal numbers as part
of the grammar of our arithmetic expression. Let’s add a new Lit constructor
to represent a literal integer, and update the rest of our type to recursively
reference sub-expressions:

data Expr = Lit Int
| Sub Expr Expr
| Add Expr Expr
| Mul Expr Expr
| Div Expr Expr

Just like you did with peano numbers, you can write a recursive function
that will take one of these recursive values and compute a number. Instead
of incrementing the number, you’ll decide on an operation based on the con-
structor for the value:

eval :: Expr -> Int
eval expr =

case expr of
Lit num -> num
Add arg1 arg2 -> (eval arg1) + (eval arg2)
Sub arg1 arg2 -> (eval arg1) - (eval arg2)
Mul arg1 arg2 -> (eval arg1) * (eval arg2)
Div arg1 arg2 -> (eval arg1) `div` (eval arg2)

You might notice some duplication here. Except in the case of literal numbers,
all our case matches follow the same pattern where we recursively parse each
of the two arguments and combine the results with some operation. We can
refactor this to reduce the duplication by moving the recursion into a second
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function, which we’ll call eval'. The eval' function will take the two arguments,
along with our operator, and handle recursively parsing the two arguments:

eval :: Expr -> Int
eval expr =

case expr of
Lit num -> num
Add arg1 arg2 -> eval' (+) arg1 arg2
Sub arg1 arg2 -> eval' (-) arg1 arg2
Mul arg1 arg2 -> eval' (*) arg1 arg2
Div arg1 arg2 -> eval' div arg1 arg2
where
eval' :: (Int -> Int -> Int) -> Expr -> Expr -> Int
eval' operator arg1 arg2 =

operator (eval arg1) (eval arg2)

With your new eval function in hand, you can start writing some expressions
and evaluating them to numbers. Try loading your program up in ghci and
evaluating a few expressions:

λ eval $ Add (Lit 1) (Lit 2)
3
λ eval $ Sub (Lit 10) (Div (Lit 10) (Lit 2))
5
λ eval $ Add (Lit 5) (Sub (Lit 10) (Div (Lit 10) (Lit 2)))
10

Remember that value constructors are normal functions, so you can use
backticks to make them work as infix functions. If you find infix notation
easier to read, give it a try:

λ eval $ Lit 5 `Add` (Lit 10 `Sub` (Lit 10 `Div` Lit 2))
10

You’ll quickly notice that entering expressions by manually writing out all of
the constructors is pretty obnoxious. Let’s create a parser that will allow us
to write nice expressions, like we did in the example we used to start this
section. We’ll call our parse function parse and it’ll take a string as input. In
the best-case scenario, we’d like to return an Expr value, but we’ll need to
account for erroneous input, since not every string is a valid arithmetic
expression. Let’s give our function the type: parse :: String -> Either String Expr.

We’ll build our parser out in a few separate pieces, focusing on one step at a
time. The first part of our parser will tokenize our input string, hand off the
majority of the parsing to a second function, parse', and then do some final
error handling before returning a value. In particular, we’ll look for errors
where parse' gives us back a Left value, because it found an error, or the case
where it gives us a Right value, but tells us that it didn’t parse all of the tokens.
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Let’s start by writing parse and then we’ll move on to filling in some additional
details by writing parse':

parse :: String -> Either String Expr
parse str =

case parse' (words str) of
Left err -> Left err
Right (e,[]) -> Right e
Right (_,rest) -> Left $ "Found extra tokens: " <> (unwords rest)

The two functions that we’re using from Prelude, words and unwords, work with
strings. The words function takes an input string and splits it up along blank
space boundaries, returning a list of strings. The unwords function, intuitively,
does the opposite, taking a list of strings and joining them all with spaces.

With the top level function written, it’s time to move on to the next part of
the parser. Because these functions are helpers that are highly coupled to
the implementation of parse, add them as let or where bindings rather than top
level functions.

The parse' function is where we’ll handle individual tokens. The shape of this
function is quite similar to eval function that you have already written. We’ll
start with a case statement to look at the specific token that we’re parsing.

To parse a literal value, we can use a function from the standard library
named readEither from the Text.Read module. This function will try to parse a
String value into some other value, in our case an Int. As you can imagine, not
all strings can be converted into numbers. To handle errors, readEither will
either return Right with our converted value, or Left with an error message.

Even though readEither is part of the standard library, it’s not in scope by
default. We’ll need to import a new module to use it. You’ll learn more about
modules, and how to import things, in the next chapter. For now you can
copy the import statement from the example directly into your code:

module Calculator where

import Text.Read (readEither)

For the operators in our expression, we’ll need to recursively parse the argu-
ments to the expression by looking at the rest of the string. Just like in eval,
we’ll factor the recursive function out into a helper. We’ll call our helper
function parseBinary, since it’s parsing a binary operator, which is an operator
that takes two arguments:

parse' :: [String] -> Either String (Expr,[String])
parse' [] = Left "unexpected end of expression"
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parse' (token:rest) =
case token of

"+" -> parseBinary Add rest
"*" -> parseBinary Mul rest
"-" -> parseBinary Sub rest
"/" -> parseBinary Div rest
lit ->

case readEither lit of
Left err -> Left err
Right lit' -> Right (Lit lit', rest)

You might wonder why we’re returning a tuple of an expression and a list of
strings here. This is a common pattern when implementing recursive parsers.
The idea is that each recursive call will consume some part of the input, and
will return the remainder of the input, allowing the caller to make forward
progress through the list of tokens. This will make a bit more sense after you
implement the parseBinary function, so let’s move on to that next:

parseBinary ::
(Expr -> Expr -> Expr)
-> [String]
-> Either String (Expr, [String])

parseBinary exprConstructor args =
case parse' args of

Left err -> Left err
Right (firstArg,rest') ->

case parse' rest' of
Left err -> Left err
Right (secondArg,rest'') ->

Right $ (exprConstructor firstArg secondArg, rest'')

You can see that parseBinary looks similar to the eval' function that you wrote
earlier. Instead of some arithmetic operator, it receives one of your Expr con-
structors. Instead of evaluating arguments recursively, it parses them. We’ve
also had to add some error handling to account for the fact that parsing might
fail.

Looking through the implementation of this function, we can now start to
understand the reason for returning a tuple rather than an expression. As
we parse the arguments for our operators, we have to know where to start
parsing the second argument. To handle that, when we start parsing the first
argument, we have it give us back the remainder of the string that it hasn’t
parsed, and we can use that remainder to start parsing the second argument.

Finally, as a matter of convenience, let’s write one more function to make it
easier to call our parser and evaluate the result. We’ll call this function run
and it will have the type run :: String -> String:
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run :: String -> String
run expr =

case parse expr of
Left err -> "Error: " <> err
Right expr' ->

let answer = show $ eval expr'
in "The answer is: " <> answer

Functions as Values
You’ve learned how to create data types and records that hold regular Haskell
values, and build data types like List that hold recursive values. Another type
of value you might sometimes want to hold inside of a data type is a function.

Creating a data type that holds a function looks much like creating any other
data type. For example, we can make a data type that holds a function from
a String to a pair of strings by saying this:

data StringParser = StringParser (String -> (String, String))

More often than not, when you see data types that hold a single function,
they’ll be records with a field that gives the function some useful name:

data StringParser =
StringParser { runStringParser :: String -> (String, String) }

The first time you see something like this it can be a little bit hard to under-
stand why you might want to create a data type that holds a function, when
we already have first class functions in Haskell without needing to wrap them
in a data type. Later on in this book, you’ll learn some Haskell features that
will make storing functions in data types more useful, but for now let’s look
at a small example of how keeping functions inside of data can help you build
abstractions that could be easier for consumers of your code to use.

Sticking with our string parser example, we can imagine that there are any
number of different functions that someone might want to write that could
split a string into two different parts. One common example might be that we
want to take some number of characters off the front of a string. If we were
writing a plain function to do that, we might just use the splitAt function. In
newer versions of GHC, this will already be defined for you. If you’re using
an older version of GHC, you’ll need to import it from the Data.List module by
adding import Data.List at the beginning of your module.

Let’s look at a quick non-parser example first, and then we’ll look at how we
can turn it into a parser. We’ll start by writing a function called takeCharacters
that will take some number of characters off the front of a string. We don’t
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just want to return those characters though, we also want to return the
remainder of the string that we haven’t dealt with yet, so we’ll return a tuple.
The first element of the tuple will be the data we just parsed, and the second
element will be the data we haven’t yet parsed:

module ParserExample where
import Data.List (splitAt)

takeCharacters :: Int -> String -> (String,String)
takeCharacters numCharacters inputString =

splitAt numCharacters inputString

If we test this out in ghci we can see that our output is a tuple of strings, just
as we’d expect:

λ takeCharacters 3 "abc12345"
("abc","12345")

Before we turn this into a StringParser let’s do a little bit of a refactor on this
code. We’ll start by adding some parentheses back into the type signature.
We can normally leave these out, but they’ll make it easier for us to under-
stand how we’ll turn this version of our function into a StringParser:

takeCharacters :: Int -> (String -> (String,String))
takeCharacters numCharacters inputString =

splitAt numCharacters inputString

Next, let’s remove inputString from the definition of takeCharacters. Instead, we’ll
create a new function from the input string to our parsed tuple, and return that:

takeCharacters :: Int -> (String -> (String,String))
takeCharacters numCharacters = stringParser

where
stringParser :: String -> (String,String)
stringParser inputString =
splitAt numCharacters inputString

Now, let’s rewrite stringParser to use a lambda abstraction rather than binding
inputString as an argument:

takeCharacters :: Int -> (String -> (String,String))
takeCharacters numCharacters = stringParser

where
stringParser :: String -> (String,String)
stringParser = \inputString ->
splitAt numCharacters inputString

It’s a small change to go from this refactored version of takeCharacters to a full
StringParser version. We can create a StringParser value from a function with the
type String -> (String,String) and that happens to be exactly the type of stringParser
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function we’ve already defined. We just need to pass the stringParser function
into the StringParser value constructor:

takeCharacters :: Int -> StringParser
takeCharacters numCharacters = StringParser stringParser

where
stringParser :: String -> (String,String)
stringParser = \inputString ->
splitAt numCharacters inputString

Finally, let’s refactor this function one last time to be a little bit less verbose.
We can remove the intermediate definition of stringParser altogether and pass
the lambda directly to the StringParser constructor:

takeCharacters :: Int -> StringParser
takeCharacters numCharacters = StringParser $ \inputString ->

splitAt numCharacters inputString

This version of our parser is functionally equivalent to the original version,
except now we’ve wrapped the part of the function that transforms strings
inside of a StringParser, which will make it somewhat easier to work with.

Next, let’s look at another example of a StringParser we might want to implement:
parsing a string by extracting one space-separated word at a time. We can
use the break function for this. The break function breaks a string into two parts
at the first location where some predicate function that we pass in is true. In
this example, we’re breaking the string apart at the first space we encounter.
Like splitAt we’ll get back a tuple of lists. The first list will contain everything
up until the first space, and the second list will contain everything after the
first space.

getNextWord :: StringParser
getNextWord = StringParser $ \someString ->

case break (== ' ') someString of
(nextWord, "") -> (nextWord, "")
(nextWord, rest) -> (nextWord, tail rest)

At this point you might be wondering what value StringParser is giving us in
exchange for the added complexity of having to wrap part of our functions
up in a value constructor. You’ll learn about some more advanced ways we
can use these kinds of values later. For now, let’s look at one good example:
making it easy to combine our parsers in a general way. For example, we can
write a function that runs two parsers, one after another:

combineParsers :: StringParser -> StringParser -> StringParser
combineParsers firstParser secondParser = StringParser $ \someString ->

let (_firstPart, firstResult) = runStringParser firstParser someString
in runStringParser secondParser firstResult
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This lets us easily re-use existing functions that we’ve already written, com-
bining them in interesting ways to create new parsers that we could also join
together if we wanted to. For example, let’s look at two different ways that we
could combine takeCharacters and getNextWord:

getNextWordAfterTenLetters :: StringParser
getNextWordAfterTenLetters =

combineParsers (takeCharacters 10) getNextWord

tenLettersAfterTheFirstWord :: StringParser
tenLettersAfterTheFirstWord =

combineParsers getNextWord (takeCharacters 10)

In all of these examples, the first string of our tuple is the one that we’re
really interested in. The second string is just holding the rest of the data in
case we want to do something else with it, like use it with a different parser.
When we’re building things like this, we’ll usually make a helper function
that will run a parser for us and just give us the value we’re interested in:

parseString :: StringParser -> String -> String
parseString parser inputString =

fst $ runStringParser parser inputString

Now that we have all of these functions, let’s explore them a little bit in ghci.
First, we can run our basic parsers to get the values out of them:

λ parseString (takeCharacters 5) "Hello, World"
"Hello"
λ parseString getNextWord "Haskell Is Fun"
"Haskell"

And we can call our combined versions just as easily:

λ parseString tenLettersAfterTheFirstWord "AVeryLongWord 0123456789abcdef"
"0123456789"
λ parseString getNextWordAfterTenLetters "123456 hello world"
"lo"

We can even create new ways to parse things ad hoc in the REPL as we’re
exploring our code:

λ secondWord = combineParsers getNextWord getNextWord
λ thirdWord = combineParsers getNextWord secondWord
λ parseString thirdWord "one two three four"
"three"

Of course everything that we’ve done in these examples could have been done
without putting our functions into a data type, but the data type has made
our code a bit easier to work with. We no longer have to keep track of many
layers of higher-order functions directly, or pass around a lot of parameters
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all the time. We can think in terms of the abstract idea of something that
parses a string.

Creating Type Aliases
Throughout this chapter, you’ve learned how to create new data types from
scratch to describe the values in your program, but there are some cases
where creating an entirely new type from scratch isn’t necessary. In some
cases, you might just want to provide a new name to some existing type. In
these cases, rather than creating a new type, you can use a type alias.

Type aliases can be a useful way to improve the readability of your code while
retaining a degree of flexibility and avoiding introducing the overhead of
constructing new data types, but they can also be misused in ways that
remove some of the protections you can get with proper types. In this section,
we’ll look first at one of the cases where type aliases might make your code
quality worse. Once you have had a chance to see how to not use type aliases,
we’ll look at a couple of examples of cases where they can be useful.

Wrapping Basic Data Types
Type aliases allow you to provide a new name for some existing type. You’ve
already been using one type alias throughout this book, perhaps without
realizing it: the String type is a type alias for a list of Char values. If you look at
the info for String in ghci you can see precisely how it’s defined:

λ :i String
type String = [Char] -- Defined in ‘GHC.Base’

From this example you can see that a type alias is defined with the type key-
word, followed by the alias name. The type on the right-hand side is the type
that is being aliased. Note that, unlike with a data type, there is no data con-
structor on the right-hand side of the equals sign here.

Defining a type alias is a handy way to be able to give some general type a
name that’s more semantically meaningful in your application. String is a great
example of providing a more meaningful name, but let’s build our own function
that makes use of type aliases as well. We’ll write a program that will let us
calculate the average velocity of an object given the distance that it has trav-
eled, in meters, over some period of time, given in seconds. We could start
with a version that doesn’t use type aliases:

velocity :: Double -> Double -> Double
velocity meters seconds = meters / seconds
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speedLimit :: Double
speedLimit =

let
meters = 299792458 :: Double
seconds = 1.0 :: Double

in velocity meters seconds

If someone is looking at the implementation of our function, it’s fairly
straightforward how to use it, but imagine that our function was made
available in some library and a user wants to call it. They might start by
checking its type signature:

λ :type velocity
velocity :: Double -> Double -> Double

Without looking at the implementation, or reading the documentation, it’s
hard to use this function. Our users will have no idea what the order of the
arguments should be, nor the units to use for input or what units to expect
for output. Let’s look at what happens when we use type aliases to provide a
more human readable name for the Doubles in the type signature:

type Meters = Double
type Seconds = Double
type MetersPerSecond = Double

velocity :: Meters -> Seconds -> MetersPerSecond
velocity meters seconds = meters / seconds

We haven’t changed the implementation of velocity here at all, instead we’ve
simply created some aliases for Double and used them in the type annotation
for velocity. We can rebuild our program and you’ll see that it builds and even
the speedLimit function continues to work, although we are passing it Doubles
instead of the new type aliases.

λ :type velocity
velocity :: Double -> Double -> Double
λ :type speedLimit
speedLimit :: Double
λ speedLimit
9.8

The flexibility with type aliases that allows our speedLimit method to continue
working after we’ve refactored velocity has worked out for us in this case, but
it hints at one of the cases where type aliases can cause us some problems:
because all type aliases that resolve to the same type are equivalent, the
compiler gives us no extra help if we misuse them.

One straightforward example of this is that since Meters and Seconds are both
aliases for Double, we can use them arbitrarily in ways that don’t make sense
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for what the values should semantically represent. For example, the compiler
will happily let us add meters to seconds, or pass seconds in as the first
parameter of velocity:

λ oneMinute = 60 :: Seconds
λ oneKilometer = 1000 :: Meters
λ someMeters = (velocity (oneMinute + oneKilometer) oneKilometer) :: Meters
λ :type someMeters
someMeters :: Meters

Similarly, if we refactor velocity to swap the order of the arguments, our
speedLimit function would continue to compile but return incorrect results:

λ :type velocity
velocity :: Seconds -> Meters -> MetersPerSecond
λ speedLimit
0.1020408163265306

It’s worth noting that all of these errors would have been possible if we’d
never created a type alias in the first place. We could just as easily add a
double that was supposed to represent Meters with one that was supposed to
represent Seconds. Introducing type aliases hasn’t allowed any new errors as
far as the compiler is concerned, but it has provided us with a false sense of
safety, and in making the choice to use type errors over data types, we’ve given
up the opportunity for the compiler to help detect some of these errors for us.

As you can see, type aliases offer some benefits over using built-in types, but
they can sometimes make code a bit more error prone, or at the very least we
give up the opportunity to get better type safety from using a proper data
type. So when is the right time to use a type alias?

Type aliases are best reserved for cases where the aliased type really does
have the same meaning as the type it’s aliasing. String as an alias for [Char] is
a good example of this. A String makes sense as a list of characters, and it’s
intuitive that any operation that would work on one would work on the other.
On the other hand, an alias like Seconds has a very different meaning from a
plain Int, so it’s not a good example of when to use a type alias.

Using Type Aliases with Type Parameters
One of the most common ways to make use of type aliases is to use them to
fix some type parameters. In other words, you can use a type alias as a way to
give a name to some partially applied type. This avoids some of the problems
you ran into in the last section where you create type aliases that have some
distinct semantic meaning from their underlying type, and instead encourages
you to create aliases that do have some logical mapping to the underlying type.

Chapter 4. Creating New Types • 150

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


In fact, the String alias that we looked at in the previous section as an example
of a “good” type alias is an example of this pattern. Recall that a String is an
alias for a list of characters, which we typically write:

type String = [Char]

Let’s rewrite this using our own list type, to help clarify what’s happening.
We’ll call our string type String' to differentiate it from the standard string type:

data List a = Empty | List a
type String' = List Char

It’s easier to see here that a String is just applying the Char type to List or [].

You can extend this pattern to types that have more than one parameter. For
example, consider the Either type. Imagine that you have some specific error
type that you’ve defined for your application. It might have an error message
along with some additional context:

data AppError = AppError
{ errorMessage :: String
, errorContext :: [String]
, errorWrapped :: Maybe AppError
}

You could write all of the functions in your program so they return Either
AppError a. For example, imagine you were writing a small inventory management
program and you had some functions that all might fail in some way:

parseUserOrder :: String -> Either AppError Order
generateInvoice :: Order -> Either AppError Invoice
updateInventory :: [Order] -> [(Widget,Int)] -> Either AppError [(Widget,Int)]

There’s nothing necessarily wrong with the repetition of Either AppError here,
but if you are going to consistently use this pattern throughout your program,
making use of a type alias can make the program both more readable, and
also can make it a little bit easier for you to avoid mistakenly writing a function
that returns some other error value. Let’s take a look at how we could do this.

We’ll start by creating a type alias for Either AppError. Type aliases can have
parameters just like regular data types, so we could write this:

type AppValue a = Either AppError a

Alternatively, and more idiomatically, you can η-reduce this and write:

type AppValue = Either AppError
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With the type alias, you can rewrite your functions:

parseUserOrder :: String -> AppValue Order
generateInvoice :: Order -> AppValue Invoice
updateInventory :: [Order] -> [(Widget,Int)] -> AppValue [(Widget,Int)]

Using a type alias here makes our code a little bit more readable, by removing
some of the noise of having Either AppError repeated everywhere in the code.
Instead, we have AppValue which is shorter and conveys a bit of useful meaning.
We also get the benefit that we ensure that anyone using an AppValue will
consistently use our AppError type for errors. If we had continued to use Either
directly, someone working in the code base might have reasonably decided
to use some other value instead of AppError. By fixing that parameter to Either,
we’re making it more clear that we intend to standardize on that as our error
value in all of the functions we’re using in our application.

Summary
Although we call Haskell a functional programming language, data and the
way that we represent it is at the heart of how to write effective Haskell pro-
grams. Creating the right data types will help the compiler help you by finding
bugs and helping you write more reliable code, but more than that, the way
that you structure data in your programs will influence everything about how
you work with your code, and how it evolves over time. Data is, in essence,
the real heart of functional programming. As you work through the rest of
this book you’ll see many other ways that data impacts that way we think
about code.

Exercises

Planting Trees
Consider a binary tree with a type:

data BinaryTree a = Leaf | Branch (BinaryTree a) a (BinaryTree a)

Write the definition of the binary tree type, and then add the following func-
tions:

-- Turn a binary tree of strings into a pretty-printed string
showStringTree :: BinaryTree String -> String

-- Add a new integer into a binary tree of integers
addElementToIntTree :: BinaryTree Int -> Int -> BinaryTree Int

-- Check to see if an int value exists in a binary tree of ints
doesIntExist :: BinaryTree Int -> Int -> Bool
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Eval Division by Zero
Write a new version of your eval function named safeEval that will return an
error if the user tries to divide by zero. It should have the type:

safeEval :: Expr -> Either String Int

Here’s an example of the output you should expect when using safeEval:

λ> eval $ Lit 10 `Div` Lit 0
*** Exception: divide by zero
λ> safeEval $ Lit 10 `Div` Lit 0
Left "Error: division by zero"
λ> safeEval $ Lit 10 `Div` Lit 10
Right 1

Hint: You may need to make quite a few changes to your eval function to
complete this exercise, but no changes to your Expr type should be necessary,
and you should not need to write any additional functions.

Calculator Pretty Printer
Write a new function, prettyPrint, with the type:

prettyPrint :: Expr -> String

The function should take any expression and return a human readable string
that shows the calculation as someone might write it themselves.

λ putStrLn $ prettyPrint $ Lit 5 `Add` Lit 10
5 + 10 = 15
λ putStrLn $ prettyPrint $ Lit 5 `Add` (Lit 10 `Div` Lit 2)
5 + ( 10 ÷ 2 ) = 10
λ putStrLn $ prettyPrint $ Lit 14 `Mul` (Lit 5 `Add` (Lit 10 `Div` Lit 2))
14 × ( 5 + ( 10 ÷ 2 ) ) = 140
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CHAPTER 5

Creating And Structuring Haskell Projects
So far, all the programs that you’ve built have been small applications that
fit in a single source file. To run these programs you’ve compiled your source
file with ghc, or ran them directly from ghci. As you start to do more with
Haskell, your programs will grow, and you’ll want to have applications that
are organized across several files. You’ll also want to start bringing in external
dependencies beyond what’s available in the standard library.

There are several popular Haskell build tools that will help you organize
projects and manage dependencies. In this chapter, you’ll learn about how
Haskell projects are organized, and how to build applications and manage
external dependencies. We’ll focus on building projects using cabal, one of
the most popular Haskell build and dependency management tools.

Creating Haskell Projects
Cabal is something of a Swiss army knife in the Haskell ecosystem, and it
serves several purposes, including: package and dependency management,
building, and running your program. In this section, we’ll take a quick tour
of these features and you’ll learn how to get started using cabal to define a
new project, manage dependencies, and build the project.

Your Output Might Look Different

This chapter contains some example output you might see when
creating new projects with cabal. Since cabal is getting active updates
to add new features, you might notice minor differences between the
examples here and the output you see when you follow along. Don’t
worry though, even though some things will change as cabal improves,
the examples in this chapter should continue to work as expected for
a long time, even if the output you see from the tool changes a bit.
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Using Cabal as a Haskell Package Manager
Cabal works as a package manager and you can use it to manage Haskell
libraries and applications. You can install libraries and applications for your
user with cabal by running cabal install. For example, let’s install the stylish-haskell
that will let you automatically format your Haskell source files. Start by
running cabal update to update the package cache. This tells cabal what packages
and versions are available for you to install:

user@host$ cabal update
Downloading the latest package list from hackage.haskell.org
To revert to previous state run:

cabal v2-update 'hackage.haskell.org,2020-10-13T23:04:28Z'
user@host$ cabal install stylish-haskell

When you run cabal install, cabal will download and compile the latest version
of the application for you. The resulting binary will be available in ${HOME}
/.cabal/bin. It’s a good idea to add that path to your environment’s default search
path. For example, you can add the following to your .bashrc file if you are
using bash on a *nix system:

export PATH=${HOME}/.cabal/bin:${PATH}

You can also install Haskell libraries on your system with cabal by passing
it the --lib flag. For example, you can install the very popular text library with
cabal:

user@host$ cabal install --lib text

Most of the time you’ll manage dependencies and install libraries on a per-
project basis, and won’t need to install packages directly like this, however,
it may be handy if you want to ensure some libraries are always available for
quickly writing small scripts for doing ad hoc work in ghci.

Starting a Cabal Project
The way you’ll use cabal most of the time is for building and running projects
that are managed using cabal. When you’re creating a new project, you can
use cabal to initialize the project by running cabal init.

To see all the options available when running cabal init you can run:

user@host$ cabal help init

There are a lot of options, but for now we’ll just pass in the --interactive flag.
Let’s walk step by step through each prompt to understand what cabal is
asking. These examples come from cabal version 3.2.0.0. The text might look
slightly different if you’re using a newer version of cabal.
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user@host$ mkdir learn-cabal
user@host$ cd learn-cabal
user@host$ cabal init --interactive
Should I generate a simple project with sensible defaults? [default: y] n
What does the package build:

1) Executable
2) Library
3) Library and Executable

Your choice? 3

This first prompt is asking you what kind of project you’d like to create. For
libraries, pick the Library option. If you’re building an application, however,
it’s common to use the Library and Executable project rather than just Exe-
cutable. This supports the common Haskell idiom of creating a very small
minimal executable application and putting most of the application logic in
a library. Separating out the logic into a library makes testing easier.

What is the main module of the executable:
* 1) Main.hs (does not yet exist, but will be created)

2) Main.lhs (does not yet exist, but will be created)
3) Other (specify)

Your choice? [default: Main.hs (does not yet exist, but will be created)] 1

The next option you are presented with asks you what the name of the Main
module should be for your application. By convention this is named Main and
may be a regular Haskell source file called Main.hs or a literate Haskell file
named Main.lhs. You can also select your own filename if you choose (App.hs is
a popular alternative). We won’t cover literate Haskell in this book, so go
ahead and select the default option to create a file named Main.hs.

Please choose version of the Cabal specification to use:
* 1) 1.10 (legacy)

2) 2.0 (+ support for Backpack, internal sub-libs, '^>=' operator)
3) 2.2 (+ support for 'common', 'elif', redundant commas, SPDX)
4) 2.4 (+ support for '**' globbing)

Your choice? [default: 1.10 (legacy)] 4

Now you are given an option to select which type of cabal configuration file
you want to use. The default option here is the legacy cabal file format, which
is the most widely supported option and is a good choice if you don’t need
newer features. In this chapter, you’ll be learning about newer cabal features,
so go ahead and select the most recent option:

Package name? [default: learn-cabal] learn-cabal

The next prompt gives you a chance to name your package. The default
package name is the name of the current working directory. You can select
the default here or pick a different package name:
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Package version? [default: 0.1.0.0] 0.1.0.0

You can also pick an initial version number for your package. This should
follow the Haskell Package Versioning Policy (PVP). The PVP uses a four-part
numbering system, generation.major.minor.patch. Changes to the generation number
indicate very large, perhaps philosophical, changes to the API design. Major
version number changes indicate backwards-incompatible changes. Minor
changes indicate backwards-compatible changes such as additions to the
library or bugfixes. Patch level changes indicate that only bugfixes have been
added. You can refer to the PVP documentation1 for a detailed summary of
the package versioning policy and how to use it when creating and publishing
packages.

Please choose a license:
1) GPL-2.0-only
2) GPL-3.0-only
3) LGPL-2.1-only
4) LGPL-3.0-only
5) AGPL-3.0-only
6) BSD-2-Clause

* 7) BSD-3-Clause
8) MIT
9) ISC

10) MPL-2.0
11) Apache-2.0
12) LicenseRef-PublicDomain
13) NONE
14) Other (specify)

Your choice? [default: BSD-3-Clause] 7

After setting a version, you can choose a license for your application. You can
choose one of the suggested options or pick your own. If you are picking your
own license, cabal uses SPDX license identifiers. Most open source code in
the Haskell community is released under the BSD-3 license. If you select a
license that cabal knows about, it will automatically create a file named LICENSE
that contains the text of the selected license.

Author name? [default: Haskell Programmer] Haskell Programmer
Maintainer email? [default: haskeller@example.com] haskeller@example.com
Project homepage URL? http://example.com
Project synopsis? A sample project to learn how to use cabal

The next several questions give you an opportunity provide your name and
email address, along with a homepage for your project and a synopsis. If you
don’t otherwise have a homepage for your project, it’s common to use a link

1. https://pvp.haskell.org
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to where the project is hosted, such as on github2 or gitlab.3 You can change
these values later, so don’t worry if you don’t have a good synopsis or a
homepage yet.

Project category:
* 1) (none)

2) Codec
3) Concurrency
4) Control
5) Data
6) Database
7) Development
8) Distribution
9) Game

10) Graphics
11) Language
12) Math
13) Network
14) Sound
15) System
16) Testing
17) Text
18) Web
19) Other (specify)

Your choice? [default: (none)] 1

The project category is used to help organize projects in Hackage. If any of
the suggestions seem appropriate, select one, or you can choose none if
nothing seems like a good fit.

Application (Main.hs) directory:
* 1) (none)

2) src-exe
3) app
4) Other (specify)

Your choice? [default: (none)] 3
Library source directory:
* 1) (none)

2) src
3) lib
4) src-lib
5) Other (specify)

Your choice? [default: (none)] 2

The next two questions will help cabal create the appropriate directories to
organize your application. A common convention that you’ll see throughout

2. https://github.com
3. https://gitlab.com
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the examples in this book is to use a directory called app to hold the source
file for the executable portion of the application and a directory called src to
hold the source code to the library portion of the application.

Should I generate a test suite for the library? [default: y] y

Cabal can generate a test suite for you if you ask it to. This is a good way to
make sure that there is less friction to writing tests as you start developing
your application.

Test directory:
* 1) test

2) Other (specify)
Your choice? [default: test] 1

Just like the executable and library portions of your application, the directory
where you store your test files is configurable. A directory named test is the
most common choice.

What base language is the package written in:
* 1) Haskell2010

2) Haskell98
3) Other (specify)

Your choice? [default: Haskell2010] 1

Next you have the opportunity to select a language standard that should be
used with your project. For all of the examples in this book you’ll want to
select Haskell2010.

Add informative comments to each field in the cabal file (y/n)? [default: n] n

Guessing dependencies...

Generating LICENSE...
Generating Setup.hs...
Generating CHANGELOG.md...
Generating src/MyLib.hs...
Generating app/Main.hs...
Generating test/MyLibTest.hs...
Generating learn-cabal.cabal...

You may want to edit the .cabal file and add a Description field.

The final choice you’ll have to answer is whether or not you’d like the gener-
ated cabal configuration file to contain helpful comments. These comments
can be a great way to learn more about the fields. In the example cabal file
in the next section we’ll omit the comments, but you should try generating a
file with the comments enabled to get a chance to read the documentation
on what the fields are doing.
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Understanding the Cabal File Format
Whether you are generating a file using cabal init or starting from scratch or
an existing project, your cabal projects will need a cabal file. Cabal files use
the .cabal extension, and by convention will share the name of your project.

In the last section, you should have generated a new cabal file named learn-
cabal.cabal. It should look something like the example:

cabal-version: 2.4
-- Initial package description 'learn-cabal.cabal' generated by 'cabal
-- init'. For further documentation, see
-- http://haskell.org/cabal/users-guide/

name: learn-cabal
version: 0.1.0.0
synopsis: A sample project to learn how to use cabal
-- description:
homepage: http://example.com
-- bug-reports:
license: BSD-3-Clause
license-file: LICENSE
author: Haskell Programmer
maintainer: haskeller@example.com
-- copyright:
-- category:
extra-source-files: CHANGELOG.md

library
exposed-modules: MyLib
-- other-modules:
-- other-extensions:
build-depends: base ^>=4.13.0.0
hs-source-dirs: src
default-language: Haskell2010

executable learn-cabal
main-is: Main.hs
-- other-modules:
-- other-extensions:
build-depends: base ^>=4.13.0.0, learn-cabal
hs-source-dirs: app
default-language: Haskell2010

test-suite learn-cabal-test
default-language: Haskell2010
type: exitcode-stdio-1.0
hs-source-dirs: test
main-is: MyLibTest.hs
build-depends: base ^>=4.13.0.0
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In this section, you’ll learn about the syntax of cabal files and about some of
the package properties and fields that are generated when you initialize a
new cabal project. Most of the fields we’ll look at in this section relate to
Haskell features you will learn about later in this book, so we’ll only touch
briefly on them now, and we’ll revisit them later as the relevant features are
introduced.

The generated cabal file is a good demonstration of the basic syntax of a cabal
file. Most cabal files consist primarily of some top-level package properties
along with some build target stanzas and target-level fields. The properties and
fields are both key-value pairs separated by a colon:

key: value

A cabal stanza, usually with a name, and some fields:

stanza-type name
field-key-1: field-val-1
field-key-2: field-val-2

In most cases, the stanzas that you’ll see in a cabal file will refer to some
build target. In our generated example, we have library, executable, and test-suite
target stanzas. You’ll learn about some additional stanzas later in this book
as you start to incorporate new features into your programs. You can refer
to the cabal documentation4 for a complete description of all of the stanzas
and fields that are available.

Comments are also supported in cabal files. Like Haskell comments, cabal
comments start with two dashes. A comment can start at the beginning of a
line, or after indentation, but it can’t trail any other expressions:

-- This is a comment top level comment
library

-- this is an indented comment
exposed-modules: MyLib -- This comment will cause an error

At the top of the generated cabal file you’ll see several package-level properties
that have been set based on the answers you gave during the initialization
process. The name and version properties are the only two properties that are
strictly required for all cabal files. For the generated example file, the cabal-
version property is also required, since otherwise cabal will default to an earlier
version of the cabal file format that doesn’t support all of the features used
in the generated example.

4. https://cabal.readthedocs.io/en/3.4/index.html

Chapter 5. Creating And Structuring Haskell Projects • 162

report erratum  •  discuss

https://cabal.readthedocs.io/en/3.4/index.html
http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


Try running cabal init several times with different answers to the prompts, or
generate the file with additional helpful comments, to get a complete
description of all of the properties that are provided when you generate a new
cabal file. Next we’ll turn our attention to the target stanzas and the fields
that are set for them.

After the package-level properties, you can see we have three stanzas in the
generated file, for each of the three targets that we can build. The first of these
is the library stanza. The library target needs to be present when you’re building
a library from your package. Unlike the other targets you’ll see later on in
this section, the default library target doesn’t take a name parameter—the
name of the library will always be the same as the name of your package.
Newer versions of cabal do allow you to define some additional private libraries
that can help you better organize your project, and those libraries must be
named just like other targets.

Within the library target, you can see that we have a few fields already set,
as well as a couple of optional fields that have been commented out.

library
exposed-modules: MyLib
-- other-modules:
-- other-extensions:
build-depends: base ^>=4.13.0.0
hs-source-dirs: src
default-language: Haskell2010

The first two fields in the library target, exposed-modules and other-modules, are the
only ones that are library specific. These fields are responsible for listing which
parts of the library are public and available to all consumers of the library, and
which parts are private to the library itself. The exposed-modules field is required
and lists the publicly available parts of the library. other-modules is optional, and
you can see that it’s been commented out in our example. This field will allow
you to list parts of the library that are for internal use only. You’ll revisit these
fields later on in this chapter once you’ve learned more about modules and
added some to your example project.

other-extensions is another optional field that’s been added to the cabal file for
us. It’s often used with another optional field, default-extensions. These fields let
you configure language extensions you want to enable for an entire project.
The default-extensions lists language features that you want to enable across the
entire build target, and other-extensions lists the ones that you’ll want to enable
on a case-by-case basis. Language extensions must be supported by a
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compatible compiler, and cabal may use these fields to solve for the minimal
required compiler versions to build the package.

build-depends lists the libraries, internal or external, that the build target depends
on. It’s a comma-separated list with an optional version restriction. For
example, if you wanted to depend on any version of base along with the text
and bytestring libraries you would set the field to:

build-depends: base
, text
, bytestring

In some cases, you might not want to specify version dependencies in the
cabal file. This might happen during active development when you want to
make sure you’re always using the most up-to-date packages, when you’re
using a freeze file to manage dependencies, or when an external tool is man-
aging dependencies and versioning for you, for example, if you’re using nixpkgs
to manage your build environment.

More often, especially for libraries that you’re going to publish, you’ll want to
add version constraints to your dependencies. Version constraints help cabal
download a compatible version of your dependencies when building your
library and help make sure that all the dependencies in a project work
together.

Cabal supports all of the usual equality and inequality operators for comparing
versions: >, >=, ==, <= and < all work as you would expect, allowing you to
require an exact version of a package, or depending on newer or older versions.
For example to depend on base version 4.13.0.0 or newer you can write:

build-depends: base >=4.13.0.0

Hackage’s package versioning policy, the PVP, specifies that a change in the
the two leftmost fields of a version number indicate backwards-incompatible
changes. For example, going from version 1.0.0.0 to 2.0.0.0 would indicate a
substantial redesign of the library, whereas going to version 1.1.0.0 would
indicate that a small backwards-incompatible change has been introduced.
Similarly, going to 1.0.1.0 or 1.0.0.1 should be a compatible change. This version-
ing policy means that it’s usual to depend on a range of compatible versions.
You can combine version constraints using && or ||, and so it’s common to
see constraints like at least version 4.13.0.0, but less than 4.14:

build-depends: base >=4.13.0.0 && < 4.14

This pattern is common enough in fact that cabal supports special syntax to
express constraints like this. The so-called carrot operators limit a constraint

Chapter 5. Creating And Structuring Haskell Projects • 164

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


to only the range of packages that should be compatible per the PVP guide-
lines. The constraint base ^>= 4.13.0.0 inequality in the example file is doing
exactly that.

Changing How Your Program Gets Built
After adding dependencies and updating the list of modules you are providing,
one of the most important things you’ll want to do in your cabal files is to
configure the way ghc will build your programs. You can do this by adding
options to the ghc-options field for each target in your cabal file. Here’s an
example of a common set of compiler flags that you might enable by default
in a library:

ghc-options: -O1 -Wall

If you are compiling an executable program instead of a library, you might
instead have this:

ghc-options: -O1 -threaded -rtsopts -with-rtsopts=-N

The GHC manual5 contains an extensive list of all of the flags that you can
provide to fine-tune how your program is compiled. In this section, we’ll look
at a couple of the most common options that you might want to configure for
your programs. All of these flags can be set in the ghc-options field of your cabal
file, or passed to GHC directly if you are compiling your program without
cabal.

Optimizations

The most common option you’ll want to set when you compile your program
is to turn on optimizations. Enabling optimizations will generally make your
program run faster and possibly use less memory. You can control the level
of optimization with the -O flag. If you don’t pass an optimization flag at all,
or pass in -O0, the compiler will not do any optimizations at all. The first
optimization level, -O1 will turn on a number of individual optimization options.
You can get even more optimizations, at the cost of slower compile times, by
enabling -O2. In most cases, you should enable -O1 when you start a new
project. This will give you a good balance of performance and faster compile
times. If you want better performance you should try -O2 and, then fine tune
the specific set of optimizations later on a case-by-case basis if you have evi-
dence that you need to enable or disable them.

5. https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/flags.html
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Warnings and Errors

By default, Haskell is fairly conservative about the kinds of code that it will
warn you about. The -Wall flag turns on many more warnings, making it easier
to find potential bugs in your program. Although the “all” in -Wall might make
you think this flag enables all warnings, it actually only enables common and
safe warnings. You can enable every warning that GHC knows about by
passing in -Weverything.

It’s a common practice in mature projects enable the -Werror flag. This flag will
turn warnings into errors, meaning that your program will fail to compile if
there are any warnings at all. Forcing yourself to fix any warnings before your
program will compile can help improve the quality of your code in the long-
run, but it can also slow you down enormously when you are actively devel-
oping code and find that you can’t load your code into ghci or run some tests
until you fix all of the warnings in your project.

Profiling

Sometimes your program runs more slowly or requires more memory than
you expect. In these situations, it can be helpful to profile your program to
see how it’s being run. GHC supports profiling your programs at runtime,
but to enable that feature you need to compile your program, and all of its
dependencies, with profiling enabled. You can enable profiling for your partic-
ular target by adding the -prof option to GHC. If you want complete profiling
information, you should also configure cabal to download the profiling infor-
mation for all of your dependencies by running:

cabal configure --enable-profiling

Building and Running Your Program
Once you have a cabal file written that defines what your project should look
like, you can also use cabal to compile or run any target in your cabal file.
For small projects like the ones you’ll build while working through this book,
you can compile your applications by running cabal build. This is a quick way
to compile all the targets in your cabal file to see if you have any errors. If you
are missing any dependencies, cabal will download and install them for
you when you compile your application.

For larger applications with long compile times, you can specify a single target
from your cabal file. In some cases, like if you have an executable and library
target with the same name, the name of the target by itself might be
ambiguous, and so you need to give cabal some additional information by
prefixing the target name with lib or exe:
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user@host$ cabal build lib:learn-cabal
Up to date
user@host$ cabal build exe:learn-cabal
Up to date

After you’ve compiled an application you can run it with cabal exec. You’ll need
to provide the name of an executable target to tell cabal which application
you want to run. You can only run executable targets, so you don’t need to
worry about prefixing your target names with exe:

user@host$ cabal exec learn-cabal
Hello, Haskell!
someFunc

When you’re actively working on a project and iteratively testing your program,
it’s inconvenient to have to compile and then run your program repeatedly.
The cabal run command combines both compilation and execution into a single
command, letting you easily run the latest version of your program:

user@host$
cabal run learn-cabal
Up to date
Hello, Haskell!
someFunc

Using Code from Other Modules
It’s rare to write programs that are entirely self contained. Nearly all programs
that we write will depend on some some code that’s been defined elsewhere
in some other module. To make use of code defined in some other module,
we have to import the code from that module. When we import a module, we
can get access to all of the code that it has exported. In this section, we’ll
focus on using libraries, and you’ll learn how to import code from modules
defined inside of libraries that you depend on. Later on in this chapter, you’ll
learn how to define your own modules and control what they export.

Importing a Module
You can import a module using the import keyword. You need to write an import
declaration for each module you want to import, and all of your imports should
be at the top of your module, immediately after the module declaration. Once
you import a module, everything that module exports will be available to use.

As an example, let’s create a cabal project named import-demo. You can write
the cabal file yourself or use cabal init to create an executable project:
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cabal-version: 2.4
name: import-demo
version: 0.1.0.0
license: NONE

executable import-demo
main-is: Main.hs
build-depends: base
hs-source-dirs: app
default-language: Haskell2010

Now that we have a new project, let’s write an application that can benefit
from using some parts of the standard library that aren’t normally available
to us without importing an extra module. For this example, we’ll write a pro-
gram that will count the number of non-printable characters, like tab and
newline characters, in a string.

In order to count the number of non-printable characters, we need to know
whether a particular character is printable or not. The standard library
includes a function named isPrint that returns True if a character is a printable
Unicode character, and False otherwise.

Until now, the functions you’ve used from the standard library have always
been available to you without needing to import anything. That’s because
Haskell includes a special module named Prelude that’s imported by default
into every module. The Prelude module exports a large, commonly used portion
of the standard library. For things in the standard library that aren’t included
with Prelude, we need to import the modules explicitly.

The isPrint function, along with several other functions for dealing with Char
data, is exported by the module Data.Char module. Let’s start by importing it:

module Main where
import Data.Char

In this example, you can see the syntax of a basic import, and notice that we’ve
included it immediately after the start of our module. You’re free to include
empty lines or comments between the start of your module and your import
list, but you can’t include any other code.

Now that we’ve imported Data.Char, we can use isPrint and implement the rest
of our program:

module Main where
import Data.Char

countNonPrintableCharacters :: String -> Int
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countNonPrintableCharacters =
length . filter (not . isPrint)

main :: IO ()
main =

print $ countNonPrintableCharacters "\v\t\aHello\r\n"

Let’s use cabal to run our program and make sure it’s working:

user@host$ cabal run
Up to date
5

We can also test our program out in ghci. Let’s use the cabal repl command to
start an interactive session that will inherit all of the settings we’ve configured
in our cabal file:

user@host$ cabal repl

When we use cabal repl, our Main module will be loaded automatically into our
session automatically, so we don’t need call :load explicitly. We can run main,
or pass some strings directly to countNonPrintableCharacters:

λ main
5
λ countNonPrintableCharacters "123"
0
λ countNonPrintableCharacters "123\t\t\t"
3

Let’s try calling isPrint directly from our ghci session to test whether a couple
of characters count as being printable or not:

λ isPrint '\n'
False

Although we haven’t imported Data.Char into our ghci session, the code that it
exports is still available in our interactive session. When you load a file into
ghci, all of the modules that it imports will be available in your session. To see
this in action, let’s quit our current ghci session and start a new one using
the ghci command rather than cabal repl so that Main isn’t loaded automatically:

λ :t isPrint

<interactive>:1:1: error: Variable not in scope: isPrint
λ :load app/Main.hs
[1 of 1] Compiling Main ( app/Main.hs, interpreted )
Ok, one module loaded.
λ :t isPrint
isPrint :: Char -> Bool
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You can see in this example that until we load Main.hs we don’t have access to
isPrint. As soon as we load Main, isPrint becomes available.

Loading Files in ghci

Keep in mind that a module’s imports will only be available in ghci
if you load it with :load. If you import a module, then you’ll only get
access to whatever that module exports. This is one of the key
differences between :load and import in ghci.

If you don’t want to load a file, you can also import modules directly in-line
in ghci. For example, let’s try using the permutations function from Data.List to
look at all of the different permutations of the list [1,2,3].

If we try to call permutations right now, it won’t be available because we haven’t
imported Data.List:

λ permutations [1,2,3]

<interactive>:6:1: error:
Variable not in scope: permutations :: [a0] -> t

Once we import Data.List, the function will be available:

λ import Data.List
λ permutations [1,2,3]
[[1,2,3],[2,1,3],[3,2,1],[2,3,1],[3,1,2],[1,3,2]]

Local Module Aliases
As you’ve seen, when you import a module all of the code that it exports
becomes available for you to use. At times this can present a problem, for
example if a module exports something with a name that conflicts with
something already defined in your program. Let’s continue with our character
counting example by expanding our code to support another string type that’s
commonly used in Haskell programs. The Text type comes from the text package,
and it gives us a more efficient way to work with human-readable Unicode
text. We’ll start by adding text as a dependency in our project:

cabal-version: 2.4
name: import-demo
version: 0.1.0.0
license: NONE

executable import-demo
main-is: Main.hs
build-depends: base

, text
hs-source-dirs: app
default-language: Haskell2010
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Next, let’s return to Main.hs and work on updating our code to support counting
the non-printable characters in a Text value. We’ll start by importing the
Data.Text module, which exports the Text type along with some useful functions
for dealing with Text values:

module Main where
import Data.Char
import Data.Text

Unfortunately, it turns out that merely importing Data.Text is enough to cause
our program to fail to compile. Let’s try running cabal build and looking at the
error messages before going on:

app/Main.hs:7:3: error:
Ambiguous occurrence ‘length’
It could refer to

either ‘Prelude.length’,
imported from ‘Prelude’ at app/Main.hs:1:8-11
(and originally defined in ‘Data.Foldable’)

or ‘Data.Text.length’,
imported from ‘Data.Text’ at app/Main.hs:3:1-16

|
7 | length . filter (not . isPrint)

| ^^^^^^

app/Main.hs:7:12: error:
Ambiguous occurrence ‘filter’
It could refer to

either ‘Prelude.filter’,
imported from ‘Prelude’ at app/Main.hs:1:8-11
(and originally defined in ‘GHC.List’)

or ‘Data.Text.filter’,
imported from ‘Data.Text’ at app/Main.hs:3:1-16

|
7 | length . filter (not . isPrint)

| ^^^^^^

It looks like the length and filter functions that we were using have now been
defined twice. Both Prelude and Data.Text export functions with the same name,
and the compiler has no way to know which one we intended to use.

One way we can address this is to include the name of the module along with
the ambiguous functions. In this case, we want to continue using the versions
from Prelude so we’ll replace length with Prelude.length and filter with Prelude.filter:

countNonPrintableCharacters :: String -> Int
countNonPrintableCharacters =

Prelude.length . Prelude.filter (not . isPrint)

report erratum  •  discuss

Using Code from Other Modules • 171

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


Now that our function calls aren’t ambiguous anymore, let’s go ahead and
add a new version of our function to work with Text values. Our algorithm will
remain the same, but we’ll work on Text values and use the versions of length
and filter defined in Data.Text:

countNonPrintableCharactersInText :: Text -> Int
countNonPrintableCharactersInText =

Data.Text.length . Data.Text.filter (not . isPrint)

Next, let’s add a function that will call both the String and Text versions of our
function, just to make sure they always return the same value:

countNonPrintableCharactersStringAndText :: String -> (Int,Int)
countNonPrintableCharactersStringAndText input =

( countNonPrintableCharacters input
, countNonPrintableCharactersInText $ pack input)

You’ll notice that we’re using the pack function in our call to countNonPrintableChar-
actersInText. This function comes from Data.Text and it’s how we can convert a
String into a Text value. With this function in place, the last thing we need to
do is to update main. Let’s look at our entire program as it currently stands:

module Main where
import Data.Char
import Data.Text

countNonPrintableCharactersInText :: Text -> Int
countNonPrintableCharactersInText =

Data.Text.length . Data.Text.filter (not . isPrint)

countNonPrintableCharacters :: String -> Int
countNonPrintableCharacters =

Prelude.length . Prelude.filter (not . isPrint)

countNonPrintableCharactersStringAndText :: String -> (Int,Int)
countNonPrintableCharactersStringAndText input =

( countNonPrintableCharacters input
, countNonPrintableCharactersInText $ pack input)

main :: IO ()
main =

print $ countNonPrintableCharactersStringAndText "\v\t\aHello\r\n"

At this point our program compiles, since we’ve included the full name of the
functions that were previously ambiguous. One drawback to our current
approach is that in a longer program it can start to get tiresome to type the
full module name every time we want to use a function that would otherwise
be ambiguous. This would be an even bigger problem if the module name
were long.
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Thankfully, we can give each module an alias when we import it using the as
keyword. As an example, let’s import Data.Text but give it the alias T:

import Data.Text as T

Using an alias, we can still call any unambiguous functions without the
module name, but when we need to include the module name we can use the
shorter alias instead of the full module name. For example, with an alias our
countNonPrintableCharactersInText will become:

import Data.Text as T

countNonPrintableCharactersInText :: Text -> Int
countNonPrintableCharactersInText =

T.length . T.filter (not . isPrint)

You can also import the same module several times with different aliases.
This will let you use any of the aliases that you’ve assigned to the module
interchangably. For example, we can assign Data.Text the aliases T and Text and
use them in countNonPrintableCharactersInText:

import Data.Text as T
import Data.Text as Text

countNonPrintableCharactersInText :: Text -> Int
countNonPrintableCharactersInText =

Text.length . T.filter (not . isPrint)

In practice, the only time you’re likely to import a module with multiple
aliases is as an incremental step when refactoring your code, for example,
when you are merging two previously separate modules, or splitting a module
into several new smaller modules.

More commonly, you can also assign the same alias to several modules. For
example, the module Data.Text.Encoding provides utility functions for dealing
with text encoding, like encodeUtf8 and decodeUtf8 that will let you encode and
decode raw UTF-8 encoded text. In these cases, it’s sometimes desirable to
import several related modules under a single alias. Let’s import Data.Text.
Encoding and then encode and re-decode our text before we count the characters:

import Data.Text as T
import Data.Text.Encoding as T

countNonPrintableCharactersInText :: Text -> Int
countNonPrintableCharactersInText =

T.length . T.filter (not . isPrint) . T.decodeUtf8 . T.encodeUtf8

In this example, we’ve combined all of the functions that have been exported
by Data.Text and Data.Text.Encoding into a single alias, T.
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Qualified Imports
So far, whenever we’ve imported a module the entire contents of the module
have been made available to us. Even when we’ve assigned an alias to some
modules, using the alias name is optional except when the name would oth-
erwise be ambiguous. This is great for keeping our code short and easy to
read, but it comes with a maintenance cost: code that works today might stop
working in the future when we accidentally introduce some ambiguity into a
call. This can happen in two different ways. First, you might add a new
function without realizing that the name conflicts with something that’s
already exported by a module that you are importing. This can be irritating,
but at the very least you’ll quickly get feedback from the compiler and have
the opportunity to rename your function. A worse outcome is that you have
some code that has been working for some time, and then it starts to fail
when you update your dependencies, and a module that you have been
importing begins to export something with a conflicting name. In this scenario,
you might find yourself having to make changes to code that you haven’t
touched in some time, and perhaps making changes throughout your entire
code base to address unexpected name conflicts.

Qualified imports give us one way to avoid this problem. When we use the
qualified keyword in our import statement, we require that anything exported
by the module be referenced using either the full name of the module, or the
module alias if we’ve given one. Let’s look at an example of this by modifying
our character counting application. We’ll change our import of Data.Char to be
a qualified import:

module Main where
import qualified Data.Char
import Data.Text as T
import Data.Text.Encoding as T

countNonPrintableCharactersInText :: Text -> Int
countNonPrintableCharactersInText =

T.length . T.filter (not . isPrint) . T.decodeUtf8 . T.encodeUtf8

countNonPrintableCharacters :: String -> Int
countNonPrintableCharacters =

Prelude.length . Prelude.filter (not . isPrint)

countNonPrintableCharactersStringAndText :: String -> (Int,Int)
countNonPrintableCharactersStringAndText input =

( countNonPrintableCharacters input
, countNonPrintableCharactersInText $ pack input)

main :: IO ()
main =

print $ countNonPrintableCharactersStringAndText "\v\t\aHello\r\n"
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If we try to compile our program now, we’ll get an error. We’ve updated the
import of Data.Char to be qualified, and so our references to isPrint are no longer
valid:

app/Main.hs:8:30: error:
• Variable not in scope: isPrint :: Char -> Bool
• Perhaps you meant ‘Data.Char.isPrint’ (imported from Data.Char)

|
8 | T.length . T.filter (not . isPrint) . T.decodeUtf8 . T.encodeUtf8

| ^^^^^^^

app/Main.hs:12:42: error:
• Variable not in scope: isPrint :: Char -> Bool
• Perhaps you meant ‘Data.Char.isPrint’ (imported from Data.Char)

|
12 | Prelude.length . Prelude.filter (not . isPrint)

| ^^^^^^^

You’ll notice here that, thankfully, the compiler has pointed out not only what
function is no longer valid, but also found that the version we want is now
called Data.Char.isPrint. Typing Data.Char everywhere we call isPrint might be a little
annoying, but we can combine qualified imports with aliases. This will allow
us to require that we use a qualified name every time we reference something
imported from a module, but still allow us to use a shorter and more readable
module alias. Let’s change our qualified import to give it the alias Char and
then update our code to use the qualified name when we call isPrint:

module Main where
import qualified Data.Char as Char
import Data.Text as T
import Data.Text.Encoding as T

countNonPrintableCharactersInText :: Text -> Int
countNonPrintableCharactersInText =

T.length . T.filter (not . Char.isPrint) . T.decodeUtf8 . T.encodeUtf8

countNonPrintableCharacters :: String -> Int
countNonPrintableCharacters =

Prelude.length . Prelude.filter (not . Char.isPrint)

countNonPrintableCharactersStringAndText :: String -> (Int,Int)
countNonPrintableCharactersStringAndText input =

( countNonPrintableCharacters input
, countNonPrintableCharactersInText $ pack input)

main :: IO ()
main =

print $ countNonPrintableCharactersStringAndText "\v\t\aHello\r\n"

Once again, our program compiles. Now, thanks to our use of qualified imports,
we’re also protected against any accidental name collisions with Data.Char.
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Choosing What to Import
Normally, when you import a module you are importing everything that the
module makes available. Sometimes this is a useful feature, like when you
want to use most of what a module exports. Other times, you might want to
only import a subset of the things that a module exports. When you want
more fine-grained control over what you import, you can use import lists.

There are two types of import lists. Most commonly, import lists allow you to
list explicitly the things that you want to import from a particular module.
To add an import list, you need to list everything that you want to import
inside of parentheses after the import statement. Let’s give it a try by modifying
our character counting function. Instead of a qualified imports of Data.Text.
Encoding and Data.Char we’ll import only the particular functions that we want
to use from those modules:

import Data.Char (isPrint)
import Data.Text as T
import Data.Text.Encoding (decodeUtf8, encodeUtf8)

countNonPrintableCharactersInText :: Text -> Int
countNonPrintableCharactersInText =

T.length . T.filter (not . isPrint) . decodeUtf8 . encodeUtf8

In this example, you can see how we’ve specified the exact functions that we
want to import from each of the two modules. We don’t have to qualify the
modules, but we can still be assured that we’re not going to have any acciden-
tal name collisions, since nothing except what we’ve listed in the import list
will be available. We can see this in practice in ghci. Let’s import isPrint from
Data.Char into a fresh ghci session:

λ import Data.Char (isPrint)

Now we can call isPrint as you’d expect, but we’ll get an error if we try to call
a different function exported by Data.Char that we haven’t listed in our import
list. For example, we can try to call isSpace:

λ isPrint ' '
True
λ isSpace ' '

<interactive>:3:1: error:
Variable not in scope: isSpace :: Char -> t

In ghci, if you’ve imported a particular function from a module and decide that
you want some other functions, you can add more import statements with
import lists to get the extra functions. Let’s add isSpace to our session to see
for ourselves:

Chapter 5. Creating And Structuring Haskell Projects • 176

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


λ import Data.Char (isSpace)
λ isPrint ' '
True
λ isSpace ' '
True

You’ll notice here that when we write another import statement it adds the
new function to our environment, but we still have access to the isPrint function
that we imported earlier. If you decide you want everything from the module,
you can still write an import statement without an import list. For example,
if we try to call isHexDigit we’ll get an error, but when we import all of Data.Char
we’ll have access to it, along with everything else exported by the module:

λ isHexDigit '0'

<interactive>:7:1: error:
Variable not in scope: isHexDigit :: Char -> t

λ import Data.Char
λ isHexDigit '0'
True

You can use import lists alongside qualified imports and module aliases too.
Returning to our character counting example, let’s update our import of
Data.Text. We’ll make it a qualified import, keep our module alias, and also use
an import list to limit ourselves to only importing the pack, length, and filter
functions that we’re intending to use:

module Main where
import Data.Char (isPrint)
import Data.Char (isSpace)
import qualified Data.Text as T (pack, length, filter)
import Data.Text.Encoding (decodeUtf8, encodeUtf8)

countNonPrintableCharactersInText :: Text -> Int
countNonPrintableCharactersInText =

T.length . T.filter (not . isPrint) . decodeUtf8 . encodeUtf8

countNonPrintableCharacters :: String -> Int
countNonPrintableCharacters =

Prelude.length . Prelude.filter (not . isPrint)

countNonPrintableCharactersStringAndText :: String -> (Int,Int)
countNonPrintableCharactersStringAndText input =

( countNonPrintableCharacters input
, countNonPrintableCharactersInText $ T.pack input)

main :: IO ()
main =

print $ countNonPrintableCharactersStringAndText "\v\t\aHello\r\n"
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If you build this, you’ll notice that we have an error:

app/Main.hs:7:38: error:
Not in scope: type constructor or class ‘Text’

|
7 | countNonPrintableCharactersInText :: Text -> Int

| ^^^^

Functions aren’t the only thing that are imported, or not, when we use import
lists. It looks like we’ve forgotten to import the Text type. One option that we
have is to add it to the import list for our qualified import of Text:

module Main where
import Data.Char (isPrint)
import qualified Data.Text as T (Text, length, filter, pack)
import Data.Text.Encoding (decodeUtf8, encodeUtf8)

countNonPrintableCharactersInText :: T.Text -> Int
countNonPrintableCharactersInText =

T.length . T.filter (not . isPrint) . decodeUtf8 . encodeUtf8

countNonPrintableCharacters :: String -> Int
countNonPrintableCharacters =

Prelude.length . Prelude.filter (not . isPrint)

countNonPrintableCharactersStringAndText :: String -> (Int,Int)
countNonPrintableCharactersStringAndText input =

( countNonPrintableCharacters input
, countNonPrintableCharactersInText $ T.pack input)

main :: IO ()
main =

print $ countNonPrintableCharactersStringAndText "\v\t\aHello\r\n"

In this example, we’ve added Text to our import list, and we’ve also changed
the reference to Text in the type of countNonPrintableCharactersInText. Since Data.Text
is a qualified import, we need to reference it with the alias we’ve given to the
module, in this case T.

You’ve already seen that you can import a module more than once with differ-
ent import lists. You can also import a module more than once using other
combinations of features. One pattern that you’ll see somewhat frequently is
to use an unqualified import with an import list to import the types defined
in a module, and to use a qualified import for everything else. We can apply
this pattern in our example by adding an unqualified import of Data.Text to
import just the Text type, but keeping everything else in Data.Text under a
qualified import:

module Main where
import Data.Char (isPrint)
import Data.Text (Text)
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import qualified Data.Text as T
import Data.Text.Encoding (decodeUtf8, encodeUtf8)

countNonPrintableCharactersInText :: Text -> Int
countNonPrintableCharactersInText =

T.length . T.filter (not . isPrint) . decodeUtf8 . encodeUtf8

countNonPrintableCharacters :: String -> Int
countNonPrintableCharacters =

Prelude.length . Prelude.filter (not . isPrint)

countNonPrintableCharactersStringAndText :: String -> (Int,Int)
countNonPrintableCharactersStringAndText input =

( countNonPrintableCharacters input
, countNonPrintableCharactersInText $ T.pack input)

main :: IO ()
main =

print $ countNonPrintableCharactersStringAndText "\v\t\aHello\r\n"

Choosing What Not to Import
Import lists are a great way to include just a few items from a module, but
the syntax you’ve used so far can be inconvenient if you want all but a few
things from a module. In cases where you want to import all but a few things,
you can use the hiding keyword before your import list. As you might expect,
this inverts the import list, causing you to import everything from the module
except what you’ve listed. As you might expect, you can combine imports that
hide certain elements with qualified imports and aliases. Let’s take another
look at our character counter, but this time instead of using a qualified import
for all of Data.Text, we’ll do an unqualified import, but we’ll hide the length and
filter functions that were conflicting with Prelude. For those two functions
specifically, we’ll do a qualified import so that we still have access to them:

module Main where
import Data.Char (isPrint)
import Data.Text hiding (length, filter)
import qualified Data.Text as T (length, filter)
import Data.Text.Encoding (decodeUtf8, encodeUtf8)

countNonPrintableCharactersInText :: Text -> Int
countNonPrintableCharactersInText =

T.length . T.filter (not . isPrint) . decodeUtf8 . encodeUtf8

countNonPrintableCharacters :: String -> Int
countNonPrintableCharacters =

Prelude.length . Prelude.filter (not . isPrint)

countNonPrintableCharactersStringAndText :: String -> (Int,Int)
countNonPrintableCharactersStringAndText input =

( countNonPrintableCharacters input
, countNonPrintableCharactersInText $ pack input)
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main :: IO ()
main =

print $ countNonPrintableCharactersStringAndText "\v\t\aHello\r\n"

Hiding imports can be particularly useful if you want to define your own
implementation of a function from a module. For example, imagine that we
wanted to define our own length function. Since length is defined in Prelude we’d
get a conflict, but we can explicitly import Prelude and hide the length function:

module Main where
import Prelude hiding (length)

length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + length xs

main :: IO ()
main =

print $ "the length of 'hello' is: " <> show (length "hello")

As you might expect, you can also use an exclusion list with qualified imports,
and with local module aliases.

Common Practices for Importing Modules
With so much flexibility in how you import things, you might find yourself
wondering how to approach imports in your applications. Each style of import
offers its own benefits and drawbacks.

Standard imports are often the easiest place to start. When you import a
module without any import list, aliases, or qualification, you simply get access
to everything exported from that module and you can start writing code right
away. Name collisions are the biggest drawback of standard imports. In some
cases, libraries use standard names by design and most imports will cause
collisions. In other cases, you may simply want to avoid accidental name colli-
sions. In either case, the next step is often to use qualified imports with an alias.

Qualified imports without an alias can be extremely verbose. From time to
time you’ll come across libraries with short module names, but long module
names are common in Haskell, and repeatedly typing a long module name
can become tiresome. Aliases, without qualification, give you a way to disam-
biguate name collisions, but they invite inconsistency. You may have some
code that uses the alias and other code that doesn’t. For these reasons, you’ll
see that qualified imports and local aliases are frequently used together.
Qualified imports with a short readable module alias provide some additional
documentation by letting readers know exactly where a given function was
imported from, avoid the problem of accidental name collisions, and with
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well-chosen module aliases they minimize the impact of repeatedly typing the
module name.

You’ll see import lists being used with both qualified and unqualified imports.
In some cases, import lists can serve as an additional form of documentation.
When you list everything that you want to import from a particular module,
it’s easier to understand why the module has been imported. In some larger
projects, you’ll also notice the use of import lists as a way to improve compile
times. Since GHC attempts to only recompile code that has changed, using
an import list may allow you to avoid some extra work. That’s because your
module will need to be recompiled if a function you import has changed. If
you import everything from a module, then your module will need to be
recompiled every time that dependency changes. If you only import a partic-
ular function, then the compiler might be able to avoid recompiling your
module if that function didn’t change in your dependency.

Creating Your Own Modules
Importing modules defined by libraries is a great starting point when you are
building an application, but as your programs start to grow larger, you’ll also
quickly realize that you’ll need to use them in your own application to help
you organize and re-use your own code. Modules are the basic unit of organi-
zation in Haskell applications, and in this section, you’ll learn how to write
modules, control what they export, and how to design an application to make
the best use of modules so that your code is easy to use and re-use.

Let’s start by looking at how we can create a module. Haskell modules are
closely related to individual source files. Each file contains one module, and
each module is defined by a single file. Generally, the name of the file that
defines a module should match the name of the module itself. For example,
if you have a module named Example, it should be defined in a file named
Example.hs. Modules exist in a hierarchy that mirrors the organization of your
source files. If you have a directory named Examples and that directory contains
a file named ExampleOne.hs then the module defined in that file should be named
Examples.ExampleOne. Each subdirectory adds a new section to the module name.

The relationship between file path and module name should be relative to the
source directory for your application. For example, if you have a new applica-
tion called HaskellBook and you’ve set the source directory for the project to src,
then a file at the path src/HaskellBook/Examples/Introduction/CreatingModules.hs should
define a module named HaskellBook.Examples.Introduction.CreatingModules. The src is
omitted because that’s the root source code directory for the project.
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To get a first-hand feel for how we can use modules to organize our code, let’s
use cabal-init to create a new cabal project called module-examples. We’ll make it
a library, and set the source directory to src.

Once you’ve created the project, we’ll add our first new module. Create a new
file at src/HaskellBook/Examples/Introduction/CreatingModules.hs. You’ll need to create all
of the intermediate subdirectories as well. Inside of the file, add a new module
header. We’ll name the module HaskellBooks.Examples.Introduction.CreatingModules:

module HaskellBook.Examples.Introduction.CreatingModules where

The syntax for creating a module should look familiar. We’ve been using the
module and where keywords to define module headers since the beginning of
the book. You’ve also seen the hierarchical naming module convention a
couple of times when you’ve imported libraries as part of some of the examples
in the book. This is, however, the first time that we’ve created a module with
a longer name like this. You’ve likely noticed that the path to the file we cre-
ated matches the name of the module. Each directory in the path to the file
became a segment of the module name, separated by dots (.). This is the
standard way for organizing source files and modules names in Haskell
projects. These conventions aren’t strictly required. You can name your files
and modules whatever you like, but most developers and most Haskell tooling
will assume you’re following the standard naming conventions.

Now that we have a module to work with, we should also add it to our cabal
file. You learned earlier that the cabal files give us two ways to add modules:
we can add our new module to the exposed-modules section of the cabal file to
make it available to any consumers of our library, or we can add it to the
other-modules section if we want our new module to only be used internally
within our library. For now, let’s add our new module to the exposed-modules
section of the cabal file:

cabal-version: 2.4
name: module-examples
version: 0.1.0.0
license: NONE
extra-source-files: CHANGELOG.md

library
exposed-modules: MyLib

, HaskellBook.Examples.Introduction.CreatingModules
build-depends: base ^>=4.16.0.0
hs-source-dirs: src
default-language: Haskell2010
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Note that, depending on the version of cabal that you used to create the
project, and the options you selected, your cabal file might look slightly differ-
ent from the example.

Making Code Available for Re-Use
Now that we have a module, let’s add some code to it. By default, everything
we define at the top level of our module will be exported. As an example, let’s
add a function that will add some excitement to a message:

module HaskellBook.Examples.Introduction.CreatingModules where

excitingMessage :: String -> String
excitingMessage message =

"Exciting news: " <> message <> "!!!"

Now let’s load our library up into ghci. Since we want to load modules from
the library that we’re writing, we’ll use cabal repl to start our ghci session instead
of calling ghci directly. This will start up ghci with our library loaded, alongside
any other dependencies we’ve added to our cabal file:

user@host$ cabal repl

Although our library will be loaded in ghci, we’ll still need to import the modules
we want to use. If you try to call excitingMessage without importing the module
that defines it, we’ll get an error:

λ excitingMessage "Modularity"

<interactive>:1:1: error:
Variable not in scope: excitingMessage :: t0 -> t

We can import our new module, which will make our function available:

λ import HaskellBook.Examples.Introduction.CreatingModules
λ excitingMessage "Modularity"
"Exciting news: Modularity!!!"

Functions aren’t the only thing that get exported from a module. In the last
section, you saw an example of how the Text type was exported by the Data.Text
module. By default, any top-level functions, variables, and types will exported.
To help illustrate this, let’s expand our example module by building a small
library to let us create greeting messages.

We want our library to format greetings that include some particular saluta-
tion, for example, “hello” or “happy birthday.” The message will be to someone,
and it might be from one or several people. Both the salutation and the names
of the people in the message will be String data, but we don’t want to confuse
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a name for a salutation, so let’s start by creating pair of types so that we can
keep the names and salutations separate:

data Name = Name { getName :: String }
data Salutation = Salutation { getSalutation :: String }

Next, let’s create a new record that holds all of the information about a
greeting. We’ll call it GreetingMessage:

data GreetingMessage = GreetingMessage
{ greetingSalutation :: Salutation
, greetingTo :: Name
, greetingFrom :: [Name]
}

We can make our library more convenient for our users by providing a default
greeting. If our users only want to change part of the default message, they
can use record update syntax to change the fields they want to modify. Since
our message only has three fields, this pattern won’t be as useful as it would
be with larger records, especially records with more sensible defaults, but it’ll
still serve as a good example of creating default values when we’re writing
Haskell libraries:

defaultMessage :: GreetingMessage
defaultMessage = GreetingMessage

{ greetingSalutation = Salutation "Hello"
, greetingTo = Name "Friend"
, greetingFrom = []
}

Finally, let’s add a function to turn our GreetingMessage into a message we can
print on the screen. You’re welcome to pick your own message formatting as
you follow along with the example:

formatMessage :: GreetingMessage -> String
formatMessage (GreetingMessage greetingSalutation greetingTo greetingFrom) =

greetingWithSuffix
where

basicGreeting =
getSalutation greetingSalutation <> " " <> getName greetingTo

greetingWithSuffix =
case greetingFrom of

[] ->
basicGreeting <> "!"

[friend] ->
basicGreeting <> ", from: " <> getName friend

[friendA, friendB] ->
basicGreeting <> ", from: " <>
getName friendA <> " and " <> getName friendB
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friends ->
basicGreeting <> ", from your friends: " <>
formatFriendList friends

formatFriendList friends =
case friends of

[] ->
""

[friend] ->
"and " <> getName friend

(friend:moreFriends) ->
getName friend <> ", " <> formatFriendList moreFriends

In this example, we’ve used pattern matching to extract all the fields of our
GreetingMessage record. Let’s do a small refactor to make use of the RecordWildCards
extension. Once you’ve done that, the final version of your greeting module
should look like the example:

{-# LANGUAGE RecordWildCards #-}
module HaskellBook.Examples.Introduction.CreatingModules where

data Name = Name { getName :: String }
data Salutation = Salutation { getSalutation :: String }

data GreetingMessage = GreetingMessage
{ greetingSalutation :: Salutation
, greetingTo :: Name
, greetingFrom :: [Name]
}

defaultMessage :: GreetingMessage
defaultMessage = GreetingMessage

{ greetingSalutation = Salutation "Hello"
, greetingTo = Name "Friend"
, greetingFrom = []
}

formatMessage :: GreetingMessage -> String
formatMessage GreetingMessage{..} =

greetingWithSuffix
where

basicGreeting =
getSalutation greetingSalutation <> " " <> getName greetingTo

greetingWithSuffix =
case greetingFrom of

[] ->
basicGreeting <> "!"

[friend] ->
basicGreeting <> ", from: " <> getName friend

[friendA, friendB] ->
basicGreeting <> ", from: " <>
getName friendA <> " and " <> getName friendB
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friends ->
basicGreeting <> ", from your friends: " <>
formatFriendList friends

formatFriendList friends =
case friends of

[] ->
""

[friend] ->
"and " <> getName friend

(friend:moreFriends) ->
getName friend <> ", " <> formatFriendList moreFriends

Now that we’ve turned our module into a small library, let’s load it back up
into ghci with cabal repl so that we can see what is available to us when we
import it. We’ll start by formatting the default message:

λ import HaskellBook.Examples.Introduction.CreatingModules
λ formatMessage defaultMessage
"Hello Friend!"

As you would expect, both formatMessage and defaultMessage are available now
that we’ve imported our library. What if we wanted to customize the message?

λ george = Name "George"
λ remi = Name "Remi"
λ porter = Name "Porter"
λ formatMessage $ defaultMessage {greetingFrom = [george, remi, porter]}
"Hello Friend, from your friends: George, Remi, and Porter"

We can use record update syntax, so it would appear that the field selectors
for GreetingMessage have been exported, along with the type constructor for
Name. In fact, all the top-level functions and variables we’ve defined in our
module are available. So are the types we’ve defined, along with their field
selectors and constructors.

Types and values that we define in our module are available when we import
it, but language extensions that we’ve enabled in a module are not carried
over. We can see this for ourselves if we try to write a function that depends
on the RecordWildCards extension. For example, let’s try to write a function that
counts the number of people who sent a message:

λ import HaskellBook.Examples.Introduction.CreatingModules
λ countSenders GreetingMessage{..} = length greetingFrom

<interactive>:2:14: error:
Illegal `..' in record pattern
Use RecordWildCards to permit this
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Even though the extension was enabled in our module, we can’t use it outside
of the module unless we enable the extension where we want to use it:

λ :set -XRecordWildCards
λ countSenders GreetingMessage{..} = length greetingFrom
λ countSenders defaultMessage
0

There are benefits and drawbacks to the fact that language extensions are
only enabled in the module where they are defined. A benefit is that you can
choose what extensions you want to enable on a case-by-case basis without
requiring that users of your module make the same choice. On the other
hand, a major drawback is that you may find yourself repeatedly adding the
same handful of extensions across all, or most, of your modules. If you notice
that you are enabling the same extensions in most modules, you might want
to consider adding them to the default-extensions section in your cabal project.
Let’s add RecordWildCards as a default extension for our library:

cabal-version: 2.4
name: module-examples
version: 0.1.0.0
license: NONE
extra-source-files: CHANGELOG.md

library
exposed-modules: MyLib

, HaskellBook.Examples.Introduction.CreatingModules
build-depends: base ^>=4.16.0.0
hs-source-dirs: src
default-language: Haskell2010
default-extensions: RecordWildCards

Now we can use the RecordWildCards extension in any other module we add to
our project without adding a LANGUAGE pragma. Similarly, if we start ghci using
cabal repl, all of our default extensions will be enabled and we don’t need to
use :set to turn them on individually.

Choosing What to Export
By default, all of the top-level bindings that you define in a module are
exported and available to any code that imports your module. This is conve-
nient since it means that we can start writing modules without needing to
think about what should or shouldn’t be visible to consumers of our module,
but frequently we’d like to have more control over what we choose to export.
For example, we might want to hide some functions we’ve written that
shouldn’t be part of our public API. Export lists are a way to get fine-grained
control over what is, and isn’t, exported from the modules that you define.
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In this section, you’ll learn how to use export lists to control what is visible
to consumers of your module, and work through several different use-cases
where export lists can help you define a better API for your module.

Export Lists
Just like import lists, which let you choose what should be imported from a
module, export lists let you choose what should be exported by your module.
The syntax for an export list is similar to the syntax for an import list. To add
an export list to your module, you need to add a comma-separated list of what
you want to export. The export list should come after the module name before
the where keyword. For example, let’s add a new value, testMessage, to our example
module. We’ll also update our export list to specifically export testMessage:

{-# LANGUAGE RecordWildCards #-}
module HaskellBook.Examples.Introduction.CreatingModules
( testMessage
) where

data Name = Name { getName :: String }
data Salutation = Salutation { getSalutation :: String }

data GreetingMessage = GreetingMessage
{ greetingSalutation :: Salutation
, greetingTo :: Name
, greetingFrom :: [Name]
}

defaultMessage :: GreetingMessage
defaultMessage = GreetingMessage

{ greetingSalutation = Salutation "Hello"
, greetingTo = Name "Friend"
, greetingFrom = []
}

formatMessage :: GreetingMessage -> String
formatMessage GreetingMessage {..} =

greetingWithSuffix
where

basicGreeting =
getSalutation greetingSalutation <> " " <> getName greetingTo

greetingWithSuffix =
case greetingFrom of

[] ->
basicGreeting <> "!"

[friend] ->
basicGreeting <> ", from: " <> getName friend

[friendA, friendB] ->
basicGreeting <> ", from: " <>
getName friendA <> " and " <> getName friendB
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friends ->
basicGreeting <> ", from your friends: " <>
formatFriendList friends

formatFriendList friends =
case friends of

[] ->
""

[friend] ->
"and " <> getName friend

(friend:moreFriends) ->
getName friend <> ", " <> formatFriendList moreFriends

testMessage :: String
testMessage =

formatMessage $ defaultMessage { greetingFrom = [Name "test example"] }

You’ll notice in this example that we’ve moved the export list down onto a
separate line. This syntax is allowed for both import and export lists, but it’s
more common with export lists, since they tend to be longer than import lists.
With our export list in place, let’s run cabal repl again and import our module.
When we do, you’ll see that while testMessage is available, nothing else that
we’ve defined in our module is visible:

λ import HaskellBook.Examples.Introduction.CreatingModules
λ putStrLn testMessage
Hello Friend, from: test example
λ defaultMessage

<interactive>:3:1: error: Variable not in scope: defaultMessage
λ :type formatMessage

<interactive>:1:1: error: Variable not in scope: formatMessage

When we add an export list, nothing is exported by default anymore. We need
to add anything that we want to be available into the export list.

Although export lists can be a useful way of controlling what part of your
code makes up the visible external API, we don’t necessarily want to give up
the benefits of interactive development with ghci. You can comment out the
export list while you’re in development, and then uncomment it when you’re
done, but that’s not a particularly satisfying solution. Thankfully, if you open
your code in ghci with :load rather than import, everything defined in the module
will be available whether you included it in your export list or not. For
example, if you :load your module without changing the export list, you’ll see
that you can still reference everything in your module:

λ :load src/HaskellBook/Examples/Introduction/CreatingModules.hs
[1 of 1] Compiling HaskellBook.Examples.Introduction.CreatingModules (

src/HaskellBook/Examples/Introduction/CreatingModules.hs, interpreted)
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Ok, one module loaded.
λ :type defaultMessage
defaultMessage :: GreetingMessage
λ :t Name
Name :: String -> Name

Dealing with Constructors and Field Selectors
Now that you know how to create an export list, let’s update our example to
export the remaining parts of our module. Start by copying the example:

{-# LANGUAGE RecordWildCards #-}
module HaskellBook.Examples.Introduction.CreatingModules
( Name
, Salutation
, GreetingMessage
, defaultMessage
, formatMessage
, testMessage
) where

data Name = Name { getName :: String }
data Salutation = Salutation { getSalutation :: String }

data GreetingMessage = GreetingMessage
{ greetingSalutation :: Salutation
, greetingTo :: Name
, greetingFrom :: [Name]
}

defaultMessage :: GreetingMessage
defaultMessage = GreetingMessage

{ greetingSalutation = Salutation "Hello"
, greetingTo = Name "Friend"
, greetingFrom = []
}

formatMessage :: GreetingMessage -> String
formatMessage GreetingMessage {..} =

greetingWithSuffix
where

basicGreeting =
getSalutation greetingSalutation <> " " <> getName greetingTo

greetingWithSuffix =
case greetingFrom of

[] ->
basicGreeting <> "!"

[friend] ->
basicGreeting <> ", from: " <> getName friend

[friendA, friendB] ->
basicGreeting <> ", from: " <>
getName friendA <> " and " <> getName friendB
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friends ->
basicGreeting <> ", from your friends: " <>
formatFriendList friends

formatFriendList friends =
case friends of

[] ->
""

[friend] ->
"and " <> getName friend

(friend:moreFriends) ->
getName friend <> ", " <> formatFriendList moreFriends

testMessage :: String
testMessage =

formatMessage $ defaultMessage { greetingFrom = [Name "test example"] }

Now that we’ve expanded our export list, let’s load our program up again with
cabal repl and try to generate a few messages. We’ll start with a default message:

λ import HaskellBook.Examples.Introduction.CreatingModules
λ putStrLn $ formatMessage defaultMessage
Hello Friend!

So far, so good! Next, let’s modify our default message:

λ putStrLn $ formatMessage $
defaultMessage {greetingTo = Name "Module Demo"}

<interactive>:3:46: error: Not in scope: ‘greetingTo’

Unfortunately, we can’t use our API as designed with our current export list.
Although we exported our GreetingMessage type, that doesn’t seem to have
extended to exporting the field selectors that were created when we defined
the record. We can go back and update our export list momentarily, but for
now we ought to be able to create a GreetingMessage without referencing the
record fields. Let’s try that to see if we can still create a custom message:

λ msg = GreetingMessage (Salutation "Hello") (Name "Module Demo") []

Unfortunately, it turns out that we can’t create a message this way either.
Depending on the version of GHC that you are using, you might see different
error messages. In GHC 9.2, you will see this error:

<interactive>:5:7: error:
• Illegal term-level use of the type constructor ‘GreetingMessage’

imported from ‘HaskellBook.Examples.Introduction.CreatingModules’
(and originally defined
at src/HaskellBook/Examples/Introduction/CreatingModules.hs:(14,1)-(18,3))

• In the expression:
GreetingMessage (Salutation "Hello") (Name "Module Demo") []
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In an equation for ‘msg’:
msg = GreetingMessage (Salutation "Hello") (Name "Module Demo") []

In GHC 8.10, the error message will look a little different:

<interactive>:2:7: error:
Data constructor not in scope:
GreetingMessage :: t0 -> t1 -> [a0] -> t

<interactive>:2:24: error:
Data constructor not in scope: Salutation :: t2 -> t0

<interactive>:2:45: error:
Data constructor not in scope: Name :: t3 -> t1

In both cases, the error is caused by the same underlying issue: we’ve
exported the types for Name, Salutation, and GreetingMessage but we haven’t
exported their constructors, or any field selectors.

You can export field constructors just like any other function. In this case,
we could add greetingSalutation, greetingTo, and greetingFrom to our export list, but
we still wouldn’t be able to create a GreetingMessage value. To update the values
in defaultMessage we need to provide either Name or Salutation values, and creating
those means we need to call the Name or Salutation constructors. If we want to
export a value constructor for our types, we need to include those alongside
the types that we’re exporting. The syntax for this looks like an export list
within an export list. We add a comma-separated list of all of the constructors
that we want to export for a particular type. In our case, we only have a single
value constructor for each of these types. Let’s go ahead and add the value
constructors for all of our types. Our export list will look like this:

module HaskellBook.Examples.Introduction.CreatingModules
( Name (Name)
, Salutation (Salutation)
, GreetingMessage (GreetingMessage)
, greetingSalutation
, greetingTo
, greetingFrom
, defaultMessage
, formatMessage
, testMessage
) where

With the field selectors and constructors added to the export list, you can
freely create new message values now:

λ putStrLn . formatMessage $
defaultMessage { greetingTo = Name "Module Demo" }

Hello Module Demo!
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You can also include any field selectors in the export list for a particular type.
Let’s update our export list again to include the field selectors for each of our
types in their respective export lists:

module HaskellBook.Examples.Introduction.CreatingModules
( Name (Name, getName)
, Salutation (Salutation, getSalutation)
, GreetingMessage ( GreetingMessage

, greetingSalutation
, greetingTo
, greetingFrom
)

, defaultMessage
, formatMessage
, testMessage
) where

For types with many constructors, or large records, it can be inconvenient to
type out everything that you might want to export for a type. Even for types
with only a single constructor and a small number of field selectors you might
not want to update the export list every time you make a change for the type.
To help with that, there’s a special syntax that you can use to export all of
the constructors and field selectors associated with a particular type. Let’s
update our export list so we can see an example:

module HaskellBook.Examples.Introduction.CreatingModules
( Name (..)
, Salutation (..)
, GreetingMessage (..)
, defaultMessage
, formatMessage
, testMessage
) where

You can use the same syntax for importing types, constructors, and field
selectors. Let’s open up a fresh ghci session with cabal repl and try out a few
more imports using this current version of our module. We’ll start by
importing the Name type and its constructor, but not the getName field selector:

λ exampleName = Name "haskeller"
λ getName exampleName

<interactive>:5:1: error:
Variable not in scope: getName :: Name -> t

Smart Constructors
It might seem inconvenient to need to export constructors and field selectors
explicitly when you export the types you’ve defined in a module, but being
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able to keep these internal to a module is an important part of a common
pattern you’ll see in Haskell applications: smart constructors. A smart con-
structor is an ordinary function that lets you construct a value. Unlike a
standard value constructor, smart constructors can include some additional
logic. One of the most common ways to use a smart constructor is to perform
some additional validation before creating a value. When you export a smart
constructor for a type, but don’t export the actual constructor, then you can
guarantee that the only way a user could have gotten a value for your type
is having gone through the smart constructor. This lets you make simplifying
assumptions throughout the rest of your code by performing your basic vali-
dation once, at the time that you’d be creating the value.

Let’s look at this in practice with a small example. Imagine that we are writing
a program that needs to deal with a list of numbers, and we regularly want
to find the smallest element in the list. We could use the minimum function in
Prelude, but that’s a partial function that will fail if we call it with an empty
list. Since it needs to work with any list, it also has to go through the entire
list to make sure it’s found the smallest element.

In our program, we can write a much better minimum function if we can be
sure that we’re always working with a list that has at least one element, and
if we always know the list we’re working with will be sorted. To do that, let’s
add a new module to our project called HaskellBook.Examples.SortedList. We’ll import
the sort function from Data.List and we’ll hide the minimum function from Prelude
since we want to define our own:

module HaskellBook.Examples.SortedList where

import Data.List (sort)
import Prelude hiding (minimum)

Now, let’s define a new SortedList type. Rather than re-inventing the list type
from scratch, we’ll define our sorted list in terms of the standard list type:

data SortedList = SortedList { getSorted :: [Int] }

Finally, we can write a minimum function that takes advantage of the fact that
we know we’re dealing with non-empty sorted lists:

minimum :: SortedList -> Int
minimum (SortedList numbers) = head numbers

You might have already spotted the problem, but let’s use cabal repl to load
this module into ghci and test it out:

λ import qualified HaskellBook.Examples.SortedList as SortedList
λ SortedList.minimum $ SortedList.SortedList [1,2,5,10]
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So far, so good. Unfortunately, the assumptions that we’re making about our
list being non-empty and sorted aren’t being enforced right now, so we’re
entirely free to pass in bad data:

λ SortedList.minimum $ SortedList.SortedList []
*** Exception: Prelude.head: empty list
λ SortedList.minimum $ SortedList.SortedList [10,9..]
10

The problem is that we’re allowing ourselves to create a SortedList with any list
we want, sorted or not, and we’re not doing anything to validate that the list
is well formed. We can fix this with a smart constructor and an export list.
We’ll start by creating a smart constructor called makeSortedList:

makeSortedList :: [Int] -> Maybe SortedList
makeSortedList [] = Nothing
makeSortedList numbers = Just $ SortedList (sort numbers)

Our smart constructor takes a list in and tries to generate a sorted non-
empty list. If we get a non-empty list, we can do that by sorting whatever the
user gives us. If they give us an empty list, we can’t do anything with it, so
we have to return Nothing. This might seem like it’s a less convenient API, since
the user now has to deal with a Maybe value whenever they want to construct
a SortedList, but it allows us to handle all of the validation once when the list
is initially created. This simplifies the rest of our code, and it also pushes the
error handling up to the user at the time that they are creating the value in
the first place, and are most likely to be able to make a sensible decision
about what to do next when faced with an error.

Let’s take another look at our module, this time with our export list in place:

module HaskellBook.Examples.SortedList
( SortedList (getSorted)
, makeSortedList
, minimum
) where

import Data.List (sort)
import Prelude hiding (minimum)

data SortedList = SortedList { getSorted :: [Int] }

makeSortedList :: [Int] -> Maybe SortedList
makeSortedList [] = Nothing
makeSortedList numbers = Just $ SortedList (sort numbers)

minimum :: SortedList -> Int
minimum (SortedList numbers) = head numbers
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As you can see, with our smart constructor in place, the only way the user
will have to create a SortedList value is by going through our makeSortedList
function. This lets us ensure that we’re always working with valid data.

Phantom Types and Export Lists
Before we move on from export lists, let’s look at another example of how we
can use export lists to create a safer interface into our code. This time, we’ll
build a small model of an API that you might use to manage user profile
information for a social media application.

Let’s start with a straightforward implementation of our API. We’ll enable the
RecordWildCards extension now, since we’ll be using it later on in this section:

{-# LANGUAGE RecordWildCards #-}

module HaskellBook.Examples.UserInfo
( User
, lookupUser
, getUserName
, getUserScore
, getUserEmailAddress
) where

import Data.List (find)

data User = User
{ userName :: String
, userInternetPoints :: Int
, userPassword :: String
, userEmailAddress :: String
}

users :: [User]
users = [george, porter]

where
george = User
{ userName = "george"
, userInternetPoints = 1000
, userPassword = "secret"
, userEmailAddress = "gbird2015@example.com"
}

porter = User
{ userName = "porter"
, userInternetPoints = 500
, userPassword = "hunter2"
, userEmailAddress = "woofwoof@example.com"
}

lookupUser :: String -> Maybe User
lookupUser name =

find (\user -> userName user == name) users
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getUserName :: User -> String
getUserName = userName

getUserScore :: User -> Int
getUserScore = userInternetPoints

getUserEmailAddress :: User -> String
getUserEmailAddress = userEmailAddress

In this example, we’ve defined a very small user query API. Given a username,
we can look for the user in a hardcoded list. Once we have a user, we can get
some information about them, like their username, how many internet points
they’ve earned, and their email address. Since we’re not exporting the User
constructor, or the userPassword field selector, we’ve also made use of our export
list to ensure we can’t accidentally leak password information outside of the
module. Of course, in a real-world application we’d want to avoid storing pass-
words in plain text altogether, but we’ll stick with it to simplify our example.

One problem we have with the API for our application is it treats all user data
equally. Although usernames and internet point counts are public information
that should be available to anyone, a user’s email address is private and we
shouldn’t display it to anyone except for the user themselves, after they’ve logged
in. It turns out that we can use export lists to help us build an API that enforces
this. Let’s refactor our example so that we can see how this works.

First, we need a way to keep track of whether a user has been authenticated
or not. We’ll add two types to keep track of this information. We’re only going
to track whether a user has been authenticated or not at the type level, so
we don’t need to add a value constructor for our types:

data Authenticated
data Unauthenticated

Importantly, we’re not going to add either of these types to our export list.
We want to keep these two types entirely internal to our module.

Next, we’d like to keep track of whether a particular user is authenticated or
not. We’ll do that by adding a new type parameter to User. We’re not going to
have any values of this type, we’re just using it keep track of whether a par-
ticular value has been authenticated or not. We call these types that don’t
have any corresponding values phantom types:

data User isAuthenticated = User
{ userName :: String
, userInternetPoints :: Int
, userPassword :: String
, userEmailAddress :: String
}
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Now we can update the types of our functions. For example, when we first
look up a user by name, we want the user to be unauthenticated until they
log in:

lookupUser :: String -> Maybe (User Unauthenticated)
lookupUser name =

find (\user -> userName user == name) users

We should be able to get a user’s username or score regardless of whether
they are logged in or not, so we’ll make the type parameter polymorphic for
those functions:

getUserName :: User isAuthenticated -> String
getUserName = userName

getUserScore :: User isAuthenticated -> Int
getUserScore = userInternetPoints

Finally, getting a user’s email address should only work if they are authenti-
cated:

getUserEmailAddress :: User Authenticated -> String
getUserEmailAddress = userEmailAddress

You’ll notice that we didn’t have to change the implementation of any of our
functions, only their types. Our phantom type only exists as the type level,
so there’s nothing that we need to do at the value level to restrict when we
can call a function. Even though we haven’t changed anything at the value
level, we can load our code up into ghci with cabal repl and see that it’s working
as intended. We can look up a user and get their name and score:

λ import HaskellBook.Examples.UserInfo
λ (Just george) = lookupUser "george"
λ getUserName george
"george"
λ getUserScore george
1000

If we try to get an email address from our unauthenticated user, we’ll get a
type error:

λ getUserEmailAddress george

<interactive>:5:21: error:
• Couldn't match type ‘HaskellBook.Examples.UserInfo.Unauthenticated’

with ‘HaskellBook.Examples.UserInfo.Authenticated’
Expected type: User HaskellBook.Examples.UserInfo.Authenticated

Actual type: User HaskellBook.Examples.UserInfo.Unauthenticated
• In the first argument of ‘getUserEmailAddress’, namely ‘george’
In the expression: getUserEmailAddress george
In an equation for ‘it’: it = getUserEmailAddress george
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If we want to be able to get access to a user’s email, we will need a way to
authenticate them.

Let’s add an authenticate function that will return an authenticated user if given
a correct password:

authenticate :: User Unauthenticated -> String -> Maybe (User Authenticated)
authenticate User{..} password

| userPassword == password = Just User{..}
| otherwise = Nothing

You’ll notice in this example that we’re finally making use of the RecordWildCards
extension. First, we get all of the fields out of the unauthenticated User value
that’s been passed into our function. If the password matches the one that
we’re trying to authenticate with, we construct a new User value, this time one
that’s been authenticated. We need to construct a new User value here since
the newly constructed value has a different type from the one that was passed
in, which was unauthenticated.

Like with our earlier sorted list example, our authentication API puts the
burden of error handling on the user by returning a Maybe handle, but it
simplifies the rest of our code by letting us assume that no authenticated
users can exist unless they’ve successfully passed through the authentication
step.

Now that we’ve implemented authentication, let’s take a look at the final ver-
sion of our code:

{-# LANGUAGE RecordWildCards #-}
module HaskellBook.Examples.UserInfo

( User
, lookupUser
, authenticate
, getUserName
, getUserScore
, getUserEmailAddress
) where

import Data.List (find)

data Authenticated
data Unauthenticated

data User isAuthenticated = User
{ userName :: String
, userInternetPoints :: Int
, userPassword :: String
, userEmailAddress :: String
}

report erratum  •  discuss

Choosing What to Export • 199

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


users :: [User a]
users = [george, porter]

where
george = User
{ userName = "george"
, userInternetPoints = 1000
, userPassword = "secret"
, userEmailAddress = "gbird2015@example.com"
}

porter = User
{ userName = "porter"
, userInternetPoints = 500
, userPassword = "hunter2"
, userEmailAddress = "woofwoof@example.com"
}

lookupUser :: String -> Maybe (User Unauthenticated)
lookupUser name =

find (\user -> userName user == name) users

authenticate :: User Unauthenticated -> String -> Maybe (User Authenticated)
authenticate User{..} password

| userPassword == password = Just User{..}
| otherwise = Nothing

getUserName :: User isAuthenticated -> String
getUserName = userName

getUserScore :: User isAuthenticated -> Int
getUserScore = userInternetPoints

getUserEmailAddress :: User Authenticated -> String
getUserEmailAddress = userEmailAddress

By carefully choosing what we want to export from our module, and adding
some additional information at the type level that is only accessible from
within our module, we’ve been able to enforce an authentication policy at the
type level using phantom types. Now, any user who chooses to write code
against our API will get a type error if they write code that might accidentally
leak private information to an unauthenticated user. In this way, we’ve used
Haskell’s type system and modules to improve the security of our application
at compile time. This is an example of a larger pattern that you’ll see used in
some Haskell applications where “resources” of various sorts are locked away
behind smart constructors and unexported types. It can sometimes be chal-
lenging to figure out how to approach designing APIs this way, and not every
problem lends itself to this type of solution, but when you have the opportu-
nity, it can be a highly effective way of building APIs that are safe by default.
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Re-Exporting Code from Other Modules
So far we’ve looked at examples of how to export code defined in a module
from that module. We’re not limited to only exporting things where they are
defined though. A module can export anything from a module that’s in scope,
including code we’ve imported from other modules. As an example, let’s build
a demo of some of the things we’ve built while working on this section.

We’ll start by making it easier to import all of the examples that we’ve built.
A common pattern that you’ll see in Haskell codebases is that there will be
several small independent modules that exist at some point in the module
hierarchy, along with a parent module that re-exports all, or the most relevant
parts, of those modules. We can see this in action by creating our own Examples
module that will re-export some of our code from the various modules we’ve
already defined.

Create a new module named HaskellBook.Examples at src/HaskellBook/Examples.hs:

module HaskellBook.Examples where

We won’t define any new functions in this module to keep the example small,
although in real-world codebases you’ll sometimes see these parent modules
include helper functions that are either useful across all of the modules that
they re-export, or help ease interoperability between the modules. We’ll just
focus on re-exporting code from our example modules. Let’s start with UserInfo.

Our UserInfo module is fairly large, and has quite a bit of code and it would be
nice to make all of it available for our demo. We can do that by re-exporting
the entire module. In order to re-export a module, we can list it, along with
the module keyword in our export list. We can only export code that’s in scope
in our module, so we’ll also need to import the module:

module HaskellBook.Examples
( module HaskellBook.Examples.UserInfo
)

where

import HaskellBook.Examples.UserInfo

Next, let’s look back at our original module, HaskellBook.Examples.Introduction.Creat-
ingModules. It’s a very long module name to type out repeatedly, so let’s import
it with a local alias. While we’re at it, the testMessage we’re exporting from that
module isn’t very interesting for demo purposes, so let’s hide it from our
import:
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module HaskellBook.Examples
( module HaskellBook.Examples.UserInfo
, module CreatingModules
)

where

import HaskellBook.Examples.UserInfo
import HaskellBook.Examples.Introduction.CreatingModules

as CreatingModules hiding (testMessage)

In this example, you can see that when we re-export a module that we’ve
imported using a local alias, we also use the local alias to refer to it when we
re-export it. You’ll also notice that we’ve broken up the import statement onto
two lines. You can break up import statements into as many lines as you like,
so long as you indent all of the additional lines with at least one space.

Finally, let’s add an import for SortedList. As you may recall from when we
originally wrote SortedList, it exports its own version of the minimum function
that conflicts with the version defined in Prelude. To help avoid any potential
name conflicts, let’s import SortedList both qualified and with a local alias:

import qualified HaskellBook.Examples.SortedList as SortedList

Unfortunately, since we’ve used a qualified import we can’t directly export the
entire module. When you use a qualified import of a module, you’ll need to
explicitly list everything from that module you want to export in your export list:

module HaskellBook.Examples
( module HaskellBook.Examples.UserInfo
, module CreatingModules
, SortedList.SortedList(..)
, SortedList.makeSortedList
, SortedList.minimum
) where

import HaskellBook.Examples.UserInfo
import HaskellBook.Examples.Introduction.CreatingModules

as CreatingModules hiding (testMessage)
import qualified HaskellBook.Examples.SortedList as SortedList

Now that we’ve create a module that exports everything we might want to
use, we can build a demo. Let’s create a new module named ModuleDemo:

module ModuleDemo where
import qualified HaskellBook.Examples as Examples

georgesEmailAddress :: Maybe String
georgesEmailAddress =

case Examples.lookupUser "george" of
Nothing ->

Nothing
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Just unathenticatedGeorge ->
case Examples.authenticate unathenticatedGeorge "secret" of

Nothing -> Nothing
Just george ->

Just $ Examples.getUserEmailAddress george

friendlyEmail :: String -> String
friendlyEmail emailAddress =

Examples.formatMessage Examples.GreetingMessage
{ Examples.greetingSalutation = Examples.Salutation "Hello"
, Examples.greetingTo = Examples.Name emailAddress
, Examples.greetingFrom = [Examples.Name "mailer daemon"]
}

demo :: String
demo =

maybe "unknown user" friendlyEmail georgesEmailAddress

As you can see from our demo example, when we are importing a module we
do not need to be concerned with whether something that’s exported by
the module was defined in that module, or was re-exported from a different
module. This makes re-exports a useful tool for refactoring, since we can
change where things are defined while maintaining a compatible API at the
module level.

Documenting Modules
Now that you’ve learned how to create modules that other developers can use,
we should look at how to make modules that other developers want to use,
by ensuring that our code is well documented. Haddock6 is the most popular
way to document Haskell programs. Haddock generates HTML-formatted
documentation from your source code and specially formatted comments. All
of the documentation on Hackage7 is generated using Haddock. In this section,
you’ll get a quick introduction to using Haddock to document your modules.
We won’t cover all of the functionality of Haddock here, so be sure to read
the official documentation to learn more about how you can document
your code.

Let’s start by running cabal haddock, generating some documentation on our
project in its current state. When you run this command, you’ll see quite a
lot of output as haddock tells us about all of the things that are undocumented.
In the end, you should see cabal print out a message telling you that it’s gen-
erated the documentation at some long path. The specific path will depend

6. https://haskell-haddock.readthedocs.io/en/latest/
7. http://hackage.haskell.org
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on your operating system, user name, and the version of ghc you are using,
but it might look something like this example:

Documentation created:
/home/user/module-examples/dist-newstyle/build/x86_64-linux/

ghc-9.2.2/module-examples-0.1.0.0/doc/html/module-examples/index.html

If you open this path in a web browser, you’ll see a page with a list of all of
the modules you’ve added to the project. You can click some of the links and
see that Haddock has generated some documentation with the information
available. By default, Haddock will generate a file per module, and each file
will have an entry for everything that’s exported by the module. Unfortunately,
without any comments, the generated documentation isn’t all that useful.
Let’s start adding some doc comments to HaskellBook.Examples.Introduction.Creating-
Modules so that we can get more useful documentation.

We’ll start by adding some module-level documentation at the top of the file:

-- |
-- This module serves as an example of how you can create a
-- module. This comment will be placed at the top of the generated
-- documentation.

{-# LANGUAGE RecordWildCards #-}
module HaskellBook.Examples.Introduction.CreatingModules
( Name (..)
, Salutation (..)
, GreetingMessage (..)
, defaultMessage
, formatMessage
, testMessage
) where

You’ll notice in this example that our module-level documentation looks like
a typical Haskell comment, except that we’ve added a line with a pipe character
(|) at the start of our comment. In general, Haddock comments are normal
Haskell comments that start with a pipe character. You can use either single-
line comments, like in the example, or multiline comments. Let’s rewrite our
documentation with a multiline Haddock comment so you can see how that
looks as well:

{- |
This module serves as an example of how you can create a module. This
comment will be placed at the top of the generated documentation.
-}

There’s no benefit to choosing one style of comment over another, and you
can pick whichever you prefer.
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We can use the same style of comment to add documentation to functions
and variables as well. Let’s start by adding some documentation to testMessage:

{-|
A test message that you can use to see how messages are formatted.
-}
testMessage :: String
testMessage =

formatMessage $ defaultMessage { greetingFrom = [Name "test example"] }

This comment is okay. It tells the user what to expect, but it would be a lot
more useful if they could see what the actual test message is. Let’s add some
extra formatting to show the user what they’d expect to see if they typed
testMessage into ghci:

{-|
A test message that you can use to see how messages are formatted:

>>> testMessage
"Hello Friend, from: test example"
-}

The three arrows (>>>) tell Haddock to render the next line as though it were
typed into a REPL, and to treat the next line as output from the REPL. This
lets you show users how to use your code with examples they can try them-
selves.

You’re not limited to code that might be run in a REPL. You can also include
more general code snippets in your documentation using the at-symbol (@)
to mark the beginning and end of a code block. We can use this to add some
documentation for defaultMessage that makes it more clear what the defaults
are. Let’s try this:

{- |
A default greeting message that isn't attributed to anyone:

@
GreetingMessage

{ greetingSalutation = Salutation "Hello"
, greetingTo = Name "Friend"
, greetingFrom = []
}

@
-}
defaultMessage :: GreetingMessage

Unfortunately, if you look at the generated documentation after adding this
comment, you’ll notice that it isn’t quite what we’d hoped. The code block
that’s generated looks almost right, but the strings "Hello" and "Friend" have lost
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their quotes and instead become broken links. This is happening because
Haddock treats quoted strings as references that it should follow. Specifically,
surrounding something with double quotes (") tells Haddock to treat it as a
reference to a module. Surrounding something with single quotes (') makes
it a reference to a function or type. We can insert literal quotes by escaping
them with a backslash (\). Let’s take advantage of this ability to link to things
by making the type constructor and field selectors in our example link to their
definitions in the documentation:

{- |
A default greeting message that isn't attributed to anyone:

@
'GreetingMessage'

{ 'greetingSalutation' = 'Salutation' \"Hello\"
, 'greetingTo' = 'Name' \"Friend\"
, 'greetingFrom' = []
}

@
-}
defaultMessage :: GreetingMessage

Finally, since our documentation is now pointing users to GreetingMessage, let’s
document it as well. We’ll add some documentation for the type, plus docu-
mentation for each of the individual fields in the record:

{- |
A GreetingMessage contains all of the information needed to generate a
greeting using 'formatMessage'. You can get a default greeting without
attribution from 'defaultMessage'. This makes it convenient to use
record update syntax to construct a new greeting:

>>> formatMessage defaultMessage { greetingFrom = [ Name "A Haskeller"] }
"Hello Friend, from: A Haskeller"
-}
data GreetingMessage = GreetingMessage

{ greetingSalutation :: Salutation
-- ^ A 'Salutation', like \"Hello\"

, greetingTo :: Name
-- ^ 'Name' of the person that should be greeted

, greetingFrom :: [Name]
-- ^ 'Name's of the people who are sending the greeting

}

In this example, you’ll notice that we’ve introduced a new type of comment.
We can use a comment starting with a caret symbol (^) to add comments for
specific fields in a record. These comments can appear at the end of the line
with the field they are documenting, or immediately after it. If you prefer, you
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can also use the pipe comment notation, putting a comment before each
record field:

data GreetingMessage = GreetingMessage
{ -- | A 'Salutation', like \"Hello\"

greetingSalutation :: Salutation
, -- | 'Name' of the person that should be greeted

greetingTo :: Name
, -- | 'Name's of the people who are sending the greeting

greetingFrom :: [Name]
}

Knowing these basics, you can start to add documentation to all of the mod-
ules you write, making it easier for anyone (including you, in the future) who
wants to use your modules to do so without needing to review all of the source
code. You can read the official Haddock documentation8 for a more complete
overview of the supported syntax for writing documentation.

Summary
In this chapter, you learned how to create larger Haskell projects that depend
on external libraries, and are made up of more than one module. Being able
to re-use code, including both external libraries and code you’ve written, is
key to being able to effectively build larger and more sophisticated applications.

Throughout the rest of this book, we will not spend much on the specific
structure of the applications you are building, or the setup of particular
projects. You can refer back to this chapter each time you need to start a new
project until you’re more comfortable setting up a project from scratch. At
first, you’re likely to find that your projects have a relatively flat organization,
and you’re unlikely to make extensive use of features like export lists, smart
constructors, or re-exporting things you’ve imported from other modules.
Don’t go looking for ways to complicate the structure of your projects
unnecessarily. Instead, as you’re using external libraries, take note of common
patterns and think about what problems that they might solve, and consider
adopting more sophisticated organizational approaches slowly so that you
can get a feeling for the pros and cons of different approaches to organizing
your code.

Exercises
The ways that you choose to document and organize your code are more
subjective than most of the topics we’ll cover in this book. As you start to

8. https://haskell-haddock.readthedocs.io/en/latest/index.html
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work on these exercises you’ll realize there are several reasonable ways to
approach them. For each of the exercises, try out a few different approaches
to get a feel for the pros and cons of each, and to start developing your own
personal style.

Refactoring UserInfo
Refactor the HaskellBook.Examples.UserInfo module into smaller modules. Try to
look at different ways that you can separate out the concerns of authentica-
tion, looking up a particular user, and getting information about a user.

Old New Projects
Use cabal and create projects for all of the examples that you’ve already
worked on as you’ve been working through this book. Consider how you might
organize the modules to maximize re-use in cases where we worked through
several variations of a single example.

Document Your Modules
Review the projects that you created in this chapter, as well as any cabal
projects you created while working through previous examples, and document
them. Make sure to check out the official Haddock documentation9 to find
out about more ways that you can effectively format your documentation.

9. https://haskell-haddock.readthedocs.io/en/latest/index.html
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CHAPTER 6

Type Classes
Earlier in this book, you learned about a type of polymorphism called para-
metric polymorphism that allows you to write a single implementation of a
function that can work with many different types using type variables. This
style of polymorphism is when you are concerned with data structures and
the shape of the data you are working with, but don’t need to directly inspect
values. Unfortunately, parametric polymorphism falls short when we need to
deal with the polymorphic values in a non-generic way. As soon as we need
to carry out specific operations on a polymorphic value, we run into the
problem that our operations depend on what type the value happens to be.

Object-oriented programming languages let you solve this problem using
inheritance or interfaces to write different implementations of functions
depending on their type. The idea that we can provide a different implemen-
tation of a function depending on its type is called ad hoc polymorphism.
Haskell provides its own approach to ad hoc polymorphism with type classes.

In this chapter, you will learn more about the limitations of parametric poly-
morphism and how to use type classes to write more expressive interfaces
and how to build polymorphic functions that behave differently based on the
type of their inputs. You will also learn to use Haskell’s powerful deriving
mechanism to get the benefit of ad hoc polymorphism without needing to
write boilerplate code.

Using Ad Hoc Polymorphism with Type classes
Before we dive into using type classes, let’s take a look at a small motivating
example. Imagine that we wanted to write a function that could remove
duplicate elements from a list. If we’re only making use of parametric poly-
morphism we’re a little bit limited in how we can write a function like this.
To remove duplicates from the list we need to compare elements to find out
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if they match. The problem here is that our elements could be anything. We
might even be dealing with functions or some other value that doesn’t have
a regular notion of equality.

Your first thought might be to just use the (==) function that we’ve been
making use of throughout this book, but as you’ll see shortly, the (==) function
uses type classes, which defeats the purpose of our motivating example.

It turns out that the only way we could write a function like this using only
parametric polymorphism is to ask the user to pass in a function to let us
test equality. When we do this, we no longer have to be concerned about the
problem of how to compare values, or even whether they are comparable. If
they can tell us how to compare values we can remove duplicates, and if they
can’t tell us how to compare values then they can’t call our function. In the
end, if you write this function out, you might end up with something very
similar to the example:

unique :: (a -> a -> Bool) -> [a] -> [a]
unique _ [] = []
unique f (elem:elems) =

let
f' a b = not $ f a b
elems' = filter (f' elem) elems

in elem : unique f elems'

We can allow ourselves to cheat for a moment and use (==) so that we can
see this in action. If you prefer, you can define some types and write your
own equality test for them to prove that this works without relying on a
function that makes use of type classes:

λ unique (==) [1,2,3,2,1]
[1,2,3]
λ unique (==) ["hello","george","george","hello"]
["hello","george"]

This approach works well for small things, and you’ll see it used in practice
quite often when the only thing we need is a single function, especially when
we only need that single function in one place. Unfortunately, the approach
doesn’t scale well as our code gets more complicated. For one thing, although
a single additional function isn’t too hard to add to our function, it can get a
lot more challenging if you have several functions. Imagine that you wanted
to calculate the sum of the unique numbers in a list. To do that you’ll need to
accept another function to allow you to add the elements, as well as a default
value to use in case the list is empty:
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sumOfUniques ::
(a -> a -> a)
-> (a -> a -> Bool)
-> a
-> [a]
-> a

sumOfUniques add compare zero =
foldr add zero . unique compare

As you can see, even adding one more function here starts to make the size
of the functions working with these values quite long. Furthermore, the
functions have become highly coupled, because sumOfUniques needs to accept
a comparison function that it doesn’t use directly, but just hands off to unique.
Calling this function can also start to get a bit awkward, as we have to pass
in multiple higher-order functions, leading to statements like sumofUniques (+)
(==) 0 [1,2,3,2,1].

So what is to be done? One useful approach, if you have a set of related
functions that you might want to use, is to store them in a record, allowing
you to pass around a single parameter. As an example, let’s create a record
to hold some functions that work for natural numbers:

data Natural a = Natural
{ equal :: a -> a -> Bool
, add :: a -> a -> a
, multiply :: a -> a -> a
, additiveIdentity :: a
, multiplicativeIdentity :: a
, displayAsString :: a -> String
}

With the record defined, we can also create values that define the Natural
operations for various types. As an example, let’s create one for Int values:

intNatural :: Natural Int
intNatural = Natural

{ equal = (==)
, add = (+)
, multiply = (*)
, additiveIdentity = 0
, multiplicativeIdentity = 1
, displayAsString = show
}

The definitions for the operations on Int values is pretty straightforward. Let’s
look at a more interesting example by returning to the Peano numbers
example on page 136 that we built earlier in this book:
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data Peano = Z | S Peano

toPeano :: Int -> Peano
toPeano 0 = Z
toPeano n = S $ toPeano (n - 1)

fromPeano :: Peano -> Int
fromPeano Z = 0
fromPeano (S n) = 1 + fromPeano n

peanoNatural :: Natural Peano
peanoNatural = Natural

{ equal = comparePeano
, add = addPeano
, multiply = multiplyPeano
, additiveIdentity = Z
, multiplicativeIdentity = S Z
, displayAsString = show . fromPeano
}
where

comparePeano Z Z = True
comparePeano (S a) (S b) = comparePeano a b
comparePeano _ _ = False
addPeano Z b = b
addPeano (S a) b = addPeano a (S b)
multiplyPeano Z _ = Z
multiplyPeano (S a) b =
addPeano b (multiplyPeano a b)

Now that you have defined a record that contains all of the functions necessary
to do some operations on natural numbers, and have defined values for both
Int and Peano numbers, let’s rewrite our two functions to use this new record:

unique :: Natural a -> [a] -> [a]
unique _ [] = []
unique n (elem:elems) =

let
compare a b = not $ (equal n) a b
elems' = filter (compare elem) elems

in elem : unique n elems'

sumOfUniques :: Natural a -> [a] -> a
sumOfUniques n =

foldr (add n) (additiveIdentity n) . unique n

The most immediate difference in our updated code is that the type signatures
are much shorter, and more importantly, have become somewhat more
readable thanks to the use of Natural a helping to highlight what kind of func-
tions we’re wanting to use.

The idea that you often want to group a set of related functions together with
a name, and then accept them as part of a polymorphic function, is very
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common in Haskell, and you’ll frequently run across code in the wild that’s
implemented just as you’ve done here, with a record full of function values. For
one special case of this pattern, however, Haskell provides us with a powerful
tool to solve the problem, called type classes (or, frequently, typeclasses).

Type classes provide support for ad hoc polymorphism, and are often used
in a similar way to interfaces in object-oriented languages. In this section,
you’ll learn about the basics of type classes and how to use them. Throughout
the first half of this book, you’ll be introduced to several common type classes
that are defined in base and by the core libraries. Later in the book, we’ll return
to the subject of type classes and you’ll learn about some related features
that make them much more powerful.

Creating a Type Class for Natural
At their most basic, type classes work a lot like the Natural type that you built
in the previous section. With type classes you can give a name to a group of
related functions, and this will allow you to provide an implementation for
those functions for different types. As an example, you can rewrite your Natural
record as a type class:

module NaturalClass where

class Natural n where
equal :: n -> n -> Bool
add :: n -> n -> n
multiply :: n -> n -> n
additiveIdentity :: n
multiplicativeIdentity :: n
displayAsString :: n -> String

You can see in this example how similar the type class approach is to defining
the Natural as a record. In both cases, you have some type variable, in this
case n, that you use as you’re writing out the type annotations for the functions
that belong to the type class.

Creating an instance of a type class is similar to creating a value of the Natural
record. As an example, let’s create an instance of the Natural type class for the
Int type:

instance Natural Int where
equal = (==)
add = (+)
multiply = (*)
additiveIdentity = 0
multiplicativeIdentity = 1
displayAsString = show
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You can see that the way we’ve defined the instance of this type class looks
remarkably similar to the way that you defined intNatural earlier in this chapter.
Following this same pattern, try to create an instance of Natural for Peano
yourself.

Composing Type Classes
When creating a type class, it’s common that you’d like to include the con-
straints of some other type class. Our Natural type class, for instance, has re-
created the functionality that’s already available in the Eq type class, which
is exported by Prelude.

You’ve already used Eq extensively; it’s where the (==) function comes from.
In fact, Eq is a very small class, and (==) is the only function we need to define
to create an instance:

class Eq a where
(==) :: a -> a -> Bool

Eq Changes

At the time of this writing, Eq also defines a function named (/=)
that defines inequality. An upcoming version of GHC will remove
(/=) from the Eq type class and replace it with a regular function.
Since (/=) is currently optional if you have provided a definition of
(==), we will ignore it.

Since there are a lot of existing functions that are written for us and work if
we have an instance of Eq, we would be better served by using Eq to define
equality, and then adding the extra functionality we need to Natural. We can
do this by adding a constraint on Eq when we define our type class:

class Eq n => Natural n where
add :: n -> n -> n
multiply :: n -> n -> n
additiveIdentity :: n
multiplicativeIdentity :: n
displayAsString :: n -> String

With this constraint, we’re requiring that anything that has an instance of
Natural should also have an instance of Eq. Typically, you’d include a restriction
like this if you want to use some functions from another type class in the
default implementation of functions that are part of the type class that you’re
defining, but it’s also possible to include the restriction because the type
classes form a natural hierarchy.
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You’re not limited to a single constraint. It seems as though we’ve also
duplicated the functionality of another common class exported by Prelude: the
Show type class represents values that can be displayed as text. The version
of Show that’s exported by Prelude defines several possible functions that you
can implement, but we can get by with a single function, show. You’ll learn
more about how to create type classes with default implementations in the
next section, but for now we can imagine that the Show type class is defined
like this:

class Show a where
show :: a -> String

The Show Type Class

The Show type class is frequently used as a way to create generic
human-readable text from Haskell values. It’s also how ghci displays
values. When the compiler creates an instance of Show for you
automatically, it will generate a string that is valid Haskell code
and can be parsed by the read family of functions from the Read
type class. It’s a good practice, especially in larger code bases, to
stick with simple or automatically generated definitions for Show.
You should define your own custom classes for more richly format-
ted ways of displaying values. Still, we will use Show instances as
a shortcut occasionally in this book to make the examples easier
to follow, and you’ll see other projects where people take this
particular shortcut.

Let’s refactor Natural one more time. This time we’ll also add a Show constraint
to replace our old displayAsString function:

class (Show n, Eq n) => Natural n where
add :: n -> n -> n
multiply :: n -> n -> n
additiveIdentity :: n
multiplicativeIdentity :: n

Now that we’ve removed some extraneous functions and replaced them with
constraints, we need to refactor our instance. Thankfully, Int already has
instances of both Eq and Show defined, so we don’t need to do anything but
remove the definitions of equal and displayAsString:

instance Natural Int where
add = (+)
multiply = (*)
additiveIdentity = 0
multiplicativeIdentity = 1
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While we’re at it, let’s also add an instance for our Peano type:

instance Natural Peano where
add a Z = a
add a (S b) = add (S a) b
multiply Z _ = Z
multiply (S a) b = add b (multiply a b)
additiveIdentity = Z
multiplicativeIdentity = S Z

If we try to load this version of our program, we’ll get an error:

NaturalClass.hs:34:10: error:
• No instance for (Show Peano)

arising from the superclasses of an instance declaration
• In the instance declaration for ‘Natural Peano’

|
34 | instance Natural Peano where

| ^^^^^^^^^^^^^

NaturalClass.hs:34:10: error:
• No instance for (Eq Peano)

arising from the superclasses of an instance declaration
• In the instance declaration for ‘Natural Peano’

|
34 | instance Natural Peano where

| ^^^^^^^^^^^^^
Failed, no modules loaded.

The errors here are pointing us in the right direction. Our type class has
constraints on Eq and Show, so we can’t create an instance of Natural without
also defining Eq and Show instances. The compiler is telling us we need to
provide instances for those two classes if we want to create a Natural instances
for Peano. Let’s update our example one last time to add instances for Eq and
Show and verify that everything works as expected:

module NaturalClass where

data Peano = Z | S Peano

toPeano :: Int -> Peano
toPeano 0 = Z
toPeano n = S $ toPeano (n - 1)

fromPeano :: Peano -> Int
fromPeano Z = 0
fromPeano (S n) = 1 + fromPeano n

class (Show n, Eq n) => Natural n where
add :: n -> n -> n
multiply :: n -> n -> n
additiveIdentity :: n
multiplicativeIdentity :: n
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instance Natural Int where
add = (+)
multiply = (*)
additiveIdentity = 0
multiplicativeIdentity = 1

instance Eq Peano where
(==) Z Z = True
(==) (S a) (S b) = a == b
(==) _ _ = False

instance Show Peano where
show Z = "Z"
show (S a) = "(S " <> show a <> ")"

instance Natural Peano where
add a Z = a
add a (S b) = add (S a) b
multiply Z _ = Z
multiply (S a) b = add b (multiply a b)
additiveIdentity = Z
multiplicativeIdentity = S Z

Now, if we reload our code in ghci, we can see that everything is working as
we’d expect:

λ :load NaturalClass.hs
λ add (1 :: Int) (2 :: Int)
3
λ multiply multiplicativeIdentity (100 :: Int)
100
λ add additiveIdentity (S (S (S (S Z))))
(S (S (S (S Z))))

Creating Default Implementations and Minimal Definitions
Type classes can do more than collect a set of functions for you to implement
for your own type. One useful feature when writing a type class is that you
can provide a default implementation of a function. As an example, let’s
consider the Ord type class for things that have an ordering. This type class
is defined in Data.Ord and is normally exported by Prelude. For our examples,
we’ll hide the default implementations so we can see how to build it ourselves.
There are quite a few functions provided by Ord:

module OrdExample where
import Prelude hiding (Ord(..), Ordering(..))

data Ordering = LT | EQ | GT
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instance Show Ordering where
show LT = "LT"
show EQ = "EQ"
show GT = "GT"

class Eq a => Ord a where
compare :: a -> a -> Ordering
(<) :: a -> a -> Bool
(<=) :: a -> a -> Bool
(>) :: a -> a -> Bool
(>=) :: a -> a -> Bool
max :: a -> a -> a
min :: a -> a -> a

You might notice that we’ve created a new type, Ordering, and added an instance
of the Show type class here. Like Ord, Ordering is normally defined in Data.Ord and
exported by Prelude. We’ve redefined it in our example to help make the
examples easier to follow.

There are quite a few useful functions here that will let us do all sorts of
useful comparisons on ordered values. The downside to all of this functional-
ity is that we’re asking our users to implement quite a few functions, and in
many cases we might be asking them to implement those functions unneces-
sarily. For example, let’s define our own instance of Ord. We’ll use Word8 values
from Data.Word since our example will be simpler when we we’re dealing with
unsigned values:

module OrdExample where
import Prelude hiding (Ord(..), Ordering(..))
import Data.Word (Word8)

data Ordering = LT | EQ | GT

instance Show Ordering where
show LT = "LT"
show EQ = "EQ"
show GT = "GT"

class Eq a => Ord a where
compare :: a -> a -> Ordering
(<) :: a -> a -> Bool
(<=) :: a -> a -> Bool
(>) :: a -> a -> Bool
(>=) :: a -> a -> Bool
max :: a -> a -> a
min :: a -> a -> a

instance Ord Word8 where
compare a b

| a == b = EQ
| a == 0 = LT
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| b == 0 = GT
| otherwise = compare (a - 1) (b - 1)

a < b =
case compare a b of

LT -> True
_ -> False

a <= b =
case compare a b of

GT -> False
_ -> True

a > b =
case compare a b of

GT -> True
_ -> False

a >= b =
case compare a b of

LT -> False
_ -> True

max a b =
case compare a b of

GT -> a
_ -> b

min a b =
case compare a b of

LT -> a
_ -> b

Not only is there a lot of typing involved here, but you’ll also notice that all
of the functions we’re providing implementations for are done in terms of the
compare function. We’ve done a lot of typing, and it seems like the work we’ve
done here is something that the compiler could have done for us.

Thankfully, we can make our type classes easier for users who need to create
instances by providing default implementations of the functions we define in
the type class. You’ve already seen how we can implement the other functions
in terms of compare for Word8; let’s take the same idea and use it to create a
default in our type class:

class Eq a => Ord a where
compare :: a -> a -> Ordering
(<) :: a -> a -> Bool
a < b =

case compare a b of
LT -> True
_ -> False
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(<=) :: a -> a -> Bool
a <= b =

case compare a b of
GT -> False
_ -> True

(>) :: a -> a -> Bool
a > b =

case compare a b of
GT -> True
_ -> False

(>=) :: a -> a -> Bool
a >= b =

case compare a b of
LT -> False
_ -> True

max :: a -> a -> a
max a b =

case compare a b of
GT -> a
_ -> b

min :: a -> a -> a
min a b =

case compare a b of
LT -> a
_ -> b

When we have defaults in place, we’re free to provide our own implementations
when we’re creating instances of a type class, but if we don’t provide one the
default will be used. Let’s look at an example of this in practice. We can start
by changing the instance definition for Word8 to only provide the necessary
compare function:

module OrdExample where
import Prelude hiding (Ord(..), Ordering(..))
import Data.Word (Word8)

data Ordering = LT | EQ | GT

instance Show Ordering where
show LT = "LT"
show EQ = "EQ"
show GT = "GT"

class Eq a => Ord a where
compare :: a -> a -> Ordering
(<) :: a -> a -> Bool
a < b =

case compare a b of
LT -> True
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_ -> False

(<=) :: a -> a -> Bool
a <= b =

case compare a b of
GT -> False
_ -> True

(>) :: a -> a -> Bool
a > b =

case compare a b of
GT -> True
_ -> False

(>=) :: a -> a -> Bool
a >= b =

case compare a b of
LT -> False
_ -> True

max :: a -> a -> a
max a b =

case compare a b of
GT -> a
_ -> b

min :: a -> a -> a
min a b =

case compare a b of
LT -> a
_ -> b

instance Ord Word8 where
compare a b

| a == b = EQ
| a == 0 = LT
| b == 0 = GT
| otherwise = compare (a - 1) (b - 1)

We can test this ourselves in ghci. We’ll need to add some extra type annotations
for now to test this, but you’ll learn how to make this a bit more ergonomic later
in this chapter when you learn how to use visible type applications.

λ compare (1 :: Word8) (0 :: Word8)
GT
λ max (3 :: Word8) (5 :: Word8)
5
λ min (3 :: Word8) (5 :: Word8)
3

If we provide our own implementation of a function with a default implemen-
tation, ours will take precedence. For example, we could write our own
incorrect versions of min and max that always return the first argument:
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instance Ord Word8 where
compare a b

| a == b = EQ
| a == 0 = LT
| b == 0 = GT
| otherwise = compare (a - 1) (b - 1)

min a b = a
max a b = a

If we run this in ghci you can see that the behavior changes, and we always
get back the first argument we pass to these functions:

λ :reload
λ min (5 :: Word8) (3 :: Word8)
5
λ max (3 :: Word8) (5 :: Word8)
3

Something you might have noticed as we’ve been working through this section
is that we’ve provided default implementations of all of the functions in Ord
in terms of the compare function, but that’s not the only function we could
have picked. For example, instead of implementing (<=) in terms of compare,
we could have implemented compare in terms of (<=). When we have more than
one option for a function that a user can provide, we can provide default
implementations of them in terms of one another. For example, let’s add a
default implementation of compare in terms of (<=):

class Eq a => Ord a where
compare :: a -> a -> Ordering
compare a b

| a == b = EQ
| a <= b = LT
| otherwise = GT

(<) :: a -> a -> Bool
a < b =

case compare a b of
LT -> True
_ -> False

(<=) :: a -> a -> Bool
a <= b =

case compare a b of
GT -> False
_ -> True

(>) :: a -> a -> Bool
a > b =

case compare a b of
GT -> True
_ -> False
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(>=) :: a -> a -> Bool
a >= b =

case compare a b of
LT -> False
_ -> True

max :: a -> a -> a
max a b =

case compare a b of
GT -> a
_ -> b

min :: a -> a -> a
min a b =

case compare a b of
LT -> a
_ -> b

Now we can create an instance of Ord using either compare or (<=), or both. A
good starting point is to simply reload our existing code with our old definition
of our Word8 instance using compare to see that it continues to work:

λ compare (1 :: Word8) (5 :: Word8)
LT
λ compare (10 :: Word8) (5 :: Word8)
GT
λ (1 :: Word8) <= (5 :: Word8)
True
λ min 1 5 :: Word8
1
λ max 1 5 :: Word8
5

Next, let’s update our instance of Ord. Instead of compare we’ll provide a defini-
tion of (<=):

instance Ord Word8 where
a <= b

| a == b = True
| a == 0 = True
| b == 0 = False
| otherwise = (a - 1) <= (b - 1)

Once again, if we reload our code we’ll see that we’re getting the exact same
behavior, even though we’ve provided a different function:

λ :reload
λ compare (1 :: Word8) (5 :: Word8)
LT
λ compare (10 :: Word8) (5 :: Word8)
GT
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λ (1 :: Word8) <= (5 :: Word8)
True
λ min 1 5 :: Word8
1
λ max 1 5 :: Word8
5

Being able to provide a default implementation of all the functions in the type
class is convenient, but unfortunately, at the moment we’ve made the interface
a little easier to use than it actually should be. Since we’ve provided a default
implementation of all of the functions, what will happen if we try to create an
instance without defining anything? Let’s try it:

instance Ord Word8 where

Now let’s load our code up into ghci:

λ :reload
[1 of 1] Compiling OrdExample ( OrdExample.hs, interpreted )
Ok, one module loaded.

Everything looks good so far, but if we try to use any of the functions defined
by Ord, our program will hang forever. You can try it yourself; just press con-
trol-c to stop the process when you’re tired of waiting.

λ max 1 5 :: Word8

The reason that this hung forever was that we’ve created an infinite recursion.
Each time we call compare, we hit the default implementation that references
(<=). Each time we call (<=) we hit the default implementation that sends us
back to compare. This will continue forever. We need a way to tell the compiler,
and any other developers who will create instances of our type class, what
the minimal complete definition of a type class should be.

Haskell gives us a way to do this using the MINIMAL pragma. Like LANGUAGE
pragmas you’ve already seen, the MINIMAL pragma is surrounded by a block
comment, but unlike LANGUAGE it doesn’t go at the top of a file, instead it goes
at the end of your type class.

To use a MINIMAL pragma, you need to pass it a list of the type class functions
that should be implemented by the user. Comma-separated functions must
all be implemented, and one of any set of vertical pipe (|) separated functions
must be implemented. For our Ord type class we can add a pragma to say that
at a minimum, either compare or (<=) should be implemented:

class Eq a => Ord a where
compare :: a -> a -> Ordering
compare a b
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| a == b = EQ
| a <= b = LT
| otherwise = GT

(<) :: a -> a -> Bool
a < b =

case compare a b of
LT -> True
_ -> False

(<=) :: a -> a -> Bool
a <= b =

case compare a b of
GT -> False
_ -> True

(>) :: a -> a -> Bool
a > b =

case compare a b of
GT -> True
_ -> False

(>=) :: a -> a -> Bool
a >= b =

case compare a b of
LT -> False
_ -> True

max :: a -> a -> a
max a b =

case compare a b of
GT -> a
_ -> b

min :: a -> a -> a
min a b =

case compare a b of
LT -> a
_ -> b

{-# MINIMAL compare | (<=) #-}

If we reload our code in ghci we’ll get an error telling us that we haven’t provid-
ed the minimal complete definition of the type class:

λ :reload
OrdExample.hs:52:10: warning: [-Wmissing-methods]

• No explicit implementation for
either ‘compare’ or ‘<=’

• In the instance declaration for ‘Ord Word8’
|

52 | instance Ord Word8 where
| ^^^^^^^^^

Ok, one module loaded.
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Although the MINIMAL pragma is only needed when you have circular definitions,
it’s good practice to include them any time you have default implementations.
Not only will MINIMAL ensure that GHC generates a warning for missing func-
tions, but Haddock will also extract these pragmas and use them when gen-
erating type class documentation, making it easier for users who are browsing
the online documentation for your module.

Signatures for Default Instance Definitions
Providing default implementations of functions in your type class can make
them much nicer to use, but when we try to design our type classes to provide
as much as possible “out of the box” for our users, we’re often faced with a
problem. Frequently, we can provide sensible default implementations for a
function, but doing so would require that we depend on some other type class.

As an example, let’s imagine that we’re writing a logging library. One feature
we might want to support is giving users the ability to log some data that
might need to be redacted. For example, we might want to log that a user
provided a password, but we don’t want to include the value of that password
in our plain text log files.

Our first approach to writing this type class might not provide any default at
all, since we won’t know if something should be redacted:

module DefaultSignaturesDemo where

class Redacted a where
redacted :: a -> String

Next, let’s create a new UserName type that will hold a username. We’d like to
have a Show instance of this type so that we can work with it on the command
line as we’re testing, but for production purposes we might want to log user
names, so we’ll also create a Redacted instance:

module DefaultSignaturesDemo where

class Redacted a where
redacted :: a -> String

data UserName = UserName String

instance Show UserName where
show (UserName name) = name

instance Redacted UserName where
redacted (UserName name) = name

Reading through this example, you might notice that our instances of Show
and Redacted are identical. We can take what we’ve learned from this chapter
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so far to make our API easier to use. Let’s add a Show constraint onto our
class, and provide a default implementation of redacted that calls out to show:

class Show a => Redacted a where
redacted :: a -> String
redacted = show

data UserName = UserName String

instance Show UserName where
show (UserName userName) = userName

instance Redacted UserName

You’ll notice in this example that we’re still creating an instance of Redacted,
but now we aren’t providing any functions to it. We can drop the where keyword
in situations like this where we don’t need to define any functions for our
instance. You’ll learn about some other ways to handle this scenario later on in
this chapter, but this is still an improvement. We now only need to define a
single function to format our value, and we get a ‘Redacted‘ instance for free.

So far, so good; we can load this up into ghci and everything is working as
we’d hope:

λ UserName "George"
George
λ redacted $ UserName "George"
"George"

Unfortunately, this breaks down as soon as we start to think about data
where we can’t, or don’t, want to define a Show instance. For example, we may
want to log some redacted information about a user’s password so we can
know if they attempted to log in or not, but we don’t want to provide a Show
instance because we don’t want to risk mistakenly printing a user’s password
in plain text.

What should we do in this case? It would seem that if we need to remove the
Show constraint from our type class, then our only other choice is to force our
users to write the same code for show and redacted whenever they could have
otherwise used the default implementation.

DataKinds

The DefaultSignatures extension has been available since GHC 7.2.1.
It’s not enabled by default in either GHC2021 or Haskell2010, so you’ll
need to enable it manually. This is generally a safe extension that
shouldn’t interfere with any existing code.
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One way that we can solve this problem is to make use of the DefaultSignatures
language extension. This extension allows us to add a type signature to the
default implementation of a function in a type class. When we add a signature
to the default implementation, we can also add type class constraints. Let’s
take a look at this in action and then we’ll see what it means for us as we’re
creating type classes. We’ll start by adding the language extension and
updating our type class to provide a default signature for redacted:

{-# LANGUAGE DefaultSignatures #-}
module DefaultSignaturesDemo where

class Redacted a where
redacted :: a -> String
default redacted :: Show a => a -> String
redacted = show

You’ll notice that we’ve dropped them Show constraint on the type class. We’ll
no longer require that every Redacted have an instance of Show. Instead, we’re
using the default keyword to add a type signature to our default implementation
of redacted that is more specific than the general type that’s part of the type
class. This means that any instance that wants to provide a definition of
redacted only needs to satisfy the general type redacted :: a -> String. If an instance
wants to use the default implementation though, then it needs to also provide
a Show instance.

Let’s look at this in action by adding a new Password type. We won’t add a Show
instance for Password, but we can try to define an instance of Redacted that uses
the default definition of redacted just to verify that we get an error:

λ :reload
DefaultSignaturesDemo.hs:17:10: error:

• No instance for (Show Password)
arising from a use of ‘DefaultSignaturesDemo.$dmredacted’

• In the expression: DefaultSignaturesDemo.$dmredacted @(Password)
In an equation for ‘redacted’:

redacted = DefaultSignaturesDemo.$dmredacted @(Password)
In the instance declaration for ‘Redacted Password’

|
17 | instance Redacted Password

| ^^^^^^^^^^^^^^^^^
Failed, no modules loaded.

As we would expect, we’re getting an error because we haven’t defined an
instance of Show for Password. If we provide our own implementation that doesn’t
rely on Show, then everything will work as expected. Let’s create our own
implementation of redacted for our instance:

Chapter 6. Type Classes • 228

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


{-# LANGUAGE DefaultSignatures #-}
module DefaultSignaturesDemo where

class Redacted a where
redacted :: a -> String
default redacted :: Show a => a -> String
redacted = show

data UserName = UserName String

instance Show UserName where
show (UserName userName) = userName

instance Redacted UserName

data Password = Password String

instance Redacted Password where
redacted _ = "<redacted>"

Thanks to our default signature, we can fall back to using a Show constraint
when one is available, and otherwise require that the user provide their own
implementation of a function. Before we move on, let’s load this up in ghci just
to verify that it’s working as expected:

λ UserName "george"
george
λ redacted $ UserName "george"
"george"
λ Password "hunter2"

<interactive>:110:1: error:
• No instance for (Show Password) arising from a use of ‘print’
• In a stmt of an interactive GHCi command: print it

λ redacted $ Password "hunter2"
"<redacted>"

Just as we’d hoped, UserName provides both a Show and Redacted instance that
work the same, since we fall back to show when we haven’t provided a new
definition for redacted. When we’re working with Password values we don’t have
a Show instance, and so we can’t print the values out in plain text, but we can
use our own definition of redacted to get a safe masked value.

Specifying Type Class Instances with Type Applications
A common problem when you’re using type class constraints is ambiguity
about which specific type class instance should be used. Consider, for
example, a program you want to have print out the additive and multiplicative
identities of some Natural numbers. You might write something like this:
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showIdentities =
let mul = multiplicativeIdentity

add = additiveIdentity
msg = "The additive identity is: "

<> show add
<> " and the multiplicative identity is: "
<> show mul

in print msg

Unfortunately, this fails to compile! The problem is that multiplicativeIdentity and
additiveIdentity both return a type that depends on the type class instance that
we’re using, but the compiler doesn’t have a way to pick any particular
instance, and so it has to give up and raise an error. One way we could get
around this for our example function is to add a type annotation:

showIdentities =
let mul = multiplicativeIdentity :: Peano

add = additiveIdentity :: Peano
msg = "The additive identity is: "

<> show add
<> " and the multiplicative identity is: "
<> show mul

in print msg

This gets us past our error, but it’s not an ideal solution. The first problem
is that we’re assuming that the return type of the function is sufficient to tell
the compiler which type class to use. It works out for our small example here,
but if the return type of the function had been polymorphic, we’d be back in
the same situation. The second problem is that type annotations can be a
little syntactically awkward in some places, especially in pointfree code. It
would be ideal in cases like this if we could directly tell the compiler which
type class to use, just like we did when we passed in a value of our original
Natural record type.

TypeApplications

The TypeApplications extension has been available since GHC 8.0.1.
This extension is enabled by default in GHC2021 but you’ll need to
enable it manually if you are using Haskell2010. This is a safe
extension, and shouldn’t introduce any problems with existing
code.

The TypeApplications language extension allows us to do exactly that. Type
applications gives you the ability to pass type names as arguments to poly-
morphic functions, to select the type class instance that’s used. To see it in
action, let’s start up a ghci session. TypeApplications is enabled with GHC2021, but
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if you’re using a version of GHC older than 9.0, you’ll need to enable the
extension manually:

λ :set -XTypeApplications

With the language extension enabled we can use @TypeName to pass a type
name into a polymorphic function. A good way to see this quickly is by using
read. The read function has type read :: Read a => String -> a, and so by controlling
the Read instance it uses to parse the string, we can control the return type.
Let’s run through a few examples:

λ read @Integer "1"
1
λ read @Float "1"
1.0

You can see in these examples how the output of the function call depends
only on the type parameter. You can partially apply type applications as well,
just like regular arguments:

λ readInt = read @Int
λ readFloat = read @Float
λ :type readInt
readInt :: String -> Int
λ :type readFloat
readFloat :: String -> Float
λ

You can use multiple type applications in functions that have more than one
variable with a type class constraint. For example, let’s write a function that takes
a string and returns an Either value that depends on the length of the input:

showLeftRight :: (Read a, Read b) => String -> Either a b
showLeftRight s

| length s > 5 = Left (read s)
| otherwise = Right (read s)

Just like before, we’ll need to use type applications to tell the compiler which
instance of the Read type class to use, but now we have two type variables to
work with, a and b. We’ll use two type applications; the first will select the
type to use for a, and the second will select the type to use for b:

λ showLeftRight @Float @Int "3.1415"
Left 3.1415
λ showLeftRight @Float @Int "321"
Right 321

You’ll notice that since we’re using an Either here, only one of the two type
applications will ever be relevant. If we’re returning a Left value, we don’t care
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about the second type variable’s instance, since we’ll never use it. In that
case, you can just provide one type application:

λ showLeftRight @Float "3.1415"
Left 3.1415

If you only want to provide the second type, you can use @_ as a placeholder.
This allows us to skip type applications when they aren’t relevant, so for
example, if you know that you’ll only be using the Right constructor you can
say:

λ showLeftRight @_ @Int "123"
Right 123

Type applications themselves can also be polymorphic. Using polymorphic
type applications allows you to create some types of abstractions that would
otherwise be difficult to express. Understanding how these work will be easier
when working in a source file, since we’ll be wanting to write type annotations
for functions, so create a new file. In addition to TypeApplications, we’ll need to
enable another extension, ScopedTypeVariables. We’ll look at the new features
that this extension enables as we’re working through the examples.

ScopedTypeVariables

The ScopedTypeVariables extension has been available since GHC
6.8.1. It’s enabled by default in GHC2021 but you’ll need to enable
it manually if you are using Haskell2010. This extension changes the
way type checking works, and may cause some existing programs
to stop compiling. It may be beneficial to consider trying to enable
this extension project wide in Haskell2010 codebases to identify any
problems before upgrading to GHC2021. This extension implies
ExplicitForAll. If you are using ScopedTypeVariables you don’t need to
manually enable ExplicitForAll.

{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}

Next, let’s write a function that will guarantee that the Read and Show instances
behave as we expect. One of the generally implied contracts about the
behavior of these two type classes is that when we show a value, and then read
it, we should get the original value back. We can start testing this by writing
a function like adheresToReadShowContract:

adheresToReadShowContract val =
let a = show . read . show $ val

b = show val
in a == b
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Unfortunately, a construct like show . read . show is too much for GHC to be able
to handle with type inference, and we’ll get a couple of errors where the
compiler tells us that it can’t figure out what type it should use to instantiate
the type class instances. If you haven’t already, try to compile your code so
that you can see the error yourself.

We could solve this problem by using explicit type application to provide some
type like Int or Bool or whatever to read, but that is overly restrictive. One of the
benefits of our function is that right now it should allow us to test any type
that has a Read and a Show instance. We don’t want to give that up!

If our program compiled, we would expect the type signature for it to be
something like:

adheresToReadShowContract :: (Read a, Show a) => a -> Bool

We’d like to be able to tell GHC that, whatever type it uses to instantiate a,
that should also be the instance that it uses for the calls to read and show. To
do that we’ll need to use some syntax that is available thanks to the Scoped-
TypeVariables extension that we’ve added. Let’s take a look at the code first and
then break down what’s happening:

adheresToReadShowContract :: forall a. (Read a, Show a) => a -> Bool
adheresToReadShowContract val =

let a = show . read @a . show $ val
b = show val

in a == b

The first thing you’ll notice is that we’ve added a new element to our type
signature, forall a.. The use of forall here is introducing explicit universal quan-
tification. This isn’t a term you’ll often need to use, except perhaps when
reading some specific GHC documentation. More generally, it’s simply referred
to as explicit forall. In the code that you’ve written so far, the forall has been
implied when you’ve used type variables. Writing it explicitly will not generally
change the way your program works, but with the ScopedTypeVariables language
extension, using an explicit forall brings the type variables into scope in the
body of the function. That means that we can refer to the type variable when
we’re using explicit type applications.

Since our use of ScopedTypeVariables has allowed us to bring our type variable
a into scope, we can apply it to read, which gives GHC enough information to
successfully compile the program.
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Specified and Inferred Types

Compiler Version Differences

This section describes a feature that was introduced in GHC 9
and is not available in GHC version 8.10. If you’re using GHC 8.10,
you can either skim this chapter now, or revisit it later when you
upgrade to a newer compiler version. Since this feature isn’t
available in GHC 8.10, we won’t use it in any examples in the rest
of this book. If you’re using GHC 9.4, feel free to experiment with
this feature as you work through some of the exercises in the book
to get a feel for how it can improve the ergonomics of your APIs.

Although type applications can be helpful in a lot of circumstances, you might
find that there are some common situations where they don’t work as
expected. One example that you might run into is trying to use type applica-
tions with code that you’ve defined in ghci. For example, let’s imagine that we
are writing some code interactively to convert between numbers by way of an
intermediate conversion to an Int. We might experimentally define this in ghci
and then try to call it at some specific types to see what we get:

λ convertViaInt input = fromIntegral $ fromIntegral @_ @Int input
λ :t convertViaInt
convertViaInt :: (Integral w, Num b) => w -> b
λ convertViaInt @Int 5

Unfortunately, the result we get back isn’t what we’d hope:

λ convertViaInt @Int 5

<interactive>:148:1: error:
• Cannot apply expression of type ‘w0 -> b0’
to a visible type argument ‘Int’

• In the expression: convertViaInt @Int 5
In an equation for ‘it’: it = convertViaInt @Int 5

What’s going on here? We have a function with some polymorphic types, but
when we try to use a visible type application we’re getting back a fairly unin-
tuitive error.

The problem is that GHC tracks two different sorts of type variables: specified
types and inferred types. In all of the examples so far where we’ve used visible
type applications, we’ve been writing out a type annotation for the functions
that we’re going to call with a visible type application. When we manually
write out the type variables, we’re specifying them, and they become specified
types. When we have polymorphic type variables that we’ve never directly
referenced, they are tracked by the compiler as inferred types. It turns out,
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we’re only allowed to use visible type applications to select specified types.
An inferred type is one that we must allow the compiler to infer for us.

This is particularly hard to understand with the default ghci settings because
by default, the way that the types are displayed, we can easily find ourselves
in a situation where we can’t see the difference between a function where we
can use visible type applications and one where we can’t. For example, let’s
re-define convertViaInt and give it a type annotation:

λ :{
> convertViaInt :: (Integral w, Num b) => w -> b
> convertViaInt a = fromIntegral $ fromIntegral @_ @Int a
> :}
λ :t convertViaInt
convertViaInt :: (Integral w, Num b) => w -> b
λ convertViaInt @Int 5
5

In this example, the type of convertViaInt appears to be exactly the same as the
earlier version, but suddenly our visible type application is accepted. Let’s
turn on the print-explicit-foralls option. This will ask ghci to print out the forall part
of the type that it normally hides:

λ :set -fprint-explicit-foralls
λ :t convertViaInt
convertViaInt :: forall w b. (Integral w, Num b) => w -> b

So far, so good. The type of the working version of convertViaInt looks like we’d
expect it to. Let’s go back to our earlier version and look at its type to see if
we can spot a difference:

λ convertViaInt a = fromIntegral $ fromIntegral @_ @Int a
λ :t convertViaInt
convertViaInt :: forall {w} {b}. (Integral w, Num b) => w -> b

You might notice that in this version of our function, our type variables have
gained brackets. This is how we indicate that a particular type is inferred,
rather than specified. In this case, both of the type variables are in brackets,
so they are both inferred. Since visible type applications always apply starting
with the first specified type, but there aren’t any specified types in this version
of the function, the compiler doesn’t have much to do except throw its hands
in the air and raise an exception.

At first, the idea of inferred types might seem like nothing more than a nui-
sance that prevents us from selecting the types that we want to use in our
code. Thankfully, we can still control the types that our function is called at
using normal type annotations:
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λ convertViaInt @Integer @Double 5

<interactive>:177:1: error:
• Cannot apply expression of type ‘w0 -> b0’
to a visible type argument ‘Integer’

• In the expression: convertViaInt @Integer @Double 5
In an equation for ‘it’: it = convertViaInt @Integer @Double 5

λ (convertViaInt :: Integer -> Double) 5
5.0

We can also explicitly mark type variables as inferred when we’re writing code.
For example, let’s say that we wanted to provide a library with our convertViaInt
function, and we wanted to make it easy for users to specify the type of value
that it should return while keeping the input polymorphic. We can mark our
type variables inferred to be explicit about the expectation:

module InferredTypeDemo where

convertViaInt :: forall {a} b. (Integral a, Num b) => a -> b
convertViaInt input =

fromIntegral $ fromIntegral @_ @Int input

If we load this into ghci you’ll see that we can now easily use a visible type
application to control the output type:

λ convertViaInt @Double 100
100.0
λ convertViaInt @Int 100
100
λ convertToDouble = convertViaInt @Double
λ :t convertToDouble
convertToDouble :: forall {a}. Integral a => a -> Double

Wrapping Types with Newtype
One of the key limitations that you’ve seen when working with type classes
is that each data type must have at most a single instance of the type class.
Having more than one implementation of show or read for a type would not only
make it impossible for the compiler to select an implementation to use, it
would also make the program unmaintainably confusing as the intention
behind what a type class means for any given type would be obscured. As
with the MyResult type that you built in the last section, which was structurally
identical to Either, it’s common that you might want to have some underlying
data structure represented by more than one type, each with its own name
and perhaps its own type class instances as well.

To address this problem, Haskell gives us another way of creating a type using
the newtype keyword. Types created with newtype are often referred to as newtype
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wrappers because a newtype is simply a way of wrapping an existing type.
Unlike data types, newtypes are “zero-cost” abstractions. The compiler guar-
antees that using a newtype will not introduce any additional computational
or memory overhead, and the underlying data structure will share the same
representation as the type that it wraps.

Creating a newtype looks very similar to creating a new data type, except that
you’ll use the newtype keyword instead of data. Let’s create a new wrapper
around Either to see an example:

newtype MyEither a b = MyEither (Either a b)

Although this looks very similar to a data declaration, newtypes are limited
in ways data declarations are not. Newtypes must always have exactly one
constructor, which itself must have exactly one field. You can’t use sum types
or have multiple fields for a newtype. It’s typical for newtype wrappers to use
record syntax to name their field. To make our example more idiomatic, we
would say:

newtype MyEither a b = MyEither { getEither :: Either a b }

In this example, MyEither takes two type parameters, which we pass on directly
to the underlying type, but this isn’t an inherent restriction. Newtypes can
take more or fewer type parameters. All of the following would also be valid
newtype definitions for example:

newtype MyEither = MyEither { getEither :: Either String Int }
newtype MyEither a = MyEither { getEither :: Either String a }
newtype MyEither a = MyEither { getEither :: Either a a }
newtype MyEither a b c = MyEither { getEither :: Either a b }

Even though a newtype is just a wrapper around some other type at the
lowest level, it is a “real” type. Unlike a type alias, you can’t directly substitute
a newtype with the type that it’s wrapping. This can be very helpful if you
want to maintain a clean logical separation between different types in your
code, while still benefiting from having a single optimized underlying data
structure. Newtypes also allow you to provide different type class instances
for a single representation of a data structure. Type aliases, since they aren’t
actually their own distinct types, don’t have their own type class instances.
Finally, newtypes allow you to express certain things that aren’t otherwise
directly allowed due to limitations in the type checker. In the rest of this
section we’ll explore each of these use-cases for type classes.
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Using Type Classes with Newtypes
One of the biggest reasons for using newtype wrappers is to provide type class
instances for a type that you’re wrapping. There are two reasons that you
might want to use a newtype to create type class instances rather than creating
instances for the underlying type: to avoid orphan instances, and to support
multiple different type class instances for an underlying type. In this section,
we’ll look at a single example that demonstrates both of these reasons for
using newtype wrappers.

An orphan instance is a type class instance that you define in a module where
you didn’t define either the type class you’re creating an instance of, or the
underlying type that you’re creating an instance for. In other words, it’s an
“orphan instance” because the instance doesn’t “belong to” the implementation
of the type class or the data type. Although orphan instances aren’t an error
that will stop your program from building, they will generate a warning, and
they are considered bad style and a risk to the long term maintainability of
your application. The biggest risk with orphan instances is that in the future,
the library that defined the type class, or the underlying type, might choose
to add an instance. In Haskell there’s a rule that in your entire program there
can only ever be one single instance of a type class for each type. That means
it’s very easy for an update to a library to break your code if it started providing
an instance of something that you’ve already defined an orphan instance for.
Not only do you risk your program failing to compile because of conflicting
instances, it also makes your code harder to maintain because you will have
a non-standard implementation of the type class.

Even when you have defined your data type or the type class you want to
create an instance of, it’s not uncommon to have more than one plausible
way of creating an instance for a type class. Since you’re limited to a single
instance per type, using newtype wrappers allows you to define multiple
instances of a type class while still using a single underlying data definition
and not introducing any unnecessary overhead.

Let’s turn our attention to a pair of type classes that you’ve been making use
of already: Semigroup and Monoid. We can look at their definitions in ghci:

λ :info Semigroup
class Semigroup a where

(<>) :: a -> a -> a
GHC.Base.sconcat :: GHC.Base.NonEmpty a -> a
GHC.Base.stimes :: Integral b => b -> a -> a
{-# MINIMAL (<>) #-}
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λ :info Monoid
class Semigroup a => Monoid a where

mempty :: a
mappend :: a -> a -> a
mconcat :: [a] -> a
{-# MINIMAL mempty #-}

You’ll recognize the (<>) operator from Semigroup, which is how you’ve been
concatenating lists and strings throughout this book. The Monoid type class
builds on Semigroup by adding mempty, which represents some initial starting
or empty value. One good way of seeing what the behavior of values and
functions defined by type classes should be is to look at them in ghci. As an
example, let’s look at several different mempty values:

λ mempty @[Int]
[]
λ mempty @String
""
λ mempty @(Maybe [Int])
Nothing

You can see that mempty returns some sort of zero or initial value. In fact, the
contract for mempty says that it should always be true that (mempty <> a) == a.
Later on in this book, you’ll learn more about laws for different kinds of type
classes and how to think about them. For the moment, let’s return to the idea
of a “zero” or “initial” value. It’s intuitive to realize that the “empty” value for
a list is an empty list, and it’s not a huge leap to recognize that Nothing is a
kind of starting point for a Maybe value. This is a bit misleading though,
because we’re thinking about mempty as some value of a particular type. In
reality, mempty is related to a particular operation. For numeric types like Int,
we have more than one choice in how we might want to combine values, and
each of those choices gives us a different mempty value. Let’s look at some
concrete examples. First we’ll look at addition. Addition lets us combine two
numbers by adding them together, so the “empty” starting point is 0, since
anything added to 0 gives us back the original number. Next, multiplication
is another way that we can merge two numbers into a single number, but the
“empty” value for multiplication is 1. In other words, (<>) defines some oper-
ation for a type, and mempty is the identity for that operation.

As you can imagine, having two very clear choices for how we might define
Semigroup and Monoid for a type like Int presents us with a bit of a problem. How
do we pick which one to use? Thankfully, with newtype we can avoid the
question and provide users with both options. To do that, we’ll need to start
by adding a newtype for each operation we want to support:
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newtype Product = Product { getProduct :: Int }
newtype Sum = Sum { getSum :: Int }

Next, we’ll need to create instances of Semigroup and Monoid for each newtype.
This example will show you how to do this for Product. As an exercise, define
the instances for Sum on your own:

instance Semigroup Product where
(Product a) <> (Product b) = Product (a * b)

instance Monoid Product where
mempty = Product 1

Understanding Higher Kinded Types and Polymorphism
You’ve seen that data and newtypes can accept type parameters, and even
how those type parameters can be used polymorphically, for example, with
the reverse function:

reverse :: [a] -> [a]

Types like this that accept type parameters are called higher kinded types.
Higher kinded types are a powerful feature that differentiate Haskell types
from the generics of many other popular languages. When combined with
type classes, higher kinded types allow you to write highly generic and
expressive code quickly and easily. In this section, you’ll learn how to make
use of higher kinded types to write highly re-usable code, and how to make use
of a new language extension, KindSignatures, to allow the compiler to catch a
new class of errors that you might encounter when writing code with higher
kinded types.

KindSignatures

The KindSignatures has been available since GHC 6.8.1. It’s enabled
by default in GHC2021 but you’ll need to enable it manually if you
are using Haskell2010. This extension is generally safe and shouldn’t
interfere with any existing code.

Before diving into what higher kinded types are, it’s helpful to stop and ask
what a kind is. In short, a kind is the type of a type. Although the underlying
idea here is straightforward, when you first encounter the idea of “types of
types” it can seem a bit overly abstract, so let’s look at a couple of examples.

Most types in Haskell, like Int, [a], or Maybe String, have the kind *. You can see
the kind of a type in ghci by using the :kind or :k command.
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λ :k Int
Int :: *
λ :k Int -> String
Int -> String :: *
λ :k Maybe Int
Maybe Int :: *

The kind of polymorphic types is also *, which you can see after enabling
ExplicitForAll:

ExplicitForAll

The ExplicitForAll extension was first available in GHC 6.12.1. It’s
enabled by default in GHC2021, but you’ll need to enable it manually
if you are using Haskell2010. This is generally a safe extension that
shouldn’t cause problems with any existing code.

λ :set -XExplicitForAll
λ :k forall a b. [(a,b)]
forall a b. [(a,b)] :: *

The ExplicitForAll extension allows you to make explicit use of forall. If you have
ScopedTypeVariables enabled from some earlier exercises you won’t need to add
this extension, since ScopedTypeVariables turns on ExplictForAll automatically.

For types like Maybe and Either that take a type parameter though, things are
a little bit different. If Maybe Int is a type, and we know that Int is a type, then
we might be able to infer that Maybe must be something that takes a type as
an argument and returns a type. Indeed, when we look at the kind of Maybe
we see just that:

λ :k Maybe
Maybe :: * -> *

Similarly, Either, which takes two type parameters, has the kind * -> * -> *.
Applying types works like you would expect:

λ :k Either
Either :: * -> * -> *
λ :k Either Int
Either Int :: * -> *
λ :k Either Int Int
Either Int Int :: *

As a matter of vocabulary, in the Haskell world we often refer to types with
the kind * as being fully saturated types. Non-fully saturated types are also
called type constructors.

report erratum  •  discuss

Understanding Higher Kinded Types and Polymorphism • 241

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


A powerful feature that the kind system allows in Haskell that isn’t often
available in other languages is the ability to be polymorphic over a parameter-
ized types. Imagine, for example, that you have a function that will convert
a list of showable items into a comma-separated string. You know how to
write this function for a list:

toCSV :: Show a => [a] -> String
toCSV =

let
addField :: Show a => String -> a -> String
addField s a = s <> "," <> show a

dropLeadingComma :: String -> String
dropLeadingComma s =

case s of
',':s' -> s'
_ -> s

in dropLeadingComma . foldl addField ""

There are other types, though, that we might want to convert to CSV. One
example is the NonEmpty list type from Data.List.NonEmpty. It allows you to create
a list that you know won’t ever be empty. Thanks to kinds, and higher kinded
types, we can make our function polymorphic over the type constructor. In
fact, we don’t even have to change our implementation!

To get support for multiple kinds of lists, and other things, we only need to
make use of the Foldable type class. As you might expect, the Foldable type class
represents “things that can be folded.” In fact, the type of foldl and foldr in base
already makes use of this type class, although so far we’ve only used it with
standard lists:

λ :type foldl
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
λ :type foldr
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

Notice in the type signatures for these fold functions that we have a type class
constraint on t, but in our type signature we’re applying the type a to t. That’s
because t is a higher kinded type variable, with the kind t :: * -> *.

We’ll need to take this same approach to make our toCSV function generic. To
make some of the details a bit more visible, let’s add two language extensions
to help us write our type signature more clearly. First we’ll add ExplicitForAll,
which will allow us to use the forall syntax in our type signatures. We’ll also
add KindSignatures to allow us to write the kind signatures for types in our type
annotations:
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{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ExplicitForAll #-}
module HKTDemo where

Next, let’s import the module Data.Kind from base. This module exports a single
kind, named Type, which is an alias for *. It will allow us to make our kind
signatures look a little nicer:

import Data.Kind

We’ll also import Data.List.NonEmpty so that we can test out our new function
with both regular and non-empty lists:

import qualified Data.List.NonEmpty as NonEmpty

Next, we’ll add our new version of toCSV along with its new type signature. In
this example, we’re going to be a more explicit than is strictly necessary to
help illustrate how higher kinded types are used in our programs. We’ll begin
by using an explicit forall to introduce two type variables: a Foldable type named
t, and an element type named a. We’re also going to add a kind signature to
each of these new type variables:

toCSV ::
forall (t :: Type -> Type) (a :: Type)
. (Foldable t, Show a)
=> t a -> String

You can see in this example how we add the kind signature to each type
variable as it’s introduced. (t :: Type -> Type) tells the compiler that t should be
passed some type as an argument, and a :: Type says that a should be some
ordinary type. In most situations, the compiler is able to infer the correct
higher kinded types for us in our type signatures, so in this example, the
explicit kind signature is only serving to add some documentation and to
make it easier for you to understand how higher kinded types are used. Later
on in this book, you’ll work through some examples where the kind signatures
are actually required to make your programs work.

Foldable Naming Conventions

You might find t to be an odd naming choice for a Foldable type, but
it’s a common naming convention. That’s because f is usually
reserved for another class called Functor that you’ll learn about
later in this book. The Foldable class is closely related to a commonly
used class called Traversable, so it’s likely that the name t has stuck
around due to that association.
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Now that we have figured out the type of toCSV, the implementation is
straightforward:

toCSV ::
forall (t :: Type -> Type) (a :: Type)
. (Foldable t, Show a)
=> t a -> String

toCSV =
let

addField :: Show a => String -> a -> String
addField s a = s <> "," <> show a

dropLeadingComma :: String -> String
dropLeadingComma s =

case s of
',':s' -> s'
_ -> s

in dropLeadingComma . foldl addField ""

Before we move on, let’s write a function that we can use to test our new
function in ghci:

csvThings :: String
csvThings =

let
plainList = toCSV [1,2,3]
nonEmptyList = toCSV $ 1 NonEmpty.:| [2,3]

in unlines [plainList, nonEmptyList]

You can also load your new module up in ghci and experiment with some
other types that have Foldable instances to see what you get:

λ toCSV Nothing
""
λ toCSV $ Just 1
"1"
λ toCSV $ Right 3
"3"
λ toCSV $ Left 4
""

You might notice in the last two examples that we’re passing an Either value
to toCSV. Clearly we’re allowed to do this, since ghci accepted our code and gave
us back a sensible answer, but it might not be immediately clear why we’re
allowed to do this. After all, Either takes two type parameters. Let’s revisit these
examples and use visible type applications to see if we can narrow down
what’s going on here. First, let’s use visible type applications for our first two
examples that use Maybe values to get a baseline:
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λ toCSV @Maybe @Int Nothing
""
λ toCSV @Maybe @Int $ Just 1
"1"

You can see here that we’re passing along two type values, Maybe takes a type
so it matches up nicely with t :: Type -> Type from the type of toCSV. Next we pass
in Int; that’s an ordinary type and fits in with the a :: Type part of toCSV. If we
naively follow this pattern with an Either value, we’ll run into some trouble.
Let’s give it a try:

λ toCSV @Either @Int $ Right 3

<interactive>:6:8: error:
• Expecting one more argument to ‘Either’

Expected kind ‘Type -> Type’,
but ‘Either’ has kind ‘Type -> Type -> Type’

• In the type ‘Either’
In the first argument of ‘($)’, namely ‘toCSV @Either @Int @Int’
In the expression: toCSV @Either @Int @Int $ Right 3

Just as we expected, we’re getting an error. The wording the compiler is using
here is pretty direct, but the first time you see it it’s not always clear what
you should do. Let’s break it down:

• Expecting one more argument to ‘Either’

The compiler starts by telling us that it’s expecting us to pass something to
Either. Instead of using Either by itself, we should be applying it to one type.
The reason for this is given in the next part of the error:

Expected kind ‘Type -> Type’,
but ‘Either’ has kind ‘Type -> Type -> Type’

This part of the message tells us that our error is caused by the fact that the
first argument to toCSV should be a type that takes one argument, but Either
takes two arguments. The fix to this problem is, as the compiler has suggested,
to pass one of the types to Either before we use it as an argument to toCSV. Let’s
take a look at this in ghci:

λ toCSV @(Either Int) @Int $ Right 3
"3"

Using parentheses, we can pass the first argument to Either before we pass
the resulting type, which now just needs one more argument, to toCSV.
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Using Higher Kinded Types with Your Own Types and Classes
You can also use higher kinded types when creating your own data types and
type classes. Let’s look at an example of a type class we can create using
higher kinded types, called Select. The Select type is a simplified version of a
type class called Alternative that you’ll learn about later in this book. Our sim-
plified version will have two functions, empty and pick. The empty function should
return some sort of empty or zero value, and pick will allow us to pick between
two options.

Like the Foldable type class, our Select type class will work for a higher kinded
type. This allows us to create a type class that works for any parameterized type.
We’ll add the kind signature to our type variable when we’re defining the type
class.

{-# LANGUAGE KindSignatures #-}
module Selector where
import Data.Kind

class Select (f :: Type -> Type) where
empty :: f a
pick :: f a -> f a -> f a

Next, let’s define a couple of instances of our new type class:

instance Select Maybe where
empty = Nothing
pick Nothing a = a
pick a _ = a

instance Select [] where
empty = []
pick = (<>)

In our instances, you can see that we’re using the higher kinded types Maybe
and [], rather than fully saturated types like Maybe a or [a]. If that seems non-
intuitive, remember that we’re implementing the type class for the thing with
the kind Type -> Type, in other words, we’re implementing the type class for a
type that hasn’t yet had its parameter applied. This means that whatever
instance we define will be used for all lists, or all Maybe types, regardless of
the type parameter that’s applied to them. This tells us that the type class
and its instances expect to be implemented in terms of the shape of the data.

As a final step, let’s load up ghci and run a few commands using our new type
class instances:

λ :l Selector.hs
λ pick Nothing (Just 1)
Just 1
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λ pick [1,2] [3,4]
[1,2,3,4]
λ foldl1 pick [Nothing,Nothing,Just "first!",Nothing,Just "second!"]
Just "first!"

Be sure to keep this file around. In the next section, you’ll learn about how
to automatically derive instances of type classes without having to write the
instances yourself. After that, you’ll return to your Selector type class when
you use it to help you automatically derive instances.

Deriving Instances
You’ve seen how type classes allow you to create abstractions in your pro-
grams. A problem with type classes that you might have already run into is
that most of the time you’re doing a lot of work to create instances, but the
code is uninteresting and often redundant. As an example, let’s imagine a
simple record to hold some customer info:

data Customer = Customer
{ name :: String
, mail :: String
, email :: String
}

For our application, we’d like to provide implementations for three common
type classes, Show, which will allow us to convert a customer record to a string,
Eq, which will let us test equality between two records, and Ord, which will
allow us to sort our records. We can manually implement the type classes:

instance Eq Customer where
(==)

(Customer name mail email)
(Customer name' mail' email') =
name == name' &&
mail == mail' &&
email == email'

instance Ord Customer where
compare

(Customer name mail email)
(Customer name' mail' email') =
compare name name'
<> compare mail mail'
<> compare email email'

instance Show Customer where
show (Customer name mail email) =

"Customer {name = " <> show name <> ", "
<> "mail = " <> show mail <> ", "
<> "email = " <> show email <> "}"
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Our manual implementations of the type classes are straightforward, but it
can become pretty tedious. Thankfully, for cases like this where the imple-
mentation of a type class is fairly straightforward, Haskell has a mechanism
to allow us to get an instance of a type class for free, using the deriving keyword.

In most cases, you’ll derive an instance of a type class using the deriving key-
word at the end of your data or newtype definition. For instance, in our Customer
example we could instead have used automatically derived instances that
would behave like our manual implementations:

data Customer = Customer
{ name :: String
, mail :: String
, email :: String
} deriving (Eq, Show, Ord)

Deriving a type class automatically is a very powerful technique, but it only
works in certain circumstances. The first requirement is that the type class
has to be derivable. In standards compliant Haskell, only a few type classes
are derivable:

• Eq for types that can be compared for equality
• Ord for types that have a total ordering
• Ix for types that support indexing into a range
• Show for types that can be converted into strings
• Read for types that can be parsed from strings
• Enum for types that can be converted to and from integers
• Bounded for types with finite upper and lower bounds

There are several GHC extensions that give you more options for deriving
instances automatically. You’ll learn about a couple of those extensions in
this section, and others throughout the book.

Not every derivable class can be derived for every data type or newtype. One
of the most common requirements when deriving a type class for a record is
that all of the types within the record must also have instances of the type
class you are trying to derive. For example, consider if instead of a String, we’d
used a newtype wrapper for storing a customer’s name in our earlier example:

module DerivingExample where

newtype Name = Name String

data Customer = Customer
{ name :: Name
, mail :: String
, email :: String
} deriving (Eq, Show, Ord)
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If we try to load this module, you’ll see that the compiler will helpfully point
out that we can’t derive Eq, Show, or Ord instances for our type classes because
the Name type doesn’t have instances for those types:

λ :l DerivingExample.hs
DerivingExample.hs:9:15: error:

* No instance for (Eq Name)
arising from the first field of `Customer' (type `Name')

Possible fix:
use a standalone 'deriving instance' declaration,

so you can specify the instance context yourself
* When deriving the instance for (Eq Customer)

|
9 | } deriving (Eq, Show, Ord)

| ^^

DerivingExample.hs:9:19: error:
* No instance for (Show Name)

arising from the first field of `Customer' (type `Name')
Possible fix:

use a standalone 'deriving instance' declaration,
so you can specify the instance context yourself

* When deriving the instance for (Show Customer)
|

9 | } deriving (Eq, Show, Ord)
| ^^^^

DerivingExample.hs:9:25: error:
* No instance for (Ord Name)

arising from the first field of `Customer' (type `Name')
Possible fix:

use a standalone 'deriving instance' declaration,
so you can specify the instance context yourself

* When deriving the instance for (Ord Customer)
|

9 | } deriving (Eq, Show, Ord)
| ^^^

Failed, no modules loaded.

Unfortunately, in this case the error message that the compiler gives us is a
little bit more general than we really want. The compiler in this case is recom-
mending that you enable the StandaloneDeriving language extension. You’ll learn
a bit more about this extension later in the book, but for the moment let’s
return to addressing the error at hand. Looking past the compiler’s suggested
fix, you can use what you know about deriving to fix the issue at hand by
providing instances of the Eq, Show, and Ord type classes for Name:

newtype Name = Name String deriving (Eq, Show, Ord)
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StandaloneDeriving

The StandaloneDeriving extension has been available since GHC 6.8.1.
This extension is enabled by default in GHC2021 but you’ll need to
enable it manually if you are using Haskell2010. This is a safe
extension that shouldn’t cause any problems with existing code.

With this change, you can now load your code. Next, let’s look at some language
extensions GHC provides to extend the deriving mechanism to make it.

Deriving More Things
The standard deriving mechanism in Haskell is quite useful but limited, which
is why GHC has introduced several language extensions to make deriving more
powerful and useful in more circumstances. In this section, you’ll learn about
a few of them that have the largest impact on the way you approach writing
code. Throughout this book, you’ll learn about others that are useful but less
drastic in how they shape the way you approach writing your programs.

Deriving in Newtypes with Generalized Newtype Deriving
One of the first limitations that you’ll run into with deriving in type classes
is the problem of having a limited number of type classes that you’re allowed
to derive instances for. It makes sense that you might not be able to derive
an instance of any given type class for a new data type, but for newtypes the
limitation often means that you start writing very redundant code. As an
example, imagine that you were writing a program that needed to work with
currency. In order to make use of the type system to ensure that you are only
ever adding compatible forms of currency, you might define a newtype wrapper
to represent some unit of currency. For example, we’ll define the USD type as
representing 0.001 USD:

newtype USD = USD { getMillis :: Integer } deriving (Eq,Ord,Show)

Of course, you’d like to be able to add and subtract units of currency without
having to unwrap the newtype for every operation, so it would be convenient
to be able to use all the normal math functions that we could use with an
Integer. Let’s add instances for Num, Real, Enum, and Integral.

instance Num USD where
(USD a) + (USD b) = USD (a + b)
(USD a) * (USD b) = USD (a * b)
abs (USD a) = USD (abs a)
signum (USD a) = USD (signum a)
fromInteger = USD
negate (USD a) = USD (negate a)
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instance Real USD where
toRational (USD a) = toRational a

instance Enum USD where
toEnum a = USD (toEnum a)
fromEnum (USD a) = fromEnum a

instance Integral USD where
quotRem (USD a) (USD b) =

let (a',b') = quotRem a b
in (USD a', USD b')

toInteger (USD a) = a

As you look through all of these type class instances, you’ll notice that we’re
not adding any additional logic here; in every case, we’re simply deferring to
the type class instance of the type we’re wrapping.

Thankfully, the GeneralizedNewtypeDeriving extension allows us to automate away
this boilerplate. This language extension allows newtype wrappers to derive
any type class instances that are implemented by the type they are wrapping,
and it does so by mechanically applying the same algorithm we’ve just used:
unwrap the type, apply the type class function, and rewrap the result.

Let’s enable our language extension and look at the result:

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

newtype USD = USD { getMillis :: Integer }
deriving (Eq, Ord, Show, Enum, Num, Real, Integral)

Much better! Generalized newtype deriving makes using newtype wrappers
much more convenient because you are no longer required to implement type
classes manually if you’re only interested in using the underlying type’s
instance.

GeneralizedNewtypeDeriving

The GeneralizedNewtypeDeriving extension has been available since
GHC 6.8.1. It’s enabled by default in GHC2021 but you’ll need to
enable it manually if you are using Haskell2010. This is a generally
safe extension that shouldn’t interfere with any existing code.

Deriving Via a Compatible Type
The last extension to deriving that you’ll learn about in this chapter turns
some of what you’ve learned about type classes on its head. You’ve learned
about how to use newtypes to add a new distinct type class instance to a
type, but thanks to GHCs DerivingVia extension, you can also use newtypes as
a template for how to define a type class for other types. This allows you to
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reduce boilerplate in your code by writing a derivation once and then re-using
it in several different ways.

DerivingVia

The DerivingVia extension has been available since GHC 8.6.1. It’s
not enabled by default in either GHC2021 or Haskell2010 so you’ll need
to enable it manually. This is generally a safe extension that
shouldn’t interfere with any existing code.

To see an example of how this works in action, we’ll return to a couple of our
old friends, in particular Monoid and Maybe.

In base, Maybe has an instance of Monoid that allows you to combine the underlying
values of the Maybe. For example, if you have some values with the type Maybe
[Int] you can combine them with (<>):

λ (Just [1]) <> (Just [2]) <> Nothing <> (Just [3])
Just [1,2,3]

This default monoid instance is quite useful, since it makes it very easy for
us to combine optional values, but it’s not the only instance that we might
want to use. One common pattern when working with Maybe values is selecting
the first non-empty value from a set of values. As an example, consider an
application that will select the first of several possible contact methods that’s
available:

selectContact ::
Maybe String -> Maybe String -> Maybe String -> Maybe String

selectContact email sms phone =
case email of

Just email' -> Just email'
Nothing ->

case sms of
Just sms' -> Just sms'
Nothing -> phone

It would be quite convenient if we could have a version of Maybe that offered
a Monoid instance that made this easier. Since we can’t add a new instance to
an existing type, we’ll use a type class called MyMaybe for which we can add
the instance:

newtype MyMaybe a = MyMaybe (Maybe a) deriving Show

instance Semigroup (MyMaybe a) where
(MyMaybe Nothing) <> b = b
a <> _ = a

instance Monoid (MyMaybe a) where
mempty = MyMaybe Nothing
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If the implementation of Semigroup and Monoid looks familiar to you, it’s because
it’s very similar to the instance of our Select type class that we defined for
Maybe:

instance Select Maybe where
empty = Nothing
pick Nothing a = a
pick a _ = a

In order to reduce code duplication, let’s rewrite our Semigroup and Monoid
instances to take advantage of the Select instance that we’ve already defined
for Maybe:

instance Semigroup (MyMaybe a) where
(MyMaybe a) <> (MyMaybe b) = MyMaybe (pick a b)

instance Monoid (MyMaybe a) where
mempty = MyMaybe empty

This looks a lot nicer than our previous version that contained a lot of dupli-
cated code, but something here still isn’t quite right. The first thing you might
realize is nothing here is actually specific to either our MyMaybe newtype or to
Maybe itself. We can actually define a valid Semigroup and Monoid instance for any
Select instance. Along the same lines, these handwritten instances aren’t actually
adding any value. They’re simply unwrapping and rewrapping a newtype and
using the underlying Select instance we’ve already defined for Maybe.

To deal with this kind of duplication, GHC offers a new type of deriving
strategy called deriving via, which you can enable with the DerivingVia language
extension. Deriving via is a little bit like the mirror version of the newtype
wrappers that you’ve already written. So far, you’ve used newtype wrappers
in a “one to many” kind of way, where for some given underlying type you
can define many different newtype wrappers that each have their own different
instances of some type classes. With deriving via you can instead use a “many
to one” strategy for deriving. To use deriving via you’ll need to create a type
with one or more instances that will act like a template. Once you have your
base type and instances defined, you can use deriving via to re-use the instance
definitions for other types.

Let’s look at an example of how this works in practice.

We’ll start by creating a newtype wrapper that we’ll use to define the template
for how we’d like to derive Semigroup and Monoid instances from a Select instance.
We’ll call our newtype wrapper Sel because its job is basically wrapping Select.
The wrapper itself is going to be very straightforward:

newtype Sel (f :: Type -> Type) (a :: Type) = Sel (f a)
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In plain English, Sel is parameterized by two types, and it wraps the type given
by applying its second type parameter to the first.

It’s worth remembering here that when we defined our Select type class it was
over a type with the kind Type -> Type:

class Select (f :: Type -> Type) where

Similarly, the first argument of Sel is a parameter with the kind f :: Type -> Type.

Next, let’s create instances of Semigroup and Monoid for our Sel type. We’re going
to use the underlying Select instance, so we’ll add a type class constraint to
our first type parameter, f:

instance (Select f) => Semigroup (Sel f a) where
(Sel a) <> (Sel b) = Sel (pick a b)

instance (Select f) => Monoid (Sel f a) where
mempty = Sel empty

So now, for any type with the kind Type -> Type and a Select instance, we have
a monoid instance. Before we move on, let’s look at this in practice from ghci.
We haven’t derived a Show instance for Sel in our example code, so for debugging
purposes we’ll first make use of StandaloneDeriving to make it easier for us to see
the values while we’re testing things out:

λ :set -XStandaloneDeriving
λ deriving instance (Show (f a)) => Show (Sel f a)
λ a = Sel (Just 1)
λ b = Sel (Nothing)
λ a <> b
Sel (Just 1)
λ b <> a
Sel (Just 1)
λ (Sel [1,2]) <> (Sel [3,4,5])
Sel [1,2,3,4,5]

Before we move on, let’s take a moment to look at the definitions of Sel and
MyMaybe side by side:

newtype Sel (f :: Type -> Type) (a :: Type) = Sel (f a)
newtype MyMaybe a = MyMaybe (Maybe a) deriving Show

Roles

Roles describe different ways that two types can be equal. GHC
supports three different kinds of equality. Notional equality requires
that two types are exactly the same. Representational equality
requires that they have the same runtime representation. Finally,
Phantom equality allows any two types to be considered equal. It’s
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Roles

rare that you’ll need to think too much about type roles, and we
won’t cover them in more detail in this book. You can refer to the
GHC users guide for more information if you find that you need
to deal with the role system directly.

When you first learned about newtype, you learned that they offered a zero-
overhead abstraction, and that the compiler guarantees that the newtype will
store its value in the same way as the underlying type that it’s wrapping. In
GHC, two types that have the same underlying runtime representation are
considered representationally equal. When two types are representationally
equal, the compiler can figure out how to safely coerce values from one type
to the other.

In our example, both Sel Maybe a and MyMaybe a are representationally equal to
Maybe a, which means that the compiler knows how to convert back and forth
between Sel Maybe a and MyMaybe a. We can use this to our advantage to avoid
writing boilerplate type class instances, because deriving via allows us to derive
a type class instance for one type using the instance defined for another type
that is representationally equal. Let’s look at it in action:

{-# LANGUAGE DerivingVia #-}

newtype MyMaybe a = MyMaybe (Maybe a)
deriving Show
deriving (Semigroup, Monoid) via (Sel Maybe a)

You’ll notice that we needed to add a new extension at the start of our file.
The DerivingVia extension is necessary for us to use the deriving via strategy. With
this new deriving via statement, we’re telling the compiler to use Sel as a template
for how to derive the instances for Semigroup and Monoid. To do that, it will create
an instance that converts our MyMaybe value into Sel Maybe, then calls the
appropriate type class function, and converts the result back to a MyMaybe
value.

Let’s look at our new type in action:

λ (MyMaybe $ Just [1,2,3]) <> (MyMaybe $ Just [3,4,5])
MyMaybe (Just [1,2,3])
λ (MyMaybe Nothing) <> (MyMaybe $ Just [3,4,5])
MyMaybe (Just [3,4,5])

You’re not limited to using deriving via with types that already have an instance
of the type class. For example, there’s no default Semigroup or Monoid instances
for integral types, but we can use deriving via to borrow the instances defined
by the Sum and Product types from Data.Semigroup:
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{-# LANGUAGE DerivingVia #-}
module MyNumericMonoids where
import Data.Semigroup

newtype MySum = MySum { getMySum :: Int }
deriving (Eq, Show)
deriving (Semigroup, Monoid) via (Sum Int)

newtype MyProduct a = MyProduct { getMyProduct :: a }
deriving (Eq, Show)
deriving (Semigroup, Monoid) via (Product a)

λ :l MyNumericMonoids.hs
λ mconcat $ map MySum [1..10]
MySum {getMySum = 55}
λ mconcat $ map Product [1..10]
Product {getProduct = 3628800}

Anyclass Deriving
Earlier in this chapter, you saw some examples of type classes that provided
default definitions for all of their functions. For example, our Redacted type
class could provide a default definition of its only function so long as we also
provided a Show instance. Even though we could create instances of those
type classes without providing an implementation for any of their functions,
we still needed to explicitly add an instance. This can start to get inconvenient,
especially when you have a large number of types that you need to write
empty instances for.

DeriveAnyClass

The DeriveAnyClass extension has been available since GHC 7.10.1.
It’s not enabled in either GHC2021 or Haskell2010 so you’ll need to
enable it manually. This is generally a safe extension, although
it’s best enabled alongside the DerivingStrategies extension to avoid
ambiguity about what strategy is being used to drive instances.

The DeriveAnyClass language extension can help. When we enable this extension,
we can derive any classes that we want, and GHC will add an empty instance
declaration for us. Let’s take another look at our Redacted example from earlier
in this chapter to see how we can use DeriveAnyClass to make our code a little
shorter and nicer to read.

We’ll start by adding our new language extension:

{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveAnyClass #-}
module AnyclassDemo where
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class Redacted a where
redacted :: a -> String
default redacted :: Show a => a -> String
redacted = show

Next, let’s define UserName. Now that we know about deriving we can skip the
instance of Show and derive it. We’ll also make use of DeriveAnyClass to let us
derive an instance of Redacted:

{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveAnyClass #-}
module AnyclassDemo where

class Redacted a where
redacted :: a -> String
default redacted :: Show a => a -> String
redacted = show

newtype UserName = UserName String deriving (Show, Redacted)

Let’s load this up into ghci. If you are using a newer version of GHC, you may
get a warning about using DerivingStrategies. If you see this warning, you can
ignore it for now. We’ll cover this extension and when to use it in the next
section.

λ UserName "george"
UserName "george"
λ redacted $ UserName "george"
"UserName \"george\""

Using a derived instance of Show has changed our output slightly from the
earlier examples, but overall we can see that our new version of the code is
working exactly as we’d hoped, and with substantially less code.

Next, let’s see what happens if we try to use our new extension to derive an
instance of Redacted for our Password type, while still avoiding creating a Show
instance:

newtype Password = Password String deriving (Redacted)

If we try to load this into ghci you’ll see that once again we get an error because
we’ve failed to provide either a Show instance or a definition of redacted:

λ :load AnyclassDemo
AnyclassDemo.hs:11:46: error:

• No instance for (Show Password)
arising from the 'deriving' clause of a data type declaration

Possible fix:
use a standalone 'deriving instance' declaration,

so you can specify the instance context yourself
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• When deriving the instance for (Redacted Password)
|

11 | newtype Password = Password String deriving (Redacted)
| ^^^^^^^^

Failed, no modules loaded.

Deriving Strategies
The ability to derive an empty instance for any class is useful, but as you
may have seen in the last section, if you are using a newer version of GHC,
this extension can sometimes be a source of confusion. The problem is the
interaction between GeneralizedNewtypeDeriving and DeriveAnyClass can be unexpect-
ed. To see an example of why, let’s imagine that we’re going to add another
user type, called an AdminUser, that is a newtype wrapper around our existing
UserName. We’ll also change our Redacted instance for UserName to add some extra
formatting. Finally, we’ll turn on GeneralizedNewtypeDeriving since we may want
to use it as we’re developing our program:

{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module AnyclassDemo where

class Redacted a where
redacted :: a -> String
default redacted :: Show a => a -> String
redacted = show

newtype UserName = UserName String deriving Show
instance Redacted UserName where

redacted (UserName user) = "UserName: " <> user

newtype AdminUser = Adminuser UserName deriving (Show, Redacted)

Now, let’s load this program up into ghci and look at some redacted values to
see what we get. We’ll start by looking at a redacted user:

λ redacted $ UserName "george"
"UserName: george"

As we’d expect, we’re using our new Redacted instance to get some nicer format-
ting when we show off our username. What if we create an admin user? It
turns out that there are two possibilities. If GHC uses GeneralizedNewtypeDeriving,
then it will use the instance that we’ve provided in UserName to generate an
instance for AdminUser. On the other hand, if we use the approach enabled by
DeriveAnyClass, we’ll get the instance provided to use based on our Show instance,
and get the somewhat less readable formatting. Let’s try it out in ghci:

λ redacted $ Adminuser (UserName "george")
"Adminuser (UserName \"george\")"
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As you can see, in this case we’re using the default definition of redacted that
we get from an empty instance when we use the DeriveAnyClass approach. It
turns out that, whenever it’s presented with the option between generalized
newtype deriving and anyclass deriving, GHC will pick the anyclass approach
to deriving instances. Knowing the rule lets us avoid surprises, but it would
be helpful if we could choose which approach we want it to take when gener-
ating instances.

DerivingStrategies

The DerivingStrategies extension has been available since GHC 8.2.1.
It’s not enabled by default in either GHC2021 or Haskell2010 so you’ll
need to enable it manually. This is a safe extension that shouldn’t
interfere with any existing code.

We can choose the strategy GHC takes by enabling the DerivingStrategies exten-
sion. With this extension, we can specifically tell the compiler how we want
it to try to generate our type class instances. Let’s turn it on and use it for
AdminUser, and then we’ll look a bit more closely at how it works:

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DerivingStrategies #-}
module AnyclassDemo where

class Redacted a where
redacted :: a -> String
default redacted :: Show a => a -> String
redacted = show

newtype UserName = UserName String deriving Show
instance Redacted UserName where

redacted (UserName user) = "UserName: " <> user

newtype AdminUser = Adminuser UserName
deriving stock Show
deriving newtype Redacted

In this example, we now have two different deriving clauses associated with
our single AdminUser type. We’ve also added two new keywords, stock and newtype.

With the DerivingStrategies extension we can add several deriving clauses when
we define a type, and each of those can have an associated deriving strategy.
There are four strategies that you can use:

• stock can be used if you are trying to derive one of the standard derivable
type classes and want to use the standard approach defined in the Haskell
standard.
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• newtype tells the compiler to use the generalized newtype deriving strategy
to create an instance based on a newtype wrapper.

• anyclass tells the compiler to generate an empty instance declaration, which
is the default when DeriveAnyClass is enabled.

• via uses the deriving via strategy that you learned about earlier in this
chapter.

In newer versions of GHC, the GeneralizedNewtypeDeriving extension is enabled
automatically, and the compiler now emits more warnings encouraging users
to enable the DerivingStrategies extension and make use of explicit deriving
strategies. In the rest of this book, we’ll typically omit deriving strategies to
keep the examples compatible with older Haskell versions, but you are
encouraged to start using deriving strategies in your own code, since this
style is likely to become more popular in newer Haskell code.

Summary
Type classes are an essential building block for nearly all large Haskell applica-
tions. You’ll use them extensively throughout the rest of the book, and they will
be common in both library and application code that you encounter. Unlike
parametric polymorphism, you should be judicious in your use of type classes.
Most large applications and libraries will introduce a few new type classes, but
only a few. Overuse of type classes in your application can be a cause of excess
abstraction that makes your program more difficult to work with and reason
about, rather than easier.

Well-designed type classes should be narrowly focused on a specific feature,
and will generally only define a small handful of functions. It’s common to
have type classes that only introduce a single new function, and the Natural
type class you built in this chapter is fairly close to the natural upper limit
for how big most type classes should be. It’s better to introduce a few extra
type classes and add dependencies, like making Natural depend on Eq, instead
of having a large class.

Here are some good rules of thumb for knowing when to reach for a type
class, or when to reach for some other techniques:

1. If you’re modeling something that exists outside your program, like a real-
world object, a mathematical object, or a business process with well-
defined operations, then you might want to define a type class.

2. If your type class would only be used in one or two places, consider
passing a function instead of defining a new type class.
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3. If you would only have one instance of your type class, wait to define the
class until you need at least one more instance. The “rule of threes” is a
good one to follow—consider abstracting the behavior into a type class
after the third time you would rewrite code.

4. If you find that most of your instances are newtype wrappers around some
underlying type, then consider using a record that holds functions instead
of a type class. In the long run this will be easier to work with, and it more
correctly models the API you’ve designed.

Exercises

Writing Type Classes Representing Emptiness
Imagine that we wanted to create a type class that represents things that can
be “empty” for some definition of empty that will depend on the particular
type. In this exercise, we’ll call the type class Nullable and give it two functions:

• isNull should return True if a value is “empty”.
• null should return an “empty” value.

module Nullable where
import Prelude hiding (null)

class Nullable a where
isNull :: a -> Bool
null :: a

Create instances of this type class for:

1. Any Maybe a where a is Nullable
2. Any tuple, (a,b) where a and b are Nullable
3. Any list type

Adding a Default Null Test
Add a new Eq constraint to the definition of Nullable:

class Eq a => Nullable a

With this change in place, create a default implementation of isNull.

Deriving Nullable
In the first exercise in this chapter, you should have created an instance of
Nullable for Maybe and list values. There are a few ways that you could have
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approached writing these instances, but let’s look at some reasonable defini-
tions you might have used:

module DerivingNullable where
import Prelude hiding (null)
import qualified Prelude (null)

class Nullable a where
isNull :: a -> Bool
null :: a

instance Nullable [a] where
isNull = Prelude.null
null = []

instance Nullable (Maybe a) where
isNull Nothing = True
isNull _ = False
null = Nothing

These instances use a fairly intuitive definition of what should be considered
null: empty lists are null, as are Nothing values. What if we have an optional list
though?

λ isNull Nothing
True
λ isNull []
True
λ isNull (Just [])
False

In this case, it’s not clear whether Just [] should be considered a null value or
not; it depends entirely on the program we are writing. You can even imagine
that we might want different behavior in different parts of the same program.

In this exercise, try to create an API so that a user can make use of deriving via
to create Nullable instances of their own types. A user should be able to decide
whether Just [] should be considered a null value or not by selecting which
type they derive their instance from.
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CHAPTER 7

Understanding IO
Up to now, we’ve been glossing over one of the most fundamental operations
in programming and one of the major stumbling blocks people run into when
they start learning Haskell: getting information into and out of your program.

One of the most common reasons that people struggle with understanding
IO in Haskell is that the mechanics for how to do IO are taught without a
thorough explanation of the reasoning behind them. Without understanding
the reason for IO working the way it does, it can seem unreasonably compli-
cated. In this chapter, you’ll learn why IO in Haskell needs to work a bit dif-
ferently than it does in other languages. You’ll also develop intuition for how
to work with it so that it doesn’t feel so alien.

We’ll start this chapter by looking at the challenges that come with IO in
Haskell. You’ll learn how laziness and purity require a different approach to
IO in Haskell compared to other languages you might have used, and how
Haskell’s approach to IO manages to turn those challenges into a useful and
powerful framework for IO. After that, you’ll work through several short
examples of IO in Haskell to help you develop an intuition for how to work
with IO and make it seem less weird. Finally, you’ll learn how to use lazy IO
in practice. In the next chapter, we’ll move from these small examples to
building complete applications that make use of IO.

Talking About IO
“IO” can mean a lot of different things, so let’s start the discussion by estab-
lishing a bit of terminology. In this book, there are three different ways that
we’ll use the term “IO.” In the most general sense, we’ll use the term IO to
talk about the general concept of a program interacting with the outside world
by doing things like reading files or writing stuff to the screen. Exactly what
you’d expect.
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Slightly more specifically than general IO are IO Actions. You’ll learn more
about these throughout this chapter, but for now you can think of it like this:
IO is a general concept of doing some input or output. An IO action is a spe-
cific example of your program taking some action to do IO. In other words,
“reading a file” is IO, but a specific function that reads the contents of a file
is an IO action.

Finally, you’ll learn about the IO type. A value of type IO a represents some
computation that may have some side effects and will result in a value of type a.

Performing IO in a Pure, Lazy Language
Haskell’s approach to IO is different from other languages you might have
worked with because, as a pure and lazily evaluated language, it has some
constraints that don’t exist in other languages. Understanding the challenges
that come with doing IO in a pure and lazy language is the first step to
understanding how to do IO in Haskell. In this section, you’ll first learn about
how purity and laziness present challenges to doing IO. After that, you’ll learn
about IO and IO actions and how they address the challenges introduced by
purity and laziness.

Understanding the Problems with IO
Laziness and purity are interesting and useful properties of Haskell, but they
make IO particularly tricky. You learned about purity and laziness back in
Chapter 1, Getting Started with Haskell, on page 1, but at the time we didn’t
take the time to look more deeply at why they made IO challenging. Now that
you’re learning about IO, it’s going to be helpful to think about the challenges
that come about with pure lazy IO.

When we can’t interact with anything except our input values, or affect any-
thing except our output values, then reading or writing data from the world
outside of our program is going to present a challenge. Even if we were to
cheat just a little bit and say that we’ll allow a impurity just for the sake of
letting us do IO, we still have the problem of laziness. Since laziness requires
that we always use the result of some work before the work is actually done,
there’s a lot of IO that might never get executed, or might not get executed
in the order that we’d expect.

Haskell’s combination of laziness and purity present an interesting challenge
for managing IO. In fact, early versions of Haskell used an entirely different
approach to solving the problem of how to do IO. The solution that you’ll learn
about throughout the rest of this chapter has been part of Haskell since
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Haskell 98.1 The first time you see how IO is handled in Haskell programs it
can seem a bit complex, but as you work through the next few chapters you’ll
start to learn how IO works and it will eventually feel quite natural.

Keeping IO Pure
The IO type is how we keep track of the state of the real world in a Haskell
program. Understanding how IO works is an important insight that will help
you work with Haskell more effectively even when you aren’t actually doing IO.

Haskell being a pure language means we can’t just change the value of things,
and that includes changing the external environment. Instead of changing
the value of the external environment in place, we need to keep track of all
the changes we wanted to make. The changes that IO is keeping track of have
a special name: side effects. A side effect is anything that happens outside of
the function. For example, writing a file might return the number of bytes
written, but it has the side effect of changing the contents of the file on disk.
Even things like reading a file or looking at an environment variable have side
effects, because they rely on information outside of the function.

Generally you won’t see IO used by itself. Instead, it’s common to pair the side
effects with the value they were used to calculate. For example, if we wanted
to read the contents of a file as a string we would represent that as IO String.
The IO keeps track of the fact that the file is open and has been read, and the
String has the actual value of the data. We call values like this IO Actions. Most
of the time when we want to refer to any sort of IO action we’ll use a type
variable and write it IO a.

The way that IO keeps track of this is an implementation detail that we won’t
dive into in this book, but throughout this chapter you’ll learn enough about
IO to build a good intuition for how to use it effectively.

Keeping IO Lazy
Laziness can present some unique challenges for working with IO when we
want to do more than one IO Action. If you remember from back in Chapter
1, Getting Started with Haskell, on page 1 when we first introduced laziness,
you learned about how Haskell expressions are only computed when the
value is needed. This can make doing IO tricky because it means we need to
be careful about using the values from our IO actions to ensure that the
computations are actually carried out in the order we expect.

1. https://www.haskell.org/onlinereport/index98.html
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Let’s look at an example. Say that we wanted to write a program that writes
the string “Hello, Haskell” to /tmp/hello, then it reads the contents of /tmp/hello
and prints that to the screen. In a lot of languages we could write something
like:

writeReadFile =
writeFile "Hello, Haskell" "/tmp/hello"
let contents = readFile "/tmp/hello"
print contents

Ignoring the incorrect syntax for a moment, we have a basic problem with
writing code like this. Since we never look at the result of writeFile there’s no
way to be sure it would be called before readFile, so we could print whatever
data happened to be in the file when we started our program—or even worse,
our program might crash because the file didn’t already exist.

We can get around the problem of not knowing what order our IO operations
will run in if we ensure that the returned value of an IO action is used. To do
that, we have to make computing the value of an IO action necessary to run
the next IO action. To do that, we need to do two things: we need a way to
combine IO actions, and a way to sequence them.

Combining IO actions lets us build up a single IO action from smaller pieces.
If we wanted to copy a file, for example, we would want to perform two separate
IO actions: reading the contents of the source file, and writing that to the
destination file. Combining IO actions lets us represent those as a single
larger IO action.

When we combine our IO actions, it’s important that we keep in mind that
we care about the order in which we combine our IO actions. Sometimes,
when we’re adding or multiplying numbers for example, we don’t care which
order we do things in. If we compute a + b we’ll always get the same thing as
b + a for any numbers we care to choose for a and b. We call functions like (+)
where we can provide the arguments in any order commutative. Other times,
joining strings for instance, we do care about the order. The string "hello, " <>
"world" is going to be quite different from "world" <> "hello, ". Combining IO actions
isn’t commutative. When we copy a file, like in our earlier example, it matters
quite a lot that we read the contents of the source file before we write the
contents to our destination file.

So how do we go about doing this combining and sequencing of our IO actions?

Let’s start by writing a function that needs to sequence some IO actions, with
a comment representing the part we need to fill in. For this example, we’ll
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use a simple file copy function that reads data from an input file and writes
it to an output file:

copyFile :: FilePath -> FilePath -> IO ()
copyFile src dst =

(readFile src) {- interesting stuff here -} (writeFile dst)

In this example, we’re reading the contents of our file with readFile, and we’re
trying to write something with writeFile, but there’s clearly an interesting middle
bit that we’re missing.

We can get an idea of what needs to go in the middle of our function by
looking at the types of the functions we do know about. In this case, we have
this:

• readFile :: FilePath -> IO String
• writeFile :: String -> IO ()

We can also use a type hole to help us figure out what should go into our
missing part of the code:

copyFile :: FilePath -> FilePath -> IO ()
copyFile src dst =

(readFile src) `_` (writeFile dst)

The compiler gives us a lot more detail than we might want from this partic-
ular type hole, but the most relevant bit tells us what we might have expected
from the types of readFile and writeFile:

• Found hole: _ :: IO String -> (String -> IO ()) -> IO ()

We might not know how to write our missing function, but at least now we
know what its type signature should be. We’ll need to come up with a name
for our function too, so that we can write it. Since we want to use this function
to provide sequential ordering to our IO actions, let’s call it andThen. After all,
it makes a certain intuitive sense to read the code and say “read the source
file contents andThen write the destination file contents.”

We could start by making a function with exactly the type that our read and
write functions use, and the type hole suggested:

andThen :: IO String -> (String -> IO ()) -> IO ()

This is a little bit too restrictive though. As you might have guessed, this
general problem of making sure we can do one IO action and then another
comes up frequently, so we’ll pick a more general type for our function:

andThen :: IO a -> (a -> IO b) -> IO b
andThen = undefined
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You’ll learn how to implement andThen yourself in Ordering and Combining IO
Actions, on page 270, but for now let’s leave it undefined so that we can focus
on what we can learn from the types. Learning how to reason about the
behavior of a function based on its type signature is a very useful skill when
you’re working with Haskell.

Our type signature can tell us a lot about how our function needs to behave.
The first thing we can understand about it comes from looking at its return
type, IO b. The fact that it’s an IO action tells us that we’re doing something
that involves side effects, even if we don’t know for sure yet what those side
effects are. Even more enlightening is the fact that we’re returning an IO b.

Returning a type variable in a Haskell function tells us a lot about the struc-
ture of our function. Because b could be any sort of value, our function can’t
actually make one directly. We can only create an output value of type b if we
were passed in a b or a function returning a b.

If you think about a function that returns an Int, we might not necessarily
have to depend on any input in particular to return one. We could always
just return 5 or 42 or 197 no matter what input we were given. To return a
b though, what should we return? There’s no way our function can actually
decide.

Being unable to create a b directly takes us to our second parameter, a func-
tion a -> IO b. We can’t create an a any more than we could create a b, but now
we know that if we do have an a we could create an IO b from it. Luckily for
us, the first parameter of our function is an IO action, IO a.

So we must return an IO b, but the only way for our function to possibly create
one of those is by passing the a from our IO a into the function a -> IO b.
Somehow we need to separate out the value from an IO action and pass it to
a function that generates a new IO action, and then return an IO action with
the value we got back from the function call.

What does this have to do with sequencing? As long as the value of b depends
on the value of a, we have to actually compute a first. Since our a is part of
an IO action, all of the side effects that go along with a are going to be com-
puted before we can use it to generate our IO b. This dependency ensures that
our IO actions have to happen in the right sequence.

If our andThen function provides a way for us to sequence IO operations by
forcing values to depend on one another, what about combining them? It
turns out that the nature of IO means that we don’t actually have to do much
to combine the values at all, instead we can rely on the language runtime,
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operating system, and hardware hosting our program. In other word, side
effects are things that happen on the system in the real world. They are
combined implicitly by virtue of being part of a program that is running on
that system.

So, with our andThen function providing both a way to ensure our IO actions
happen in the right order, and trusting that they are combined the way that
we would expect, let’s use it in our copy function:

copyFile :: FilePath -> FilePath -> IO ()
copyFile src dst =

(readFile src) `andThen` (writeFile dst)

We can even string together many different actions into a much longer
statement. Imagine that instead of using readFile and writeFile we wanted to be
more explicit about how we were doing our file operations:

longCopy :: FilePath -> FilePath -> IO ()
longCopy src dst =

openFile src ReadMode `andThen`
hGetContents `andThen`
\contents ->

openFile dst WriteMode `andThen`
flip hPutStr contents

You might find yourself wondering, if we can combine and order our IO actions,
how we ever actually get a new IO action in the first place.

Let’s consider another example program. In this example, we’re going to write
a program that might print the contents of a file to the screen, but if the path
is /etc/passwd, we want to print out a special message:

noPassword :: FilePath -> IO String
noPassword path =

case path of
"/etc/passwd" -> newIO "hey, that's a secret!"
fname -> readFile fname

showFile path = noPassword path `andThen` putStrLn

In our example, if the user provides a valid filename we can use the IO action
that we get out of readFile, but if they ask us for the contents of /etc/passwd we
want to return the string “hey, that’s a secret!” The return type of our function
is IO String, so we have to return our message as part of an IO action, even
though in our special case we don’t actually have any side effects. To do that,
we’ll need to introduce a new function, newIO. In our example program, newIO
has the type newIO :: String -> IO String, but just like we did with andThen, we’ll want
to make our version a bit more generic than that:
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newIO :: a -> IO a
newIO = undefined

In the next section, we’ll talk about how IO works in real Haskell programs,
and you’ll learn how to write your own version of newIO and andThen using the
standard libraries that come with Haskell for doing IO.

Ordering and Combining IO Actions
In the last section, you learned how we could use a function like andThen :: IO
a -> (a -> IO b) -> IO b and newIO :: a -> IO a to work with IO in a pure lazy language.
Now you’ll have the opportunity to see how functions like this are implement-
ed, and if you follow along with the example you can write them yourself:

andThen :: IO a -> (a -> IO b) -> IO b
andThen = (>>=)

newIO :: a -> IO a
newIO = return

That might have been a little bit anticlimactic. It turns out that our implemen-
tations are actually just providing new names to the existing >>= operator
(pronounced bind) and the return function.

If you look at the types of (>>=) and return in ghci you’ll see that they are actu-
ally more general than just IO. In fact, these functions are defined for the
Monad type class. We’ll talk more about monads in Chapter 9, Introducing
Monads, on page 333, but for now let’s just focus on how they are useful for
IO specifically.

Before we dive into using >>= and return in a larger example, let’s look at a
couple of trivially small examples to get a feel for what it’s like to use them.

Let’s start with a simple function that works like read, but that returns the
parsed value inside of an IO action (the built-in readIO function from System.IO
provides a more robust version of this, but we’ll stick to our version for the
sake of demonstration right now).

Return and Pure

You may run across code that uses a function named pure instead
of return. You’ll learn more about the relationship between pure and
return later on in this book. For now, it’s enough to know that pure
is more general than return, but for IO they’ll behave the same way.

ioRead :: String -> IO Int
ioRead numString = return (read numString)
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We can use this function along with return to turn a String into an IO Int:

λ return "4" >>= ioRead
4
λ return "10" >>= ioRead
10

We can chain more than two functions together. If we write another function
to take our IO Int and turn it back into an IO String then we can translate back
and forth as many times as we want:

ioShow :: Int -> IO String
ioShow = return . show

Again, let’s go back over to our REPL and test out our new function. Now that
we can go from a string to an int and back, we can join our functions
together as much as we want:

λ return "4" >>= ioRead >>= ioShow >>= ioRead >>= ioShow
"4"
λ return "4" >>= ioRead >>= ioShow >>= ioRead >>= ioShow >>= ioRead
4

Adding more and more conversions between an int and a string is a pretty
good way to waste energy if your office is getting a bit chilly, but it’s hard to
really know that we’re actually doing anything since we’re always getting back
the same value we put in. Let’s write another function that will let us incre-
ment our integer. We’ll use the succ function from Prelude to increment our
number:

ioSucc :: Int -> IO Int
ioSucc = return . succ

λ return "1" >>= ioRead >>= ioSucc
2
λ return "1" >>= ioRead >>= ioSucc >>= ioSucc >>= ioShow
"3"

Look! We’ve just invented addition! As neat as addition is though, let’s turn
our attention to a more practically useful example: printing the contents of
a file to the screen. We’ll use a couple of functions from System.IO that we
glossed over in the last section:

• openFile :: FilePath -> IOMode -> IO Handle
takes a path to a file, and a mode like ReadMode or WriteMode, and returns
a Handle to a file
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• hClose :: Handle -> IO ()
Closes a file Handle. You should use hClose to close every handle that
you open with openFile. There are a number of utility functions to
manage this for you.

• hGetContents :: Handle -> IO String
takes a file handle and returns a string with the contents of that file

We’ll also be using putStrLn :: String -> IO () to write the contents of the string to
the screen.

Now that you understand how >>= works and how to chain together IO
commands, it’s not to hard to follow a real working example of how to print
a file’s contents to the screen:

doSomeFileStuff =
openFile "/tmp/foo.txt" ReadMode
>>= \handle -> hGetContents handle
>>= \contents -> putStrLn contents
>>= \_ -> hClose handle

Independently Sequencing IO Actions
The >>= function gives you a way to pass a value through some functions
while making sure that they are executed in some specific sequence, but
sometimes you might find that you don’t actually care about the value.

Imagine that you have several functions that have the type IO (), and you
wanted to run them in order. As an example, say we wanted to print several
different lines of text to the screen. At first we might try to use >>= to do this,
but we’ll get an error:

λ putStrLn "hello world" >>= putStrLn "nice to meet you" >>= putStrLn "goodbye"

<interactive>:16:28: error:
• Couldn't match expected type ‘() -> IO a0’

with actual type ‘IO ()’
• Possible cause: ‘putStrLn’ is applied to too many arguments
In the second argument of ‘(>>=)’, namely

‘putStrLn "nice to meet you"’
In the first argument of ‘(>>=)’, namely

‘putStrLn "hello world" >>= putStrLn "nice to meet you"’
In the expression:

putStrLn "hello world" >>= putStrLn "nice to meet you"
>>= putStrLn "goodbye"

<interactive>:16:60: error:
• Couldn't match expected type ‘a0 -> IO b’

with actual type ‘IO ()’
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• Possible cause: ‘putStrLn’ is applied to too many arguments
In the second argument of ‘(>>=)’, namely ‘putStrLn "goodbye"’
In the expression:

putStrLn "hello world" >>= putStrLn "nice to meet you"
>>= putStrLn "goodbye"

In an equation for ‘it’:
it
= putStrLn "hello world" >>= putStrLn "nice to meet you"

>>= putStrLn "goodbye"
• Relevant bindings include

it :: IO b (bound at <interactive>:16:1)

The problem here is that >>= wants something of type a -> IO b, but putStrLn
has the type IO (). One way to solve this is to use an intermediate function
that ignores its input. You saw an example of this in the last section when
you needed to ignore the output of putStrLn so that you could close the file
handle. As you can imagine, this is a common situation. For example, we will
have the same problem if we want to print two messages to the screen:

λ putStrLn "hello world" >>= \_ -> putStrLn "good night world"
hello world
good night world

This works when we just have one or two functions to join together, but it
gets tedious if we have too many things that we want to run in sequence.
Imagine if we had to write code like this:

showSomeText :: IO ()
showSomeText =

putStrLn "this is just some text"
>>= \_ -> putStrLn "there are many lines of it"
>>= \_ -> putStrLn "each one a new function"

You may start wondering if we could write a function to make this pattern
less verbose. In fact, we can do just that. Let’s call it thenCall:

thenCall :: IO a -> IO b -> IO b
thenCall a b = a >>= \_ -> b

showWithThenCall :: IO ()
showWithThenCall =

putStrLn "this is just some text"
`thenCall` putStrLn "there are many lines of it"
`thenCall` putStrLn "not one a new function"

This is a much nicer way of sequencing our IO actions, but it turns out that
we’ve once again recreated an existing wheel. The >> function, which also
comes from the Monad type class, works exactly like our thenCall function. Let’s
look at a final version of our example just to visualize how it works:
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showWithSeq :: IO ()
showWithSeq =

putStrLn "this is just some text"
>> putStrLn "there are many lines of it"
>> putStrLn "not one a new function"

Mapping IO Values with fmap
So far we’ve talked a lot about combining functions that both do IO, but we
haven’t talked about a common problem: what do you do when you have a
function that doesn’t know (or care) about IO, and you want to use it on an
IO value?

Let’s think about command line parsing, which can be one of the most com-
mon cases where we might run into this situation. Say we wanted to write
an application that would add up a list of integers the user provides as com-
mand line arguments. We can use the getArgs function from the System.Environment
module in base to get a list of all of the command line arguments as a list of
strings, but we’ll still need to convert those strings to integers and add them
up. Let’s say that we have a function that already knows how to take a list
of strings and give us back the sum of them:

sumArgs :: [String] -> Maybe Int

We’ll look at the full definition of sumArgs a bit later, but for now let’s just focus
on how we could call it with our command line arguments.

The first approach to come to mind is probably the one that we’ve been using
so far throughout this chapter. We can use a lambda function to unwrap our
IO value so that we can work with it:

module SumArguments where
import System.Environment (getArgs)

main :: IO ()
main =

getArgs
>>= \args -> return (sumArgs args)
>>= print

This works, but it’s a little bit verbose. We are forced to unnecessarily intro-
duce a new variable, and we’re dedicating a large portion of our code to the
ceremony of unwrapping and rewrapping our argument list in an IO action.

Next, you might think that we could make this a little shorter by eliminating
our explicit function. We can write this in a shorter, more pointfree style:
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main :: IO ()
main =

getArgs >>= return . sumArgs >>= print

This is shorter and a little bit easier to read but we’re still not clearly
expressing our intention. We use >>= for ordering IO actions, and combining
their side effects. Our sumArgs function is a pure function. It doesn’t rely on
the state of the real world when we call it, and it doesn’t cause any side effects,
so most of what we get from calling >>= is completely superfluous!

Bind and Return

Whenever you see return being used with >>= it’s a sign that you
might want to refactor your code. We’ll learn more about the
relationship between these two functions in Chapter 9, Introducing
Monads, on page 333, and you’ll be able to understand exactly why
this is. Until you’ve finished with that chapter, just remember that
whenever you see >>= return it’s a hint that you might want to think
about using fmap instead.

The fmap function comes from the Functor type class, and it helps us solve
exactly this problem, by giving us a way to apply a pure function to a value
inside of an IO action without having to use >>=. Let’s take a minute to review
how map works:

λ :type map
map :: (a -> b) -> [a] -> [b]
λ map (+1) [1..5]
[2,3,4,5,6]
λ map show [1..5]
["1","2","3","4","5"]
λ :type map show [1..5]
map show [1..5] :: [String]

The fmap function works almost exactly the same way, but it works on all
sorts of Functor instances, not just on lists. Let’s look at an example:

λ :type fmap
fmap :: Functor f => (a -> b) -> f a -> f b
λ :type fmap (+1) (return 1 :: IO Int)
fmap (+1) (return 1 :: IO Int) :: IO Int
λ fmap (+1) (return 1 :: IO Int)
2
λ :type fmap show (return 1 :: IO Int)
fmap show (return 1 :: IO Int) :: IO String
λ fmap show (return 1 :: IO Int)
"1"
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We will talk more about functors in Mapping Functors, on page 333, but for
now we’ll just look at how we can use fmap to make our IO actions more
readable.

We can use fmap to make our function more clear by expressing exactly what
we’re trying to do:

main =
fmap sumArgs getArgs >>= print

Not only is this code slightly shorter than our previous version, it more
clearly communicates what we want to do: get a list of arguments, transform
the list using a pure function, and print the transformed list to the screen.

We can use fmap for things other than IO too. In our actual implementation
of sumArgs, we can use fmap to avoid having to use an if statement or pattern
matching to deal with a Maybe value:

import Text.Read (readMaybe)

sumArgs :: [String] -> Maybe Int
sumArgs strArgs =

let intArgs = mapM readMaybe strArgs
in fmap sum intArgs

In this simple function, we are taking a list of strings and using readMaybe,
from base’s Text.Read module, to get back a Maybe [Int]. mapM is a utility function
that lets us take lists of monad values like [Maybe a] and [IO a] and convert them
to values like Maybe [a] and IO [a]. You’ll learn more about monad values soon
on page 333.

To keep consistency with other seemingly unpronounceable operators being
used for important things in Haskell, the operator (<$>) is a commonly used
alias for fmap. We can use it to rewrite our main function:

main =
sumArgs <$> getArgs >>= print

One thing you might notice about this example is how (<$>) here has a nice
symmetry with the ($) operator. In both cases you are applying a value to a
function. With $, the value you are applying is a normal Haskell value, and
with (<$>), the value being applied to the function is something like the result
of an IO action, or some other functor value.

You’ll notice both fmap and (<$>) are used regularly in Haskell programs. Some
code bases adopt a style of preferring one function or the other, but it’s
common to mix and match them to maximize readability. Throughout this
book we’ll use (<$>) more frequently than fmap. This is a purely stylistic choice,
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and you are encouraged to try writing your code with both variations of the
function to see which style you prefer.

Running IO in Real Applications
At the beginning of this chapter, you learned about laziness and what that
means for performing IO in Haskell applications. After that we looked at sev-
eral small examples of how to work with IO in Haskell, building up more
complex IO actions from smaller ones and creating programs that have useful
side effects. Although the examples we looked at should have helped you gain
an intuition for working with IO, so far we’ve managed to get away with
avoiding having to understand too much about the details of how IO is
working, and without having to think too much about the performance of our
application. In Haskell applications that do a lot of IO, it’s likely that sooner
rather than later you’ll encounter a scenario where laziness and performance
are significant concerns for how you structure your program.

In this section, we’ll look in more detail at how IO actions are evaluated in
Haskell applications, and what that means for the stability and performance
of your programs. You’ll also get some hands-on experience working with lazy
IO, and some of the bugs that can arise when laziness and IO interact in
unexpected ways.

When we have a basic IO action, like we might get from the getArgs function
we’ve been working with, it’s tempting to think like we’re working with a
strictly evaluated language and say that the function performs some IO and
returns a value. In the cases that we’ve seen so far that intuition even appears
to hold. In reality, this view of IO in Haskell is slightly incorrect and if we
don’t work to counter our first intuition we can introduce subtle bugs in our
program. Having a better understanding of IO will also make it easier to fully
understand the way IO is working as we continue through this chapter.

Let’s begin by taking a look back at some examples of how laziness works in
Haskell, and in particular what that means for IO actions in general. After
that we’ll look at some real-world examples of the interaction betwen laziness
and IO, and you’ll learn how to avoid errors introduced when IO actions are
too lazy.

Haskell expressions have a type that’s evaluated by the compiler when we’re
building the program, and it has a value that will be computed by the running
program when it’s needed. This is different from strict languages where the
value of an expression is calculated as soon as the expression is encountered
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or assigned to a variable. Remember from Chapter 1, Getting Started with
Haskell, on page 1 when we used this example:

ignoreUnevaluated :: Int
ignoreUnevaluated =

let infinity = sum [1..] in 12

We were able to create a the variable infinity and assign it to a computation
that would never finish, but we could still run the function. It turns out we
can do exactly the same thing with IO actions:

ignoreUnevaluatedIO :: IO ()
ignoreUnevaluatedIO =

let screamIntoTheVoid = putStrLn "quack"
in return ()

If you try running ignoreUnevaluatedIO you’ll notice that you don’t get any output.
Since we’re never looking at the value of screamIntoTheVoid it never gets computed,
never becomes part of the history of the real world that we’re returning, and
never outputs anything to the screen.

It’s not only the entire IO a that can go unevaluated. The side effects captured
in the IO action are evaluated separately from the value associated with the
IO action. Sometimes that value isn’t even evaluated at all. Let’s look at
another example to highlight how this works:

lazyIODemo :: IO ()
lazyIODemo =

let sayHello :: IO ()
sayHello = putStrLn "Hello"
raiseAMathError :: IO Int
raiseAMathError = putStrLn "I'm part of raiseAMathError"

>> return (1 `div` 0)
in sayHello
>> raiseAMathError
>> sayHello

In this example, we’re creating two IO actions, sayHello and raiseAMathError. We
use >> to sequence them into a single new IO action. The IO action that we’ve
named raiseAMathError is interesting. The IO portion is nothing unusual, but
the value we’re associating with it is an uncomputable value of type Int. If we
actually try to evaluate the expression 1 `div` 0 we would get a runtime excep-
tion caused by our attempt to divide by zero. Since we use (>>) we disregard
the value inside of the IO action, and so we never need to actually calculate
it. That means the error is never raised. The end result is that raiseAMathError
is an IO action that has perfectly normal every day side effects and also a
unevaluated expression for an uncomputable value.
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If you run lazyIODemo you might be surprised to find that there’s no exception
raised at all even though the side effects of raiseAMathError are evaluated and
the message is printed to the screen. This is because >> and >>= require that
any previous IO actions are evaluated before the current one. This makes
intuitive sense if you think about how we can’t read the contents of a file
before we open it. Less intuitively is that the >> and >>= functions don’t force
the evaluation of the value contained in the IO action. If you think about
reading a very large file from disk, this starts to make a little bit more sense.
While we want to make sure that the file exists and that we can open it, it is
reasonable to make sure we really need the contents of the file before we
actually do the work of reading it. After all, why should we read the whole file
if we only need to use the first few characters.

Understanding Laziness

It can be hard to understand exactly when and how values are
evaluated in Haskell. If you’re finding these examples a little
challenging to follow, consider bookmarking this section and
revisiting it after you’ve finished the chapter on mutable data on
page 365 where you’ll learn about how Haskell expressions are
evaluated in much more detail.

Next let’s look at an example of a program that might unexpectedly crash,
and see how better understanding IO actions and lazy evaluation can help
us rewrite this program so it no longer crashes. We’ll start by creating a
simple program that will create 500 files in /tmp/test/, creatively named with
the numbers 1 through 500, whose contents will be the file names. The
important parts here are that we have a lot of files, and they have some data
in them that we want to read. Our program will create the files, then read
them and write their contents to the screen. We’re using readFile and writeFile,
which are both provided by System.IO as part of the standard library, and as
you might guess they read and write a file. We’re also using mapM, which is a
function we’ll talk more about later in this chapter. For now, just know that
it works a lot like a special version of map that we can use for our IO actions.
Instead of getting [IO a] like we would with a regular map, mapM gives us IO [a],
so instead of getting many small IO actions containing a single value, we get
one big IO action and all of the values. In this example, we’ll include a few
extra type annotations that would normally be unnecessary, but they’ll help
you make sense of what’s going on as you are learning about IO.

makeAndReadFile :: Int -> IO String
makeAndReadFile fnumber =

let fname = "/tmp/test/" <> show fnumber
in writeFile fname fname >> readFile fname
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unsafe :: IO ()
unsafe =

let files = mapM makeAndReadFile [1..50000] :: IO [String]
in files >>= (putStrLn . show)

If you try to run this function, you are likely to get an error that looks some-
thing like this:

*** Exception: getCurrentDirectory:getWorkingDirectory:
resource exhausted (Too many open files)

The exact behavior of this example will depend on your system. You may be
able to reproduce the error with fewer files, or you might need more. On some
systems you might not be able to reproduce the error at all. The important
part of this example is demonstrating that what should have been a
straightforward program crashed unexpectedly. Isn’t that exactly what Haskell
is supposed to prevent?

This unexpected bug is caused because we didn’t account for the way that
lazy IO works in Haskell. When we call readFile we’re not actually going out to
the real world and reading the file at all; instead, we’re creating an unevalu-
ated expression that represents the contents of the file, and associating them
with a state in the real world where the file has been opened. None of the
actual work has been done yet. When we bind files to our expression putStrLn .
show we suddenly need to evaluate all of our strings, which means we need
to actually do the work of trying to open all of our files at once. Since readFile
doesn’t close the file handle until the contents of the file have been read, and
we’re now trying to open all of the files before we print them out, we end up
opening more files than the system will allow and crashing.

So what can we do about this? We are running out of file handles because
we are trying to open all of the files at once before we print anything out. If
we refactor our code so that each IO action both gets the file data and writes
it to the screen, then we can close the file before we move on to the next IO
action. We’ll start by creating a helper function, makeAndShow, that gets the file
contents and writes it to the screen:

makeAndShow :: Int -> IO ()
makeAndShow n =

makeAndReadFile n >>= putStrLn

You might at first think about making a very simple modification to our unsafe
function to use this new function:
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safe :: IO ()
safe =

mapM makeAndShow [1..500]

If you try to build that, you’ll realize it doesn’t quite work, because mapM
wants to give us a list of values. Since all of our values are just () there’s not
much sense in that. We could change the type of our function to IO [()] but
that’s a bit of a code smell. Let’s see if we can do better. We know that >> lets
us sequence IO actions without caring about the value, and we can use foldl
to reduce a list of values. We can put those two ideas together to reduce a
list down to a single IO action:

safe :: IO ()
safe =

foldl (\io id ->
io >> makeAndShow id

) (return ()) [1..500]

We start our fold with an empty IO action containing an initial value of ().
Then we reduce our list with >>, each time sequencing the previous IO action
with the current one, and discarding the results. In the end, we’re left with
a single IO action.

This pattern turns out to be a very common one, and there’s a built-in function
for it, called mapM_. We can use it to implement the final version of our function:

safe :: IO ()
safe = mapM_ makeAndShow [1..500]

Lazy IO, especially lazy file IO, is a common source of errors in Haskell
applications. Once you understand how IO works, and the impact of laziness,
you can proactively design your applications to avoid many of the common
pitfalls.

Summary
In this chapter, you learned about how to do IO in a purely functional lazy
language, including what IO actions are, how to combine them into larger
and more complex actions, and how to understand the way that they are
evaluated in running programs. In the next chapter, we’ll take these concepts
and put them to use to build a full application. Before you move on, take
some time to review the exercises at the end of the chapter and work through
a few of them. Understanding the basics of how IO works will be important
for your understanding of the rest of the content in this book.
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Exercises

Thinking About IO Types
1. Write a function that returns a value of type IO (IO String). What happens if

you try to use >>= with that? What if you want to print the string?

2. Using your function from the previous example, create a function that
has the type signature: IO (IO a) -> IO a.

3. Write a function that returns a value of type [IO a], and a second function
with the type [IO a] -> IO [a]. When might you use a function like that?

Building a Command Line Calculator
1. Write a program that reads in numbers from the command line and prints

the sum of the provided values.

2. Modify your previous program so that the first argument is an operation
(+, -, or *) and performs the supplied operation on the list of numbers.

Building a Word Replacement Utility
Write an application that will accept three arguments on the command line:

• path: The path to a file
• needle: A word to find in the input file
• replacement: A word to use as a replacement when printing the file

When a user runs your program, you should print out the contents of the file
at path, but replace all occurrences of needle with replacement in the output. To
make things easier, assume that you can use the words function and don’t
need to worry about handling multiple spaces or words that span lines.
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CHAPTER 8

Working with the Local System
With all programs, at some point or another you’ll find yourself needing to
interact with the local system. You’ve already done some of it in previous
chapters when we wrote a program that asked a user to type something in,
or when we printed some text to the screen, and in the last chapter, you
learned a lot about how IO really works in Haskell. But reading and writing
data from a terminal is just one small example of the many ways that you’ll
find yourself wanting to have your program interact with the real world.

In this chapter, we’ll focus on the most common ways that you might want
to have your program interact with the outside world. As we’re working through
the chapter, we’ll explore practical matters like how to read files from disk
and how to get command line arguments, and we’ll also explore the way that
Haskell handles these types of operations (you’ve already seen some hints of
this with the IO () type signature in main).

Building Applications with IO
In the last chapter, you learned about how Haskell handles IO by working
through several small examples, but it can be hard to understand how to
move from these smaller examples to building a complete application that
includes IO. In this chapter, we’ll use all of the material that we’ve covered
so far in this book and built a complete application, including IO. First, we’ll
look at a common design pattern for organizing IO in functional programs.
Next, we’ll build a complete Haskell application that does several different
kinds of IO, including command line argument handling, dealing with envi-
ronment variables, file IO, and interacting with external processes.
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Procedural Shell, Functional Core
One of the most common problems that people encounter when they first
start trying to write larger Haskell is programs is understanding how to
handle IO architecturally. Even when you understand the mechanics of how
IO works in the language, it can be hard to figure out how to apply those
ideas when you are building a complete program. The problem is that when
you are coming from a language where you can do IO at any time, you get
accustomed to writing programs that do IO as needed. If you visualize your
program as a call graph, any individual function in the call graph might do
a little bit of IO because it needs to look up a value from the environment,
make a network request, or write a file. In many cases, this is even considered
good architecture—encapsulating the implementation details of what type of
IO a function is doing means that the user doesn’t need to know, or think
about, any of those details.

In Haskell, this approach to designing applications can become a problem.
The issue is that IO actions in Haskell aren’t regular values. An IO action can
be combined with another IO action, but once we’ve introduced some IO we
can’t go back to the world of normal pure functions. In some ways this is a
terrible inconvenience, since most real applications will depend on a little bit
of IO, and in fact that IO is often used to bootstrap the application. On the
other hand, each call to IO is a potential failure scenario, and the inconve-
nience that we’re experiencing is often a case of Haskell focusing us to hon-
estly face the risk of failure that was always there in our programs anyway.

Thankfully, the problem of structuring a pure functional program that needs
to do some IO isn’t as hard as it might seem. There are several different
approaches to managing applications that need to mix pure code with side
effects. One of the most useful approaches is to make use of a common design
pattern that is frequently called “Procedural Shell, Functional Core.”

The “Procedural Shell, Functional Core” is aptly named. The idea is that most
of the IO that we do in our programs tends to happen at the “edges” of our
application. That is to say, we typically need to do some IO to collect the data
that we’re going to start processing in our program. Some examples of this
are things like reading the command line arguments, reading files, or making
some network requests. At the other end of our program, once it’s finished,
we want to do something with the output. This might mean writing some data
to the screen, writing a file, or sending some information to a database. This
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IO-heavy input and output forms the “procedural shell” of our application.
Between these two parts of our program, we need to do some work on the
input to translate it to the output. If we are careful to ensure that we are
collecting all of our input up front, and we don’t write any output until the
end, then this computation in the middle can be purely functional. This is
the “functional core” of our program.

This pattern of having a procedural shell and a functional core doesn’t just
happen once at the very top of our program though. As you’ll see in this
chapter, we can sometimes build the larger procedural shell by composing
IO actions that are themselves built using the same “procedural shell, func-
tional core” approach. Although we still need to consume these IO actions as
IO actions, by internally separating them out into procedural and functional
pieces we can reason about, and test, the code more easily.

Creating a Pager
A pager is a program that lets a user display text from a file one page at a
time. The term “pager” isn’t used very frequently these days, but if you’ve ever
used common command-line programs like less or man you’ve used a pager.

A pager is a great example of a small utility that will let you apply all of the
different concepts that you’ve been learning about to build a single complete
application that does something recognizable while still being small enough
to start and finish as you work through this chapter.

Fundamentally, our pager needs to let us do three things:

1. Output the contents of an ASCII or UTF8 encoded text file to the screen
2. Scroll the output backwards and forwards one page at a time
3. Display some metadata, like the file name and creation time

Setting Up the Application
We’ll start working on our application by creating a new project that has both
a library, where most of our logic will be, and an executable that will call out
to the library. There are a few additional dependencies we’ll need as we’re
working through this application. You can add the dependencies now and
we’ll look at them in more detail as we start to make use of them throughout
the chapter.

cabal-version: 2.4
name: hcat
version: 0.1.0.0
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library
hs-source-dirs: src
exposed-modules: HCat
build-depends: base

, bytestring
, text
, process
, directory
, time

default-language: Haskell2010

executable hcat
hs-source-dirs: app
main-is: Main.hs
build-depends: base, hcat
default-language: Haskell2010

Next, we need to create our basic application outline. That means we need to
create the files that we’ve listed in our cabal project: src/HCat.hs and app/Main.hs.

We’ll start our library, since we will be importing it into our executable. For
now, we’ll define a single function named runHCat. This function isn’t doing
anything yet, but adding it now ensures that we can call something from Main
and that will let us verify that our build environment is set up and working
correctly before we start writing more code:

module HCat where

runHCat :: IO ()
runHCat = return ()

Finally, let’s write Main. Like HCat this module is going to be pretty empty. The
only thing we want to to is to write a main function that calls runHCat:

module Main where
import HCat (runHCat)

main :: IO ()
main = HCat.runHCat

Once you have all of the pieces in place, you should be able to compile and
run your program with cabal run hcat. This will let you know that all of the pieces
are in place and working.

Viewing the Contents of an ASCII or UTF8 Encoded
Text File
Now that you have a basic application up and running, it’s time to make it
do something useful. We’ll add several features to our program throughout
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this chapter, but for now let’s focus on a single feature: displaying the contents
of a file to the screen. To do that we’ll need to:

1. Know which file the user wants to view
2. Read the contents of the file
3. Write the contents of the file to the screen

We’ll take each of these requirements in order. Once we’re done you’ll have
a program that works like a minimal version of the Unix cat command.

Reading a Filename from the Command Line
Before we can do anything with a file, like reading it, we need to know what
file we’re working with. For a command line pager, the most convenient way
to get a filename is to have the user pass it along as the first argument when
they run our program.

If you run the program directly, you can pass command line arguments to a
Haskell program the same way that you pass arguments to any other appli-
cation: by listing them right after the name of the program you want to run:

user@host$ hcat filename.txt

When you are actively working on a program, it’s more common to run the
application with cabal run. This lets you easily ensure that the program gets
recompiled when it needs to, so you don’t find yourself accidentally running
an older version. There are few things more frustrating than spending time
trying to figure out why a new feature isn’t working, or a bug didn’t get fixed,
only to realize that you forgot to recompile the program.

Passing command line arguments to a program you are running with cabal run
works almost exactly the same as passing command line arguments to any
other program. The difference is that when you are running a program with
cabal you need to handle both the arguments that you might want to pass
to cabal and the arguments that you might want to pass to your program.

Cabal handles this by treating all arguments as arguments to the cabal process
up until it encounters two dashes (--). Everything after the two dashes are
arguments to the program you are running:

user@host$ cabal run hcat -- filename.txt

Here, cabal is getting two arguments: run and hcat. Next, we pass in -- to end
the list of arguments to cabal and then add filename.txt which will be the first
argument to the program we’re running.
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We can pass in as many arguments as we’d like, but it won’t do us any good
until we update our program to look at them, so let’s update HCat to read the
arguments that have been passed into our program and print them out.

The System.Environment module from base comes with all of the functions that
we need to get information from the environment, including the command
line arguments that were passed in. Let’s add it to the import list:

import qualified System.Environment as Env

This module gives us getArgs, which is an IO action that’ll give us a list of strings
holding all the command line arguments that were passed in. Its type is:

getArgs :: IO [String]

We can see this in action by getting the list of arguments and then printing
them out:

runHCat :: IO ()
runHCat = Env.getArgs >>= print

Let’s run through a couple of examples just to get a feel for how this works.
We’ll start by passing in no arguments, and as you might expect we get back
an empty list. In some languages, when you get the list of command line
arguments, the first argument is always the name of the executable that was
called, but getArgs doesn’t do that; you’ll only get the list of arguments that
were passed to the program, not the name of the program. If we don’t pass
any arguments, our program will print out an empty list:

user@host$ cabal run hcat
[]

The specifics of how arguments are handled is an implementation detail of
your shell. Generally arguments are separated by spaces. Let’s pass in a
couple of arguments so that we can see that the list that gets printed out
does indeed match the argument list we’re providing:

user@host$ cabal run hcat -- foo 123
["foo","123"]

The getArgs function can handle arguments that contain spaces and special
characters. The ways you have to send arguments with spaces and special char-
acters will vary a bit depending on the shell that you’re using, but generally
if you pass in escaped or quoted arguments they’ll be handled as you would
expect.

user@host$ cabal run hcat -- foo 123 \"quoted\" "embedded space"
["foo","123","\"quoted\"","embedded space"]
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If you want to try testing this from ghci you might quickly run into a problem:
how can you pass commands to the program from ghci? The withArgs function
function will help you with both of those problems.

withArgs takes a list of strings and an IO action, for example, our runHCat action
that prints the arguments:

user@host$ cabal repl lib:hcat
λ import qualified System.Environment as Env
λ Env.withArgs ["foo", "123", "embedded spaces"] runHCat
["foo","123","embedded spaces"]

Being able to quickly test some of our code in ghci even when we’re dealing
with command line argument processing will make it easier to iterate on your
code as you are working through some of the examples early on in this
chapter.

Handling Command Line Arguments
Being able to read arguments from the command line is great, but printing
them out to the screen doesn’t help us much. We need to handle the arguments
that were passed in so we can do something useful with the filename.

Command line argument processing can turn into a complicated problem,
and for most applications you would write it makes sense to turn to one of
the several command line parsing libraries. These libraries often make use
of features that you won’t learn about until later on in this book, and the
process of building command line handling ourselves is instructive, so for
this example we’ll handle the parsing manually.

For now the only thing we want our program to do is to accept the name of
a file, read that file, and print its contents to the screen. To do that, we only
need to accept a single argument: the name of the file that we want to print.
Let’s start our implementation by writing a new function, handleArgs, that will
look at our command line arguments and return the path to the file that we
should open:

handleArgs :: IO FilePath
handleArgs =

head <$> Env.getArgs

The very first thing you might notice in this example is that the type of our
function is IO FilePath, not IO String. We can do this because FilePath is a type alias
for String. Using FilePath in our type here lets us remind ourselves that we’re
expecting the argument we get to be a path to some file, and not just an
arbitrary string.
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You might also notice that we’re again making use of the (<$>) function you
learned about earlier in this book. Like before, we’re using this so we can
apply a regular pure Haskell function, head in this case, to the value our IO
action will compute.

The end result is that handleArgs is an IO action that should get the first element
from the list of command line arguments that were passed into the program
when it was started.

Let’s update runHCat to call handleArgs so that we can see it in action.

runHCat :: IO ()
runHCat = handleArgs >>= print

With our new argument handling code in place, we expect that our program
will print out the first, and only the first, argument that gets passed to it.
Although we’re using the FilePath type, that’s just an alias for a regular String,
so we can still test our program for now using some placeholder values:

user@host$ cabal run hcat -- foo
"foo"
user@host$ cabal run hcat -- foo bar baz
"foo"

This is looking good. Whether we pass a single argument or several arguments,
we’re always printing out the first thing that was passed in. We do have a
problem with our current program though:

user@host$ cabal run hcat
hcat: Prelude.head: empty list

If we run our program with no arguments, we get a runtime error. An error
of some kind isn’t really a problem here—after all, there’s really no correct
behavior for the program to do if we don’t give it a file as input. Unfortunately,
the error that we’re generating isn’t at all helpful for the user. Let’s try to figure
out the problem with our program and then try to make some changes to
make our program more robust and able to provide better error messages.

The error that we’re seeing is a runtime exception that’s being raised because
we’ve tried to call the head function on an empty list. You may recall from
earlier in this book that this won’t work. The head function is partial and it’s
not well defined for empty lists. That means instead of getting some well-
defined error out when we call head, the whole program just blows up and
we’re left showing our users an exception. Let’s revisit handleArgs and see if we
can come up with a better approach.
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The problem we should think about is the exception that’s being raised. We’re
getting an error because we’re trying to pass an empty list to head. This makes
perfect sense; if the list we’re getting is the list of arguments, and we don’t
provide any arguments, then naturally the argument list will be empty.

Let’s think about the solution to our problem starting with the types. If we
think just about the part of the function that’s working correctly, it’s a function
from a non-empty list of strings to a FilePath. Unfortunately, we can’t ensure
that the user will always enter something at the command line, so we need
to expand the valid range of input values to account for potentially empty
lists. We don’t actually have to change anything here since we’re already
getting those empty lists—and that’s what’s causing our bug.

On the output side of our function, we can’t create a FilePath from an empty
list, but we can create an error message. That means we need to change our
return type. The values we are returning will be either an error message, or
the path to the file. With this change, the type of our function will become:

handleArgs :: IO (Either String FilePath)

Now we have a type for our function, and we need to write the code to make
it happen. Let’s start by adding a helper function as a where binding. This will
let us keep the code a bit more readable for now by keeping the part dealing
with IO separate from the part of the code doing error handing. We will call
our helper function parseArgs and it will handle the pure functional core of our
function:

handleArgs :: IO (Either String FilePath)
handleArgs =

-- placeholder
where

parseArgs argumentList =
case argumentList of

[] -> Left "Error: No arguments provided!"
(arg:args) -> Right arg

This version of parseArgs will use pattern matching to detect if the argument
list is empty. If so, we return an error message, and otherwise we return the
front of the list.

The last thing we have to do is call parseArgs with the input list that we get
when our program is running. We can call it with (<$>), the same way we
were previously calling head:
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handleArgs :: IO (Either String FilePath)
handleArgs =

parseArgs <$> Env.getArgs
where

parseArgs argumentList =
case argumentList of

(arg:args) -> Right arg
[] -> Left "no filename provided"

We still have one last problem to think about. We will return an error message
to our user if they don’t give us any files. If the user gives us more than one
file path though, we’ll silently discard all but the first item. That’s not a crash,
but it’s unexpected behavior that might not make a user very happy. Luckily,
now that we have a version of our argument handler that can safely deal with
the case where we don’t get any arguments, we also have a natural way to
extend our program to also handle the case where we got more than one
argument. See if you can update your version of the function to handle the
case where we get more than one argument, and then check to see if it
matches the example:

handleArgs :: IO (Either String FilePath)
handleArgs =

parseArgs <$> Env.getArgs
where

parseArgs argumentList =
case argumentList of

[fname] -> Right fname
[] -> Left "no filename provided"
_ -> Left "multiple files not supported"

With these changes we no longer crash, and we can provide the user with
helpful feedback if they give us some input that our program can’t handle.
Let’s look at it in action:

user@host$ cabal run hcat
Left "no filename provided"

user@host$ cabal run hcat -- file1 file2
Left "multiple files not supported"

user@host$ cabal run hcat -- file1
Right "file1"

This version of our program is certainly an improvement over the earlier ver-
sion. The program no longer crashes when we give it bad input, and the
messages we get are helpful. We can still improve the quality of the output
though. One problem with the current version of our program is that we’re
printing out the Left and Right constructors from our Either value. The meaning
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of these values are clear to us since we built the program, but it might confuse
a user. Let’s make one more change to the output so our messages are more
meaningful to a casual user.

Just like with handleArgs we’ll start by adding a new helper. Instead of a pure
function though, this helper will be a function that takes our result value and
returns IO action to print an appropriate message to the screen:

runHCat :: IO ()
runHCat =

-- placeholder, we'll fill this in shortly
where

displayMessage parsedArgument =
case parsedArgument of

Left errMessage ->
putStrLn $ "Error: " <> errMessage

Right filename ->
putStrLn $ "Opening file: " <> filename

In order to call displayMessage, we first need to parse our arguments, and then we
need to pass the parsed argument to displayMessage and print out the appropriate
value. That means we need to sequence the two IO actions using (>>=).

The final version of our newly updated runHCat function will look like this:

runHCat :: IO ()
runHCat =

handleArgs >>= displayMessage
where

displayMessage parsedArgument =
case parsedArgument of

Left errMessage ->
putStrLn $ "Error: " <> errMessage

Right filename ->
putStrLn $ "Opening file: " <> filename

Let’s see it in action by running through our list of examples:

user@host$ cabal run hcat -- file1
Opening file: file1

user@host$ cabal run hcat -- file1 file2
Error: multiple files not supported

user@host$ cabal run hcat
Error: no filename provided

Reading the Contents of a File
Now that we’ve updated our program to allow us to get a file name from the
command line, it’s time to start taking a look at how we can print the file to
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the screen. In the last chapter, you’ve already seen how we can use functions
like readFile to get the contents of a file. We can apply what we’ve learned
pretty trivially to get a working version of our application by reading the file
that we get passed in and then printing it out.

runHCat :: IO ()
runHCat =

handleArgs
>>= \fnameOrError ->
case fnameOrError of

Left err ->
putStrLn $ "Error processing: " <> err

Right fname ->
readFile fname >>= putStrLn

That’s it! If you build this you’ll see that program prints out the contents of the
file, or an error message, just as we expected. There are still a couple of
improvements that we can make to this program. In the rest of this section,
we’ll look at some ways that we can improve our application, including making
our code a bit more readable, handling IO errors, and using more efficient
strings.

Dealing with IO Exceptions

Let’s start by looking at handling IO exceptions. If you try running your
application and give it a path to a file that doesn’t exist, you might get some-
thing like this:

user@host$ cabal exec hcat -- /tmp/missing.file
*** Exception: /tmp/missing.hs:

openFile: does not exist (No such file or directory)

It shouldn’t be surprising that we’d get some kind of error when we try to
read a file that doesn’t exist. In this case, the error that we get is a particular
type of exception called an IOError. We’ve seen other kinds of exceptions before
in some of our examples earlier in this book, but until now we haven’t had a
good way to deal with them. In this section, we’ll focus specifically on IOError
type exceptions.

When we’re talking about IO errors there are two separate modules that we
care about. System.IO.Error is where the IOError type is defined, along with several
functions for creating, modifying, and handing IO errors. If you only care
about IO errors, you can get by with just this module.

The Control.Exception module provides a much more general set of tools for
working with all sorts of exceptions. The Exception type class is defined in this
module, and we can use it for IO errors as well as exceptions defined by other
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libraries, exceptions raised in pure functions, or even exceptions we want to
define ourselves.

In this section, we’ll focus on the exception handling tools provided by Con-
trol.Exception, but for now we’re going to limit ourselves to just looking at han-
dling IO exceptions. We’ll also look at how to generate custom IO exceptions
using the tools in System.IO.Error.

We’ll start by importing our modules:

import qualified Control.Exception as Exception
import qualified System.IO.Error as IOError

We’ll add some basic error handling to our runHCat. We’re not going to worry
about recovering from our error, but instead of a nasty message. we’ll make
the output friendlier and a bit nicer for the user to read.

The function that we want to use to catch an exception is, appropriately,
called catch. Its type is catch :: Exception e => IO a -> (e -> IO a) -> IO a. The Exception
type class is defined in Control.Exception. As you might expect, there is an instance
for IOError provided for us. The catch function takes an IO action and an error
handler. The error handler function tells catch what you want to do to recover
from the error. It needs to take the error as input, and return some IO action
that represents the recovered state.

Let’s take a look at how it works in practice:

runHCat :: IO ()
runHCat = Exception.catch

( handleArgs
>>= \arg ->

case arg of
Left err ->

putStrLn $ "Error processing: " <> err
Right fname ->

readFile fname >>= putStrLn
) handleErr
where

handleErr :: IOError -> IO ()
handleErr e = putStrLn "I ran into an error:" >> print e

In this example, we’ve taken our existing code and wrapped it in a call to catch.
If any error, like a failure to open a file, happens during that IO action our
handler, handleErr, will get called. Note that while we sometimes add type
annotations purely for readability, in this example the annotation is required
for handleErr so that the compiler knows what kind of Exception we’re catching.
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Code like our previous example is common in production Haskell applications,
but let’s look at some ways that we can refactor it to be a little nicer to read.
We’ll start by adding a second helper function called handleIOError:

handleIOError :: IO () -> IO ()
handleIOError ioAction = Exception.catch ioAction handleErr

Now we can pass our IO action into this handler function and have errors
caught and handled automatically:

runHCat :: IO ()
runHCat =

withErrorHandling $
handleArgs
>>= \arg ->

case arg of
Left err ->
putStrLn $ "Error processing: " <> err

Right fname ->
readFile fname >>= putStrLn

where
withErrorHandling :: IO () -> IO ()
withErrorHandling ioAction = Exception.catch ioAction handleErr
handleErr :: IOError -> IO ()
handleErr e = putStrLn "I ran into an error:" >> print e

The way that we’ve refactored the code here allows us to easily add some
context—in this case a context for error handling—to our function while still
keeping the body of our function focused on the logic we care about. This sort
of refactoring to add some context using a function like withSomeContext $ is a
common technique for making programs more readable. We’ll see some more
examples of this later on in this book.

We have one more refactoring opportunity that we can take to make the code
a bit nicer to read. Our handleArgs function isn’t raising an exception. Instead,
it’s returning an Either value to let us know if there’s been an error or not.
Using Either is a great way to handle errors, but in our case it leaves us with
a situation where we’re handling errors in two different ways. We could edit
handleArgs to raise an exception, but instead, let’s look at another option that
we could use even if we were using a function from a library that we don’t
control. We’ll create a function to turn an Either into an IO Error.

We’ll call our example function eitherToErr and give it the type eitherToErr :: Show
a => Either a b -> IO b. Handling our happy path where we have a Right value will
be straightforward, so let’s add that as well:
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eitherToErr :: Show a => Either a b -> IO b
eitherToErr (Right a) = return a

If we have a Left value, we’ll need to construct an IO exception. To do that,
we’ll use two functions from System.IO.Error. First, we need to add an IOError
value. We can do that with the userError function, which creates one from a
string. Once we have an error value, we need to throw it. When it comes to
raising an exception, we have three separate options:

1. ioError :: IOError -> IO a
2. throwIO :: Exception e => e -> IO a
3. throw :: Exception e => e -> a

The first of our functions, ioError, comes from the System.IO.Error module. It takes
an IOError and returns an IO action. The type of IO action that it returns can
be anything, since we’ll be raising an exception and never actually generating
a value of that type.

The second of our functions, throwIO, is a bit more general than ioError. Instead
of being limited to just IOError exceptions, throwIO can accept any type of
exception, but it still returns an IO action.

The throw function from Control.Exception is the most general of our functions. It
takes any kind of exception and raises it. Although we can use throw in place
of throwIO and our program will still compile, the functions work a bit differently.
The difference is tricky and we’ll gloss over the specifics for now, but in gen-
eral if you’re working with IO it’s best to use throwIO, since it will behave the
way you’d expect. Calls to throw may not always evaluate predictably when
you’re dealing with IO actions.

Now that we know how to raise an exception, we can write the last part of
our function. Since we want an IO error, we’ll call throwIO:

eitherToErr (Left e) =
Exception.throwIO . IOError.userError $ show e

Putting this all together, we can use eitherToErr to make our program look a bit
nicer. Notice in this final example we’ve also refactored our code to use the
TypeApplications extension to eliminate the need for a separate handleErr function:

runHCat :: IO ()
runHCat =

handleIOError $
handleArgs
>>= eitherToErr
>>= readFile
>>= putStrLn
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where
handleIOError :: IO () -> IO ()
handleIOError ioAction =

Exception.catch ioAction $
\e -> putStrLn "I ran into an error:" >> print @IOError e

eitherToErr :: Show a => Either a b -> IO b
eitherToErr (Right a) = return a
eitherToErr (Left e) =

Exception.throwIO . IOError.userError $ show e

Using this approach to handling exceptions, we can now write nice looking
compact and expressive code while still handling potential errors and corner
cases in our application.

Using Efficient Strings

The last change we’ll make to our basic application is a matter of efficiency.
So far, we’ve been using functions from the System.IO module to read and write
files using String values. This works for small applications without memory or
performance constraints, but for real-world applications, strings can introduce
unnecessary performance overhead. There are two common libraries that are
used in many Haskell applications that make it easier and more efficient to
work with strings.

The text1 package gives us access to tools for representing and processing
textual data. Working with Text is much more efficient than working with String
values, and Text works natively with Unicode text data, which can be a source
of errors when dealing with text represented as a String. In this chapter, we’ll
be using two modules from the text package:

import qualified Data.Text as Text
import qualified Data.Text.IO as TextIO

The bytestring2 package can help us deal with files more efficiently. Whereas
the text package is focused on representing textual data, bytestring provides
us with an efficient implementation of packed arrays of bytes. Byte arrays
are the way that strings are represented in languages like C, and strict
bytestrings can let us write Haskell applications with performance character-
istics similar to C applications, while still having access to an API that gives
us functions very similar to what we’d have when working with built-in String
types.

1. http://hackage.haskell.org/package/text
2. http://hackage.haskell.org/package/bytestring
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The bytestring package provides a few different modules that we’ll use occa-
sionally in this book. These are the ones that you’re most likely to see:

1. Data.ByteString
2. Data.ByteString.Lazy
3. Data.ByteString.Char8

These modules all provide very similar interfaces over slightly different sorts
of values, but with important differences. Data.ByteString.Lazy provides a lazily
evaluated bytestring. These are useful when you’re not sure how much data
you want to read off disk, or when you might not want all the data at once.
This module provides the functions toStrict and fromStrict to convert back and
forth between the standard strict ByteString values and the lazy ones. The
bytestrings defined in Data.ByteString.Char8 are defined as a set of Char values
instead of Word8 values. This means that you can easily convert back and
forth between a String and a Data.ByteString.Char8.ByteString.

ByteStrings and Unicode

It’s important to remember that ByteStrings only work with raw
bytes and ASCII text. This makes Data.ByteString.Char8 dangerous
because it gives you an interface that seems to work well with
string data, but can be subtly incorrect when you need to deal
with Unicode or other character encodings. In most cases, when
dealing with text you should use the text package. You can encodeUtf8
and decodeUtf8 from Data.Text.Encoding to convert back and forth
between ByteString and Text values. That said, Data.ByteString.Char8
can be useful when dealing with things like file formats that use
ASCII text.

For the rest of this chapter we’ll mostly be using Text values, with a couple of
exceptions that we’ll note as we come across them. For the moment we’ll add
Data.ByteString to our import list and we’ll get around to using it later on:

import qualified Data.ByteString as BS

The functions that we get from text and bytestring typically look and act the
same as their equivalent functions from System.IO except that they work with
Text and ByteString values instead of String values. For example, instead of readFile
:: FilePath -> IO String we can use TextIO.readFile :: FilePath -> IO Text.Text, and instead
of putStrLn :: String -> IO () we can use BS.putStrLn :: BS.ByteString -> IO (). In fact, with
just a couple of small changes we can update runHCat to be more efficient:

report erratum  •  discuss

Viewing the Contents of an ASCII or UTF8 Encoded Text File • 299

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


runHCat :: IO ()
runHCat =

handleIOError $
handleArgs
>>= eitherToErr
>>= TextIO.readFile
>>= TextIO.putStrLn

where
handleIOError :: IO () -> IO ()
handleIOError ioAction =

Exception.catch ioAction $
\e -> putStrLn "I ran into an error:" >> print @IOError e

We’ll continue to use bytestrings and text values throughout the rest of this
book. Using these more efficent libraries for handling binary and text data
can greatly improve the speed and memory requirements of any application
that you build.

Viewing Text One Page at a Time
Now that we have a program that can display the contents of a file directly
to the screen, it’s time to start adding pagination. In this section, we’ll update
our program so that we can scroll forward through the contents of a file one
page at a time. We need to let the user scroll at their own speed, so we’ll let
them press the spacebar to advance one page forward through the document.
When they scroll past the last page of the document we should exit the pro-
gram. We also want to let the user exit the program earlier if they find what
they are looking for, so we’ll let them press the q key at any point while they
are scrolling through the document to quit immediately.

You probably already have an intuitive idea for what we mean when we talk
about a “page of text,” but as we’re working on implementing pagination it’ll
help us to think more carefully about what a page of text is in the context of
our application. We’re not going to do any raw or low-level terminal IO, so
we’ll be working with individual lines of text. Most terminal emulators have
some notion of a dimension measured in a number of rows and columns of
fixed-width characters. When we are doing normal high-level terminal IO,
each row of text corresponds to a line of printed output, and each line of
output can have as many characters as the terminal has columns. If a line
of text has more characters than there are columns in the terminal, most
terminal emulators will do their own word wrapping. Terminal word wrapping
means that our program will have fewer visible lines of text available, since
some of the rows will have been taken up by wrapped lines, so we will need
to manually track the wrapping in our program to avoid bugs.
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When we put all of this togther, we can think of a page of text as a collection
of lines of text, each of which are at most some fixed number of characters
long.

Let’s start by writing a function to group the lines of text into individual pages.
We’ll call our function groupsOf. In order to group our lines of text into pages,
we need two things. First, we need to know how many lines of text there are
on a page. Second, we need a list of the lines of text that we want to group
into pages. We’ll represent a page of text as a list of lines on that page, and
we’ll return a list of pages, so the return type of our function will be a list of
lists of lines of text.

If we picked a concrete type for our function, we could end up with a type like:

groupsOf :: Int -> [Text.Text] -> [[Text.Text]]

Of course we might very well want to re-use this code to work with String values,
or some other type of text, so we’ll use a polymorphic type:

groupsOf :: Int -> [a] -> [[a]]

The algorithm that we’re going to use to group the pages together is pretty
straightforward. The splitAt function from Prelude will do the heavy lifting for
us. This function takes a number, n and a list, l, and returns a tuple containing
the first n elements of l and the remainder of the elements. We can see this
in action in ghci:

λ splitAt 0 [1..10]
([],[1,2,3,4,5,6,7,8,9,10])
λ splitAt 5 [1..10]
([1,2,3,4,5],[6,7,8,9,10])
λ splitAt 9 [1..10]
([1,2,3,4,5,6,7,8,9],[10])
λ splitAt 20 [1..10]
([1,2,3,4,5,6,7,8,9,10],[])

You can see from this example that, thankfully, splitAt handles the case where
we want to split at a point past the end of the list by just returning all of the
elements in the first element of the tuple, and an empty list in the second
element. This will simplify our code quite a bit.

Let’s start writing our groupsOf function by looking at the base case: an empty
list. If we don’t have any text to show, our list of pages of text will also be
empty:

groupsOf :: Int -> [a] -> [[a]]
groupsOf n [] = []
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Next let’s define the recursive case. We can think of the recursive definition
of our function like this: our paginated text is a page made up of the first n
lines of text, and the rest of the pages are the result of paginating the
remainder of the text:

groupsOf n elems =
let (hd, tl) = splitAt n elems
in hd : groupsOf n tl

Let’s open up ghci and test this out to make sure it works like we expect:

λ groupsOf 3 [1,2,3]
[[1,2,3]]
λ groupsOf 3 [1,2,3,4,5,6]
[[1,2,3],[4,5,6]]
λ groupsOf 3 [1,2,3,4,5,6,7]
[[1,2,3],[4,5,6],[7]]
λ groupsOf 10 [1,2,3,4,5,6,7]
[[1,2,3,4,5,6,7]]

There’s one edge case here that we haven’t tested: if we try to create groups
of size zero, our function will return an infinite list of empty lists. This
behavior makes sense; a group of size zero is an infinite list, and if we’re
never consuming any elements of the input list then we’ll never complete the
process of paginating it. You have a couple of options to deal with this. You
can choose to leave the behavior as is, pattern match and return an empty
list if the group size is zero, make the function a partial function and error to
return an error if the caller tries to pass in a group size of zero, or you could
change the type of the function to something like this:

groupsOf :: Int -> [a] -> Maybe [[a]]

Throughout this chapter, we’ll stick with the definition of the function as is,
but you are encouraged to experiment with other ways of writing this and see
if you find one that you like better.

Word Wrapping
Now we have a function that can group lines of text into pages, but it doesn’t
account for the fact that any given input string that it gets could be wider
than the terminal that we want to write to, leading to word wrapping. The
next thing that we’ll need to do is write something that will let us wrap a
string, or a Text in our case, so that it takes as many lines as needed to fit
into the available width.

We’ll implement word wrapping by adding a new function named wordWrap.
The function will take in the maximum width of a line of text, in characters,
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and will return a list of rows of text that are each at most that length. The
type of our function will be:

wordWrap :: Int -> Text.Text -> [Text.Text]

We’ll start by writing a “hard-wrapping” algorithm. This will simply break
apart lines of text at the maximum line length without respect for word
boundaries. The base case for this function will be when the length of the
line of text we have is less than, or equal to, the maximum length of a line.
In that case, our word-wrapped line of text will just be a single-element list
containing the original line of text:

wordWrap :: Int -> Text.Text -> [Text.Text]
wordWrap lineLength lineText

| Text.length lineText <= lineLength = [lineText]

If our line is longer than the maximum allowed line length, then we want to
take as many characters as we can, and then wrap the rest of the text
recursively. You might notice that the implementation here is similar to the
groupsOf function you implemented earlier:

wordWrap :: Int -> Text.Text -> [Text.Text]
wordWrap lineLength lineText

| Text.length lineText <= lineLength = [lineText]
| otherwise =

let (wrapped, unwrapped) = Text.splitAt lineLength lineText
in wrapped : wordWrap lineLength unwrapped

One problem with this version of the code is that it will word wrap without
respect to individual word boundaries. It would be convenient if we could
preferentially break lines apart on word boundaries so that a word would only
get separated if it were actually longer than the allowed width of the text.
Let’s look at how we can update our wrapping function to better handle word
boundaries.

The algorithm we’ll use is going to be a small modification to our existing
hard-wrapping algorithm. Our base case will remain the same, and for lines
that need to be wrapped we’ll still start by splitting the text at the maximum
word boundary. After we’ve split our input in the current line of text, we’ll
attempt to “soft wrap” the line. This helper function, which we’ll implement
soon, will try to find the last word boundary in the text. If it can find one, it
will return a tuple of the text before and after the word boundary. For example,
if we are going to try to soft wrap the string "word wrapping is tricky" we would end
up with the tuple ("word wrapping is", "tricky"). The wrapped part of the line will be
the first element of our tuple. The remainder of the line will get prepended to the
leftover text that we’ll wrap recursively.
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The soft wrapping itself will recursively walk “backwards” through the input
string. If the character we’re currently looking at is a space, then we’re at the
last possible word boundary and we’ll split the string. If we get all the way to
the beginning of the string and haven’t found a space, then the string must
not have any natural word boundaries, and we’ll have to fall back to using
the hard-wrapped input without any additional splitting.

Let’s look at the code, and then walk through an example:

wordWrap :: Int -> Text.Text -> [Text.Text]
wordWrap lineLength lineText

| Text.length lineText <= lineLength = [lineText]
| otherwise =

let
(candidate, nextLines) = Text.splitAt lineLength lineText
(firstLine, overflow) = softWrap candidate (Text.length candidate - 1)

in firstLine : wordWrap lineLength (overflow <> nextLines)
where

softWrap hardwrappedText textIndex
| textIndex <= 0 = (hardwrappedText,Text.empty)
| Text.index hardwrappedText textIndex == ' ' =

let (wrappedLine, rest) = Text.splitAt textIndex hardwrappedText
in (wrappedLine, Text.tail rest)

| otherwise = softWrap hardwrappedText (textIndex - 1)

To make it easier to understand this code, let’s step through what would
happen when we call this function and try to wrap the string "word wrapping is
tricky" to a length of six characters.

At first we’ll call our function with the two parameters:

wordWrap 6 "word wrapping is tricky"

Our base case will fail to match, because our text is more than six characters
long. That means we’ll begin by splitting our input into a candidate line of
six characters, and everything else that still needs to be wrapped. We can see
this in ghci:

λ Text.splitAt 6 "word wrapping is tricky"
("word w","rapping is tricky")

At this point, candidate is our candidate wrapped line, and it’s set to "word w".
The value of nextLines is "rapping is tricky". The next thing we do is call softWrap
with our candidate string and an index, which we’ll set to point at the end of
the string.

softWrap "word w" 5
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When we call softWrap our index is not less than, or equal to, zero, which would
indicate that the string can’t be soft wrapped. Next we’ll check to see if the
element at our current index is a space. Again, we can test this out in ghci:

λ Text.index "word w" 5
'w'

The index isn’t a space, so we’ll decrement the index and call softWrap recur-
sively:

softWrap "word w" 4

This time, our index test will find a space:

λ Text.index "word w" 4
' '

That means we’ve found a word break that we can soft wrap at. We’ll split
the string here into our new line that is soft wrapped at a line break, and the
rest of our text. If we test this out in ghci, we can see that the space we were
just looking for is at the start of our leftover string:

λ Text.splitAt 4 "word w"
("word"," w")

It would look bad to have all wrapped lines of text have a preceding space,
so we’ll drop that space off the string before we return it. Now we have firstLine
set to "word" and overflow set to "w". Now it’s time for our recursive call. If we fill
in the values for our variables we have:

"word" : wordWrap 6 ("w" <> "rapping is tricky")

Now we need to handle our recursive call to wrap the remainder of our text,
"wrapping is tricky". Once again, our initial string is too long and so we need to
split it:

λ Text.splitAt 6 "wrapping is tricky"
("wrappi","ng is tricky")

In this case, the first word of our line of text is longer than the entire length
of a line—it’s a good thing we accounted for that edge case! When we call
softWrap we’ll step backwards through the entire string looking for a space,
but of course we won’t find one this time, so we’ll hit our base case and return
the hard wrapped version, "wrappi". We’ll add that to our list of wrapped words
and make another recursive call:

"word" : "wrappi" : wordWrap 6 ("" <> "ng is tricky")
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The next two words that we handle will follow the same recursive process,
and in the end we’ll end up with a wrapped string:

λ wordWrap 6 "word wrapping is tricky"
["word","wrappi","ng is","tricky"]

Handling Terminal Dimensions
The last piece of our functional core is going to combine wordWrap and groupsOf
into a single function that will paginate text. To do this we’ll need to take in
both the width and height of the screen. To handle that, let’s create a new
record called ScreenDimensions to hold the rows and columns of the screen:

data ScreenDimensions = ScreenDimensions
{ screenRows :: Int
, screenColumns :: Int
} deriving Show

Now we’ll create a function called paginate that takes our screen dimensions
and the text that we want to show and breaks it into a list of pages that will
each fit on the screen comfortably. To do this, we’ll use Text.lines to turn our
large bytestring into a list of individual lines of text. concatMap, which you’ve
seen before, will let us map each of our lines of text into one or more lines of
word-wrapped text, which we can then group into pages worth of lines. As a
last step we’ll use Text.unlines to combine each of our pages back into a single
bytestring for easy printing:

paginate :: ScreenDimensions -> Text.Text -> [Text.Text]
paginate (ScreenDimensions rows cols) text =

let unwrappedLines = Text.lines text
wrappedLines = concatMap (wordWrap cols) unwrappedLines
pageLines = groupsOf rows wrappedLines

in map Text.unlines pageLines

Now that we’ve finished implementing the pure core of our feature, which will
let us easily paginate some text, it’s time to work on the procedural shell of
our application.

Calling External Applications
We’ve built a program that can fit some text to a screen given its dimensions,
but we’ve got one major missing piece: how do we get the dimensions of the
screen in the first place? One way that we could approach this is to simply
ask the user to input the information when they open the file, but this would
be an awful user experience. In most cases, there’s no easy way for a user to
have that information available, so they’d need to tediously count rows and
columns, or use a tool to give them the information. Another option would
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be to look for a library that gives us detailed terminal information. Low-level
terminal libraries can be complicated though, and building something that
works cross-platform can be a real challenge.

System Dependent Code Ahead

Some aspects of this section are not entirely portable across all
operating systems and configurations. When we call out to external
applications or interact with a shell in this section we will neces-
sarily have to make some assumptions about what kind of envi-
ronment the application is running in, and what tools are available.
All of the examples in this section have been tested on Linux and
should work well in most typical Linux, MacOS, and BSD environ-
ments. If you are using Windows, most of these examples should
work if you are using the Linux Subsystem for Windows. If you
find yourself in an environment where some of these examples do
not run as expected, you can experiment with the code to find
something that works better for your system, or use a virtual
machine so that you can experiment with the applications in a
supported environment.

There’s a tool named tput that’s available out of the box on most Unix-like
systems that we can use to look up the size of the terminal in a platform
independent way. Unfortunately for us though, tput is an executable program
and not a library, so to call it we’ll need to run the application and parse its
output. Dealing with calling external applications is something that comes
up from time to time when building systems, and so in this section, we’ll look
at how to create and manage the life cycle of external applications using the
process3 package.

At the core of the process package is a module, System.Process, that gives you the
tools to spawn and interact with subprocesses. This module defines a few
data types and includes several functions to help you work with external
processes. Most of the functionality provided by the System.Process is concerned
with giving you fine-grained control over processes, how they are spawned,
and how they run. For our purposes, we don’t need fine-grained control and
can make use of one of the higher level utility functions provided by the
library, readProcess:

readProcess :: FilePath -> [String] -> String -> IO String

3. https://hackage.haskell.org/package/process
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The readProcess function let’s us run a program by providing it the name of a
program or a path to the application we want to run, a list of arguments that
it should receive, and any input that should be available to it over stdin. When
readProcess is evaluated, the IO action will wait until the program has finished
executing and will return all of the output that the program wrote to stdout as
a String. Let’s look at an example in ghci:

λ import System.Process
λ readProcess "cal" ["01", "1972"] "" >>= putStrLn

January 1972
Su Mo Tu We Th Fr Sa

1
2 3 4 5 6 7 8
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

In this example, we’re calling the cal program to generate a calendar for Jan-
uary of the year 1972. You’ll notice that the first argument that we’re passing,
"cal", isn’t a full path. Most functions from the process library will use system-
specific conventions for handling calls to programs. For example, on Unix-
like systems, if you don’t provide a full path to a program, then it will look at
the PATH environment variable to figure out what directories should be searched
for applications. The second argument that we pass in is a list of arguments.
The cal program can be optionally given a date and it will generate a calendar
for the given month or year. Here we’re printing out a calendar of January,
1972, so we pass two arguments, "01" for January, and "1972" for the year 1972.
Finally, running an external program is an IO action, and so we are binding
the output of that IO action to the input of putStrLn using >>=.

For our pager application, we’ll need to use readProcess to call tput so that we
can get the size of our terminal. We also want to make sure that we’re only
going to call the command on systems where we expect it to be available. In
our application we’ll concern ourselves with Darwin and Linux systems. For
other systems, we’ll return a hard-coded default terminal size. The System.Info
package exports a string named os that contains the name of the current OS.
Putting all that together, here’s an example function to get the dimensions
of a terminal:

import System.Process (readProcess)
import qualified System.Info as SystemInfo
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getTerminalSize :: IO ScreenDimensions
getTerminalSize =

case SystemInfo.os of
"darwin" -> tputScreenDimensions
"linux" -> tputScreenDimensions
_other -> pure $ ScreenDimensions 25 80

where
tputScreenDimensions :: IO ScreenDimensions
tputScreenDimensions =
readProcess "tput" ["lines"] ""
>>= \lines ->

readProcess "tput" ["cols"] ""
>>= \cols ->

let lines' = read $ init lines
cols' = read $ init cols

in return $ ScreenDimensions lines' cols'

It’s a little bit unwieldy! Later on in this chapter, in Improving Readability
with Do Blocks, on page 321, you’ll learn how to refactor this function so that
it’s more readable. For now, we can still get a good idea of what’s happening
here. We’re starting out looking at the current OS, and returning a default
value if we’re not running on Darwin or Linux. Once the OS check is out of
the way, we call Process.readProcess twice, once to get the number of lines in the
terminal, and a second time to get the columns.

Like most processes, tput returns its output with a trailing newline. That’s
handy on an interactive terminal because it makes sure that the cursor gets
set back to the start of a line before your prompt is displayed, but when you’re
calling a process programatically you need to strip it off. The init function is
part of the standard library. It takes a list and returns all but the last element,
which in this case is the newline character. The last thing we do is pass our
string to read to convert the string into a number.

Our implementation is a bit fragile. The exercises section at the end of this
chapter has some opportunities for how you can make this code more robust.

Getting User Input
The final challenge that we have with getting our pager working is being able
to show a page based on user input. To do this, we’ll need to be able to read
keypresses to control what the application does and then take an action based
on the keypress. Let’s start by looking at how we can deal with representing
the user input, and then we’ll look at how to get the input. Finally, we’ll bring
it all together into a function that gets user input and acts on it accordingly.
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We’ve decided that we want to control our application by using space to go
to the next page and typing q to quit, so we’ll need to handle two separate
keypresses. For the sake of simplicity, we’ll ignore any other keypresses.

Once we’ve displayed a page of text, our program won’t do anything until the
user enters some text. Once we’ve gotten the text, if it’s input that we accept,
we’ll use that input to decide if we should continue on to the next page, or
cancel the application. We’ll encode those two choices into a new type called
ContinueCancel:

data ContinueCancel = Continue | Cancel deriving (Eq, Show)

Next we need to build a function that gets a ContinueCancel value inside of an
IO action. It won’t have any input (aside from what the user gives it), so its
type will be getContinue :: IO ContinueCancel.

Now that you understand how IO works, and have some experience reading
files and writing things to the screen, implementing this function shouldn’t
be too hard. We’ve worked with handles before to read and write to files.
Working with the shell is essentially the same thing. Instead of getting a file
handle by calling openFile we’ll just use the special handle stdin. The System.IO
module gives you three handles when your application starts: stdin, stdout, and
stderr. These all connect to the standard file descriptions for your application
just like you’d expect.

Since we’re concerned with keypresses instead of entire lines or files of text,
we’ll use the hGetChar function to get a single character at a time from stdin.
These are both exported by the System.IO module in base. A naive implementation
of our function might look something like this:

import System.IO

getContinue :: IO ContinueCancel
getContinue =

hGetChar stdin
>>= \input ->

case input of
' ' -> return Continue
'q' -> return Cancel

In the next section, we’ll bring everything together and start using this function
to display our paginated data. For now, we can temporarily modify our runHCat
function to call getContinue so that we can see it in action:

runHCat :: IO ()
runHCat =

putStrLn "do you want to Continue (space) or quit (q)" >>
getContinue >>=
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\cont ->
case cont of

Continue -> putStrLn "okay, continuing!" >> runHCat
Cancel -> putStrLn "goodbye!"

If you run the application right now you might notice that it doesn’t behave
like you would expect. You can press space or the q key as many times as
you want and nothing will happen. If you press enter, you might see several
lines of output come across the screen all at once, and then the program will
crash!

The spaces in this example are rendered as underscores to make it more
obvious what’s happening:

user@host$ cabal run hcat
do you want to Continue (space) or quit (q)
___
okay, continuing!
do you want to Continue (space) or quit (q)
okay, continuing!
do you want to Continue (space) or quit (q)
okay, continuing!
do you want to Continue (space) or quit (q)
hcat: src/HCat.hs:(338,7)-(340,24): Non-exhaustive patterns in case

The first problem we have is that the application isn’t reacting to our input
until we press enter. This is due to the fact that most terminals by default
are line buffered, which means that our program will get an entire line of text
at a time, and the terminal won’t actually send us anything that the user has
typed until they press enter. We can disable that by calling the hSetBuffering
function to configure the type of buffering that we want to use. We want to
get the keypresses as soon as the user enters them, so we’ll set it to NoBuffering.
With that change in place our function will now be:

getContinue :: IO ContinueCancel
getContinue =

hSetBuffering stdin NoBuffering
>> hGetChar stdin
>>= \input ->

case input of
' ' -> return Continue
'q' -> return Cancel

If we run our program again we’ll see slightly different behavior. Just like
before, let’s press the spacebar three times, and then press enter:

user@host$ cabal run hcat
do you want to Continue (space) or quit (q)
okay, continuing!
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do you want to Continue (space) or quit (q)
okay, continuing!

do you want to Continue (space) or quit (q)
okay, continuing!

do you want to Continue (space) or quit (q)

hcat: src/HCat.hs:(338,7)-(340,24): Non-exhaustive patterns in case

It’s looking a little better, but we still have a few problems. We display a
message to the user each time we press the spacebar now, but we’re still
crashing whenever we press enter. There’s also something wrong with the
output. Let’s address the crash first.

The crash message is telling us that we have a non-exhaustive pattern in our
case statement. The pattern that it’s referring to is at the end of our function,
where we’re looking for the space or q characters. It turns out by not including
anything to match the other characters that might get entered we’ve added
a bug, and not ignored them like we intend. Let’s make a small change to our
program. Instead of ignoring those characters, we’ll use a wildcard pattern
to match any other letters, and in that case we’ll simply recursively call get-
Continue, which will again wait for another keypress:

getContinue :: IO ContinueCancel
getContinue =

hSetBuffering stdin NoBuffering
>> hGetChar stdin
>>= \input ->

case input of
' ' -> return Continue
'q' -> return Cancel
_ -> getContinue

Let’s run the program again:

do you want to Continue (space) or quit (q)
okay, continuing!

do you want to Continue (space) or quit (q)

qgoodbye!

If we press space we again see the message right away, and if we press enter
our program no longer crashes! The output is still getting corrupted by our
keypresses though. The extra space in front of our “okay, continuing!” message
might be easy to overlook, but the “q” in front of our “goodbye!” message is
harder to ignore. The problem that we have is terminal echoing. By default, a
terminal will output any characters that the user types to the screen. In the
normal case that’s what we want, but for a tool like hcat where we are building
a more interactive UI, we want to suppress that. We can change this behavior
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by disabling terminal echoing, so the users keypresses don’t show up on the
screen. Just like with buffering, we can disable echo on stdin by calling hSetEcho:

getContinue :: IO ContinueCancel
getContinue =

hSetBuffering stdin NoBuffering
>> hSetEcho stdin False
>> hGetChar stdin
>>= \input ->

case input of
' ' -> return Continue
'q' -> return Cancel
_ -> getContinue

If you run the program now you’ll see that everything should behave as
expected. We can get user input without buffering, hide the keypresses so
that they don’t corrupt the output, and silently ignore any keypresses that
we’re not expecting. Now that we can control our pager, let’s move on to
connecting all of the pieces of our application togther.

Paging Our File
Now that we’ve gotten all of the individual components of our functional core
and procedural shell built, we can finally put everything together and paginate
a file for our user! In this section we’ll add one more function, and then make
some updates to runHCat to bring everything together.

Let’s start with our new function. We haven’t yet written a function to actually
print a page of text to the screen. We’ll create a new function called showPages
to show all of the pages of our document. Let’s take a look at the code first,
and then we can walk through it:

showPages :: [Text.Text] -> IO ()
showPages [] = return ()
showPages (page:pages) =

TextIO.putStrLn page
>> getContinue
>>= \input ->

case input of
Continue -> showPages pages
Cancel -> return ()

We’re using pattern matching here to detect when we’ve shown all of our
pages. For cases where we still have a page, our algorithm is pretty simple:
we print out the page, and then we wait for the user to make a keypress. If
they want to continue, we show the next page, and otherwise we just finish
our IO action.
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There’s one small quirk of our implementation that might be inconvenient:
when we view a short file, we don’t clear the screen. That means it might be
hard for a user to tell how much of the text they are looking at is from the
current file, and how much is just left from previous output to their terminal.

We can address this by clearing the screen before we print any page of text.
This can be done using ANSI terminal escape sequences, which are supported
in Linux, BSD, MacOS, and recent versions of Windows. You can look up the
details of the ANSI escape sequences online, or copy the example to get an
IO action that will print out the correct escape sequence to clear the screen
and reset the cursor position to the top-left of the console:

clearScreen :: IO ()
clearScreen =

BS.putStr "\^[[1J\^[[1;1H"

There are a couple of things that might get your attention when you look at
this code. First, you’ll notice we’re using a ByteString rather than a Text value.
We could use Text here, since both ByteString and Text support the types of values
that we want to use. In this case though, ByteString is semantically a better
choice. Even though we’re typing in a string, our escape sequence is logically
a raw byte sequence. We wouldn’t want it to be interpreted as Unicode if we
were to try to do something with the string later on.

OverloadedStrings

The OverloadedStrings extension has been available since GHC 6.8.1.
This extension isn’t enabled by default in either GHC2021 or
Haskell2010 so you’ll need to enable it manually. This is a popular
extension, and many projects enable it by default in their cabal
files so that it can be used across an entire codebase. This exten-
sion does introduce some changes that can make errors harder
to understand and, since it changes the meaning of string literals,
some existing projects might not compile when this extension
enabled.

Speaking of typing in a byte sequence, you might also notice that we’ve typed
in a literal string value here, but the compiler is accepting it as a ByteString
value rather than a normal String. If you copy this code into your example as-
is, you will find that you’ll get an error. Being able to type literal values for
string types like Text and ByteString is extremely convenient, and so we have a
language extension, OverloadedStrings, which allows us to do just that. Let’s add
it to the top of our file:

{-# LANGUAGE OverloadedStrings #-}
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Now that we have a way to clear the screen, we can update showPages:

showPages :: [Text.Text] -> IO ()
showPages [] = return ()
showPages (page:pages) =

clearScreen
>> TextIO.putStr page
>> getContinue
>>= \input ->

case input of
Continue -> showPages pages
Cancel -> return ()

Updating our main runHCat function is likewise pretty straightforward. We just
need to get the contents of our file, then paginate it before passing it to show-
Pages:

runHCat :: IO ()
runHCat =

handleArgs
>>= eitherToErr
>>= flip openFile ReadMode
>>= TextIO.hGetContents
>>= \contents ->

getTerminalSize >>= \termSize ->
let pages = paginate termSize contents
in showPages pages

If you build your application and run it now you’ll see how you can combine
a procedural shell with a functional core to combine pure functions, like our
word wrap and pagination function, with IO actions like getting user input,
handling errors, or calling external processes.

Take a moment to spend some time running the program and watching it
work. In the next section, we’ll build on the program to add some new capa-
bilities, and then we’ll look at ways that we can refactor the code to make it
easier to work with.

Adding a Status Line with Metadata
In the last section, you finished the second version of your file viewing appli-
cation. This version added the ability to scroll through a document a page at
a time, and would allow you to exit the program at any time. In this section,
we’re going to expand on our example program by including some additional
information in a status bar. There are a lot of pieces of information that we
could potentially add to a status bar, and you can choose to add some extra

report erratum  •  discuss

Adding a Status Line with Metadata • 315

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


information if you’d like while you are working through this section, but we’ll
focus our example on adding these:

1. The name of the file
2. The size of the file, in bytes
3. The last time the file was modified
4. The read, write, and execute permissions on the file
5. The current page that we’re viewing
6. The total number of pages in the document

To get some of this information we’ll need to add a dependency on couple of
common packages. The directory package will give us some cross-platform tools
for getting information about files and directories. We’ll use this package to
get information like the modification time and permissions. The time package
will give us the ability to format a timestamp to make it human readable.

import qualified Data.ByteString as BS
import qualified Data.Time.Clock as Clock
import qualified Data.Time.Format as TimeFormat
import qualified Data.Time.Clock.POSIX as PosixClock
import qualified System.Directory as Directory

Collecting Information
The first thing that we need to do is to create a record to hold all of the data
about our file that we want to show in the status line. In this example, we’ll
call our record FileInfo:

data FileInfo = FileInfo
{ filePath :: FilePath
, fileSize :: Int
, fileMTime :: Clock.UTCTime
, fileReadable :: Bool
, fileWriteable :: Bool
, fileExecutable :: Bool
} deriving Show

This record will hold all of the basic information about our file that we want
to display in the status bar. You’ll notice that we’re not including the current
or total page count. By omitting those fields, we can calculate a single FileInfo
for each file that we’re looking at, without having to regenerate a new value for
each page.

Next, let’s write a function to create a new FileInfo value. We’ll call the function
fileInfo. Let’s look at the implementation and then step through what it’s doing:

fileInfo :: FilePath -> IO FileInfo
fileInfo filePath =
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Directory.getPermissions filePath >>= \perms ->
Directory.getModificationTime filePath >>= \mtime ->

BS.readFile filePath >>= \contents ->
let size = BS.length contents
in return FileInfo

{ filePath = filePath
, fileSize = size
, fileMTime = mtime
, fileReadable = Directory.readable perms
, fileWriteable = Directory.writable perms
, fileExecutable = Directory.executable perms
}

You’ll notice our function returns an IO action with a FileInfo, since all the things
we’re doing to get information about the file are themselves IO actions. Most of the
work we’re doing in this function is calling some IO actions and packing their
results into a FileInfo record. We use getPermissions to get the permissions of the
file, and getModificationTime to get the time the file was last changed. There isn’t an
easy cross-platform way to look up the size of a file without reading it, but we
can read the contents into a ByteString and then look at the length of the ByteString
to get the size of the file. We’re using ByteString here instead of Text because we
are specifically interested in the number of bytes in the file. If we used Text here
we’d get the number of characters, which could be a lot smaller than the number
of bytes, especially if we were dealing with text in a language that typically
requires more than a single byte to represent a character. The last thing we do
is to use the helper functions readable, writable, and executable to get the specific
capabilities out of the Permissions type that is returned from getPermissions.

We can start manually testing our code now by calling fileInfo on different
paths. Let’s run through a couple of examples:

λ fileInfo "HCat.hs"
FileInfo { filePath = "HCat.hs"

, fileSize = 17033
, fileMTime = 2022-01-24 05:09:57.532796141 UTC
, fileReadable = True
, fileWriteable = True
, fileExecutable = False
}

λ fileInfo "../hcat.cabal"
FileInfo { filePath = "../hcat.cabal"

, fileSize = 731
, fileMTime = 2022-01-24 04:20:48.234890708 UTC
, fileReadable = True
, fileWriteable = True
, fileExecutable = False
}
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This function is serving its purpose of getting information about the contents
of a file, but the way it’s being displayed in ghci isn’t going to work for us if
we want to show a status line. For one thing, the formatting is all wrong to
fit onto a single line. For another, we are missing the current page that we’re
viewing and the overall page count, both key pieces of information we’ll want
to display on the status line.

Formatting the Status Line
For each page of our file output, we’d like to create a status line at the bottom
of the screen that shows some information from our FileInfo record, plus the
current and total page count. The status line also needs to be formatted to
take up only the amount of space available in a single row of text no matter
how wide or small the user’s terminal is.

To handle this, let’s add a new function that will take a FileInfo along with a ter-
minal width, total page count, and the current page. We’ll return a new Text
value that contains all the status information. Let’s call our function formatFileInfo:

formatFileInfo :: FileInfo -> Int -> Int -> Int -> Text.Text

Since we need to access all of the fields in our FileInfo record, we’ll use the
RecordWildCards extension to create bindings for all of them automatically:

formatFileInfo FileInfo{..} maxWidth totalPages currentPage =

We’ll use the printf function from the Text.Printf module in base to format our
actual status line string. Let’s start there and define all the fields we want to
show, and then work backwards and define them one at a time:

statusLine = Text.pack $
printf
"%s | permissions: %s | %d bytes | modified: %s | page: %d of %d"
filePath
permissionString
fileSize
timestamp
currentPage
totalPages

If you’ve used printf style functions in other languages, the syntax here might
look familiar to you. The printf function takes a format string that uses special
formatting symbols to represent values in a formatted string. You can find a
comprehensive list of the format specifiers in the Haddock documentation.4

In our status line we’re using %s, which is a placeholder for a String, and %d,

4. https://hackage.haskell.org/package/base-4.16.0.0/docs/Text-Printf.html#v:printf
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which is a placeholder for an Integral value, in our case Int. After the format
string we provide a list of values that will be used to fill in the format specifiers
in the order that they appear.

Several of these fields are freebies. The filePath and fileSize fields are taken
directly from our FileInfo record, and both currentPage and totalPages are being
passed into the function. That means we need to work backwards to define
both permissionString and timestamp.

Getting a value for permissionString is just a matter of a few if expressions:

permissionString =
[ if fileReadable then 'r' else '-'
, if fileWriteable then 'w' else '-'
, if fileExecutable then 'x' else '-' ]

If you find this confusing, remember that a String is just a list of Char values.

The next field we need to prepare is timestamp. This is going to be a human-
readable timestamp based on the modification time that’s stored in our FileInfo.
We’d like to show the timestamp in YYYY-MM-DD HH:MM:SS format. To do that we’ll
use the formatTime function from the Data.Time.Format module in the time package.
The formatTime takes a format string, a locale, and a UTCTime value and returns
a human-readable timestamp. Like printf, the format string we pass to formatTime
uses percent signs to indicate different kinds of values. You can look at the
full list in the Haddock documentation.5 We’ll use %F %T as our format string.
This will give us our desired YYYY-MM-DD HH:MM:SS formatted timestamp:

timestamp =
TimeFormat.formatTime TimeFormat.defaultTimeLocale "%F %T" fileMTime

With these two values, we can generate a status line. Let’s take a look in ghci
to see how our status line will look:

λ info <- fileInfo "./ex"
λ TextIO.putStrLn $ formatFileInfo info 100 5 2
./ex|permissions: r-x|5 bytes|modified: 1970-01-01 00:00:01|page: 2 of 5

This isn’t too bad, it gives us a lot of information in a pretty readable format.
There are a couple of changes we still should make: first, the status line could
potentially be wider than the size of the terminal that we are writing to. In
this case, we should truncate the status line so that we don’t accidentally
cause word wrapping. Second, we should do something to make the status
line more visually distinctive so that it’s easy for the user to tell the difference
between the status bar and the rest of the text.

5. https://hackage.haskell.org/package/time-1.12.1/docs/Data-Time-Format.html
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Let’s start by truncating the text in the status bar if it’s too long. Here’s the
algorithm that we’ll use:

• If the terminal is three or fewer characters wide, don’t display a status
line at all.

• If the length of the status line text is not longer than the width of the
display, show the text unmodified.

• If the length of the status line is longer than the display, replace the last
three characters in the status line with ellipses.

This algorithm translates pretty naturally to code:

truncateStatus statusLine
| maxWidth <= 3 = ""
| Text.length statusLine > maxWidth =

Text.take (maxWidth - 3) statusLine <> "..."
| otherwise = statusLine

Finally, we can decorate our text to make the status line more visually distinc-
tive. One way we can do that is to once again use ANSI terminal escape
sequences to invert the colors of the text. As before, feel free to copy the literal
escape codes from the example:

invertText inputStr =
let

reverseVideo = "\^[[7m"
resetVideo = "\^[[0m"

in reverseVideo <> inputStr <> resetVideo

Now that we can truncate and highlight the status bar, we just need to call those
functions on our printf formatted string. The final version of formatFileInfo is:

formatFileInfo :: FileInfo -> Int -> Int -> Int -> Text.Text
formatFileInfo FileInfo{..} maxWidth totalPages currentPage =

let
timestamp =

TimeFormat.formatTime TimeFormat.defaultTimeLocale "%F %T" fileMTime
permissionString =
[ if fileReadable then 'r' else '-'
, if fileWriteable then 'w' else '-'
, if fileExecutable then 'x' else '-' ]

statusLine = Text.pack $
printf
"%s | permissions: %s | %d bytes | modified: %s | page: %d of %d"
filePath
permissionString
fileSize
timestamp
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currentPage
totalPages

in invertText (truncateStatus statusLine)
where

invertText inputStr =
let

reverseVideo = "\^[[7m"
resetVideo = "\^[[0m"

in reverseVideo <> inputStr <> resetVideo
truncateStatus statusLine
| maxWidth <= 3 = ""
| Text.length statusLine > maxWidth =

Text.take (maxWidth - 3) statusLine <> "..."
| otherwise = statusLine

Improving Readability with Do Blocks
Now that we have a way to get information about a file and format it nicely,
the next step in building our application will be to integrate our new fileInfo
function into our pagination code. Before we move on to this next step though,
we’re going to take a slight detour and look at some ways that we can refactor
our code to be easier to read and write using a common Haskell feature called
do notation.

So far in this chapter we’ve built up IO actions using functions like >>= and
fmap that we learned about in the previous chapter. As our programs have
gotten longer and more sophisticated, you might have thought that our
applications have also grown less readable. If we look back at fileInfo as an
example, you’ll notice that each time you add a new field to the overall collec-
tion of information, you are following the same pattern of adding a new
function so that you can bind the result of an IO action:

fileInfo :: FilePath -> IO FileInfo
fileInfo filePath =

Directory.getPermissions filePath >>= \perms ->
Directory.getModificationTime filePath >>= \mtime ->

BS.readFile filePath >>= \contents ->
let size = BS.length contents
in return FileInfo

{ filePath = filePath
, fileSize = size
, fileMTime = mtime
, fileReadable = Directory.readable perms
, fileWriteable = Directory.writable perms
, fileExecutable = Directory.executable perms
}
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For three values that works well enough, but you can easily imagine how
adding a few more items to the file info would start to make the code completely
unreadable. As the procedural shells of our application start to do more, we
need a better way to write the code. In fact, you might find yourself writing
procedural style IO-heavy code and wishing that Haskell was a more proce-
dural language, or at least supported the syntax of common imperative pro-
gramming languages.

Haskell gives us the ability to do just that with do notation. do notation allows
us to use the do keyword to write imperative style blocks called “do blocks”.
The do notation is syntactic sugar. It doesn’t add new capabilities to the lan-
guage, but it gives you a nicer and more convenient way to write some types
of code. In fact, the Haskell compiler will automatically translate imperative
style code inside of do blocks into code that uses (>>=). There’s nothing that
you can write with do notation that you can’t write by calling >>=, but the
syntax of do blocks can be quite a bit nicer in some cases.

The quickest way to understand what a do block is doing is with a short
example. Let’s write a small function that uses do notation, and then we’ll
desugar it into the >>= style that you’ve been using throughout this chapter.
We’ll create a small function that will read the contents of two files, and then
write the lines back out to a third file, interleaving the lines from the first two:

interleaveLines :: String -> String -> String
interleaveLines a b =

unlines . concat . Data.List.transpose $ [lines a, lines b]

interleaveFiles :: FilePath -> FilePath -> FilePath -> IO String
interleaveFiles file1 file2 outFile = do

content1 <- readFile file1
content2 <- readFile file2
putStrLn "I've read two files"
let content3 = interleaveLines content1 content2
writeFile outFile content3
return content3

Even without digging into the details of do notation, you should be able to
follow what’s going on in the interleaveFiles function. The most obvious difference
in this code from code that we’ve been writing is the use of <- for variable
assignment. You might also have noticed that we have statements like putStrLn
and writeFile that just appear like they would in a procedural program. Finally,
you might notice the use of let without a corresponding in when we say let
content3 = interleaveLines content1 content2.

So why the new type of assignment, and why two different styles of assignment?
Before we dig into that, let’s look at a desugared version of the same function:
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bindInterleave :: FilePath -> FilePath -> FilePath -> IO String
bindInterleave file1 file2 outFile =

readFile file1
>>= \content1 ->
readFile file2
>>= \content2 -> putStrLn "I've read two files"
>>= \_ ->

let content3 = interleaveLines content1 content2
in writeFile outFile content3
>> return content3

Comparing these two versions of the function, we can see the syntactic sugar
of the do notation is just wrapping the pattern of using bind with anonymous
functions. In do blocks we use <- style assignment to bind a variable. Saying
foo <- bar inside of a do block is the same as saying bar >>= \foo -> ... in normal
Haskell notation.

In simple cases like this, do blocks can slightly improve the readability of our
program by removing the >>= \var -> from each line of our code, allowing us
to focus on the important parts of our application.

do blocks can also be nested, allowing us to create more complex applications
where using bind notation would quickly get unwieldy.

Refactoring fileInfo
Now that we know about do blocks, we can clean up some of our code. Let’s
start by looking at how we can refactor our fileInfo function to use do notation.
We will start by mechanically replacing the anonymous functions with do
bindings:

fileInfo :: FilePath -> IO FileInfo
fileInfo filePath = do

perms <- Directory.getPermissions filePath
mtime <- Directory.getModificationTime filePath
contents <- BS.readFile filePath
let size = BS.length contents
return FileInfo

{ filePath = filePath
, fileSize = size
, fileMTime = mtime
, fileReadable = Directory.readable perms
, fileWriteable = Directory.writable perms
, fileExecutable = Directory.executable perms
}

This version of the code is much more readable. We’ve removed a large amount
of indentation, and it’s easier to follow the important parts of the program
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since we’ve removed some extra syntax that made it a little harder to follow
along with the important parts of the program.

One additional small change we can make is to combine reading the contents
of the file and calculating its size, turning that into a single expression:

size <- BS.length <$> BS.readFile filePath

Using (<$>) this way is a common pattern that you’ll see frequently throughout
this book and in production Haskell code.

This style of do notation that we’ve just used follows the usual Haskell conven-
tion of using significant whitespace to manage the structure of our program.
All of the code inside of the do block is indented by a consistent number of
spaces to group the expressions together. If we are writing several let bindings
inside of a do block, we need to add an additional level of indentation to differ-
entiate the let bindings from the do expressions:

letBindingDo :: IO (Int,Int,Int)
letBindingDo = do

let
a = 1
b = 2
c = 3

return (a,b,c)

Uncommonly, you might also see code that uses an alternative form of do
notation that makes use of braces and semicolons instead of significant
whitespace. This style of code is equivalent to the more usual style with sig-
nificant whitespace, but it more closely resembles imperative code in a C-
family language. As an example:

fileInfo :: FilePath -> IO FileInfo
fileInfo filePath = do

{ perms <- Directory.getPermissions filePath;
mtime <- Directory.getModificationTime filePath;
size <- BS.length <$> BS.readFile filePath;
return FileInfo
{ filePath = filePath
, fileSize = size
, fileMTime = mtime
, fileReadable = Directory.readable perms
, fileWriteable = Directory.writable perms
, fileExecutable = Directory.executable perms
};

}

In this style of notation, each expression is terminated with a trailing semi-
colon, and the entire do block is wrapped in braces.
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Let expressions are also wrapped in braces:

letBindingBrackets :: IO (Int,Int,Int)
letBindingBrackets = do

{
let {
a = 1;
b = 2;
c = 3;
};
return (a,b,c);

}

The use of braces and semicolons here eliminates the need for significant
whitespace, although whitespace for the sake of formatting and making the
code more readable is still recommended.

This style of do notation is rarely used, and throughout the rest of the book
we’ll use the much more common significant whitespace style of code. This
bracket-and-semicolon style is mentioned here because you may run across
it in some popular papers and other pieces of documentation, and it does
occasionally show up in some open source projects.

In the next section, we’ll finish up our application by putting all of our new
functions together and using do notation to refactor runHCat. As you’re working
through that last section, keep an eye out for other refactoring opportunities.

Showing the Status Bar and Refactoring runHCat
Before we took a detour to learn about do notation, we had just finished adding
support for collecting metadata about the files that we are going to view, and
writing a function to display that information in a status bar. Now that we
know about do notation we’ll be able to take on a small bit of refactoring work
to make integrating this feature into our application easier.

The first thing that we need to do is to update our paginate function to add the
status bar to the end of each page of text that we generate. Let’s take a look
at the refactored version of paginate and then we can briefly walk through what
it’s doing:

paginate :: ScreenDimensions -> FileInfo -> Text.Text -> [Text.Text]
paginate (ScreenDimensions rows cols) finfo text =

let
rows' = rows - 1
wrappedLines = concatMap (wordWrap cols) (Text.lines text)
pages = map (Text.unlines . padTo rows') $ groupsOf rows' wrappedLines
pageCount = length pages
statusLines = map (formatFileInfo finfo cols pageCount) [1..pageCount]
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in zipWith (<>) pages statusLines
where

padTo :: Int -> [Text.Text] -> [Text.Text]
padTo lineCount rowsToPad =
take lineCount $ rowsToPad <> repeat ""

Our underlying pagination function remains the same as before, but we’ve
made a couple of changes. First, we’re taking the input text and generating
pages that are each a single line shorter than the size of our screen, using
rows'. This gives us room for the status bar at the bottom.

The next change is that we’re adding padding to the bottom of each page,
using padTo. In this example, we’re simply adding as many empty lines as
necessary to ensure that we have enough rows to fill the available vertical
space. Once we’ve padded out the list of rows, we use Text.unlines to transform
the collections of rows into a single page of text with newlines.

After generating the individual pages, we count the total number of pages
and use that count to generate a unique status line for each page. The line
zipWith (<>) pages statusLines will go through the list of pages and status lines and
append each status line to its corresponding page.

So far, so good; we can generate pages using file metadata now, but we need
to actually get the metadata and pass it into paginate. Right now we’re calling
paginate from runHCat, and runHCat has gotten a little hard to work with.

Recall from earlier in this chapter that our current version of runHCat is:

runHCat :: IO ()
runHCat =

handleArgs
>>= eitherToErr
>>= flip openFile ReadMode
>>= Text.hGetContents
>>= \contents ->

getTerminalSize >>= \termSize ->
let pages = paginate termSize contents
in showPages pages

We could continue with our current implementation and add a call to fileInfo
so that we can pass it along to paginate:

runHCat :: IO ()
runHCat =

handleArgs
>>= eitherToErr
>>= \targetFilePath ->

openFile targetFilePath ReadMode
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>>= TextIO.hGetContents
>>= \contents ->
getTerminalSize >>= \termSize ->

fileInfo targetFilePath >>= \finfo ->
let pages = paginate termSize finfo contents
in showPages pages

If you run this, you might notice a bug: the status line in our program should
be displaying, but on most systems it will actually be invisible until you try
to exit the program, at which point it will appear. The problem here is terminal
buffering. By default, our terminal will be using line-buffered output, which
means that each line of text will be printed when the terminal encounters a
newline. Our status line doesn’t end with a newline. If it did, we’d end up
losing an extra line in our terminal to displaying an empty line for the cursor.
Unfortunately, this means that the terminal won’t render our status line until
we exit the program. When our program exits, the shell takes back control
over standard output and flushes the output buffer of our program.

This is an easy fix. We can use hSetBuffering on stdout just like we did for stdin
when we wanted to read keypresses without forcing the user to press enter.
The problem is that our function is already quite unwieldy and we’re just
adding more layers to it. Without a refactor, the fixed version of runHCat will
have yet another layer of nesting:

runHCat :: IO ()
runHCat =

handleArgs
>>= eitherToErr
>>= \targetFilePath ->

openFile targetFilePath ReadMode
>>= TextIO.hGetContents
>>= \contents ->
getTerminalSize
>>= \termSize ->

hSetBuffering stdout NoBuffering
>> fileInfo targetFilePath
>>= \finfo ->

let pages = paginate termSize finfo contents
in showPages pages

It’s clear that this is starting to get unmanageable, so use what we’ve learned
about do notation to refactor our function. We’ll start with a completely
mechanical translation, replacing >>= \var -> with var <- and otherwise not
changing the structure of the code. That leaves us with this version which is
already looking quite a bit more readable:
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runHCat :: IO ()
runHCat = do

args <- handleArgs
targetFilePath <- eitherToErr args
fileHandle <- openFile targetFilePath ReadMode
contents <- TextIO.hGetContents fileHandle
termSize <- getTerminalSize
hSetBuffering stdout NoBuffering
finfo <- fileInfo targetFilePath
let pages = paginate termSize finfo contents
showPages pages

We’ve eliminated a lot of the nesting and it’s easier to focus on the calls that
are being made. There are still some small improvements that we can make
though. For one thing, we’ve completely eliminated all uses of >>= in this
version of the function, but we can combine do notation with >>= to make
code that’s easier to read than using either style alone.

For example, let’s consider the process of opening our file and reading the
contents. We are creating fileHandle as an intermediate variable, and then using
it immediately to pass as an argument to TextIO.hGetContents. We could use TextIO.
readFile here and eliminate the need for a file handle, but for the sake of the
example, let’s say we want to keep each step of this explicit.

In this case, the intermediate variable isn’t adding any value, but it does add
visual noise that can make it harder for us to see what’s going on. In an ideal
world, each binding in our do block would correspond to a meaningful IO
action that we want to do. We can often make that happen by combining
related IO actions using >>= and then binding the output.

The big drawback to using >>= in a do block is that we can naturally read do
bindings right to left, from the IO action to the variable being bound to its
output. On the other hand, we’ll typically read >>= from left to right. Switching
the direction that we need to read the code in the middle of a line introduces
some mental overhead.

To make this easier, we can use =<<. As you might expect from looking at it,
=<< behaves exactly like >>= but with the arguments reversed. This lets us
write a do binding that can entirely be read from right to left.

Let’s refactor our program again using this approach to see how it works in
practice:

runHCat :: IO ()
runHCat = do

targetFilePath <- eitherToErr =<< handleArgs
contents <- TextIO.hGetContents =<< openFile targetFilePath ReadMode
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termSize <- getTerminalSize
hSetBuffering stdout NoBuffering
finfo <- fileInfo targetFilePath
let pages = paginate termSize finfo contents
showPages pages

In cases where you have several IO actions that you want to chain together,
using =<< can also be difficult to use while keeping your code readable. In
cases like this, it can be convenient to use nested do blocks:

runHCat :: IO ()
runHCat = do

targetFilePath <- do
args <- handleArgs
eitherToErr args

contents <- do
handle <- openFile targetFilePath ReadMode
TextIO.hGetContents handle

termSize <- getTerminalSize
hSetBuffering stdout NoBuffering
finfo <- fileInfo targetFilePath
let pages = paginate termSize finfo contents
showPages pages

Nesting do blocks is an effective way to keep all relevant code in a single
function, but avoid having too many bindings in scope at the top level of your
function.

Summary
This has been a long chapter, and you should take a moment to congratulate
yourself for making it through. In this chapter, we’ve tackled some of the
biggest obstacles that people encounter when trying to learn how to use
Haskell in the real world, and we did it by focusing on real-world problems
and how to solve them practically using the tools that Haskell provides us.
Many of the concepts that you learned in this chapter will come up many
more times throughout the rest of the book, and throughout the programs
that you write. Take time to work through the exercises at the end of the
chapter, and to review the content if there are areas where you feel like you
might need a review. This stuff can be a little tricky and it’s okay to come
back later for a refresher!

Exercises
Now that you’ve built a complete application that handles IO and does some
real work, take a some time to work through these exercises. The concepts
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you learned in this chapter will be critical as you work through the rest of
the book, so it will be beneficial to ensure that you have a solid understanding
of the concepts here.

If you run into an exercise that you are having trouble completing, try going
back and reviewing this chapter, as well as some previous chapters. If you
are still having difficulty, move on to the next chapter but plan to come back
and revisit the exercise again later.

Handling Terminal Size Edge Cases
In our getTerminalSize function, there were several potential bugs that could
have occurred. Try addressing these edge cases:

• tput is missing
• tput doesn’t return a number
• tput output doesn’t contain a trailing newline

Do-ing Some Refactoring
Throughout most of this chapter we used bind syntax to implement our IO
actions. Look through some of the code you’ve written for opportunities to
refactor this application to use do notation where appropriate.

Refactoring to Use Text and ByteString
Many of the earlier exercises in this book used String instead of ByteString or
Text. Refactor some of your existing code to use these more efficient types
instead.

Viewing Multiple Files
Expand your application to allow the user to pass more than one file in on
the command line, and view them in order. Make sure to update the status
line when you go from showing one file to another.

Scrolling Backwards
Instead of just scrolling forward, update your application to allow the user to
scroll backwards as well.

Add a Help Screen
Allow the user to view help text on how to use the program by entering ? while
viewing a file. The program should clear the screen and display a help message.
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Once the user scrolls past the end of the help text or presses q, the program
should return them to where they were in the document.

Terminal Resizing
Sometimes users will want to resize their terminals while viewing a document.
This is a problem for our pager since we calculate the size of the terminal
exactly once at the start of the program. Update your program to allow the
user to resize the terminal while retaining their current place in the document
(the first word on the screen before resizing should still be the first word on
the screen after resizing, regardless of how much the screen space has
increased or decreased).

Note that detecting changes to the size of the terminal automatically will be
unreasonably difficult with the knowledge that you have learned so far in this
book, so you should handle terminal resizing by allowing the user to press a
key to reflow the text.
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CHAPTER 9

Introducing Monads
Over the last two chapters, you learned about the the Functor and Monad type
classes by writing code that interacted with the real world using IO. Although
IO is a great introduction to these type classes, there are many other ways
that Functor and Monad are useful that have nothing to do with side effects or IO.

Monad in particular has a bit of a reputation in Haskell as being both
extremely important as well as difficult to learn. Throughout this chapter,
you’ll work your way up to creating your own Monad type class and writing
your own Monad instances incrementally. In the process, you’ll learn the hows
and whys that will remove some of the mystery from the type class.

Before we can dive into the details of monads though, we’ll need to spend some
time with two other other important type classes, Functor and Applicative. These
three type classes form a hierarchy. All Monad instances must also have an
Applicative instance, and all Applicative instances must in turn also have a Functor
instance. We’ll start by working our way through these three type classes from
bottom to top, starting with Functor. You’ll have the chance to create your own
definitions for these type classes, and reimplement the instances for several
common types to get a handle on how they work. Finally, at the end of the
chapter we’ll look at the rules that govern how these instances should be
implemented so that they are well behaved and work as you would expect.

Mapping Functors
A Functor is a simple type class that has just two functions, fmap and <$. As
you’ll see throughout the rest of this book, Functor instances are extremely
common in Haskell, and you’re likely to work with this type class in nearly
every program you write. Before we dive into what a Functor is, let’s take a look
at how we could define the type class ourselves if it wasn’t already provided
for us in base:
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class Functor f where
fmap :: (a -> b) -> f a -> f b
(<$) :: a -> f b -> f a
(<$) a fb = fmap (const a) fb

In addition to the functions defined in the type class, the <$> function is also
defined in the standard library as an infix version of fmap. In most Haskell
code, you’ll see <$> being used at least as often as fmap, if not more so. Let’s
go ahead and add it to our example code:

infixl 4 <$>
(<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap

To understand what a Functor is, let’s start by looking at what it does. The fmap
function is the important function to think about when we’re trying to
understand Functor. Although (<$) is useful from time to time, it can be imple-
mented in terms of fmap and understanding it doesn’t really bring us a lot
closer to understanding what a functor is.

The type of fmap is:

fmap :: (a -> b) -> f a -> f b

The type of fmap might look familiar; it’s very similar to the type of the map
function that you’ve been using for some time now:

map :: (a -> b) -> [a] -> [b]

This isn’t a coincidence at all! In fact, lists are functors and the definition of
fmap for a list is just map.

What can this similarity between map and fmap start to tell us about Functor?
For one thing, it can help us start to understand that, just like map is about
being able to work with the individual elements of a list without needing to
be concerned about the overall shape or structure of the list, fmap gives us a
way to work with values of anything that has a valid Functor instance without
having to worry about whatever definition of structure is meaningful to the
type we happen to be dealing with at the time.

Another equivalent way of thinking about Functor is to think of values as rep-
resenting a “computation” or a “program.” A value like [Int] is a computation
that will generate several outputs, whereas Maybe Int is a computation that
might not generate a value at all, and IO Int is a computation that will generate
an Int but might also have some real-world side effects. In this view of the
world, a Functor is a computation that allows us to change the type of result
that it will generate by passing it a function.
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Structure of Types

You can think of the structure of a value as its general “shape.” For example, if you
think of a list, the number and order of its elements provide its shape. If we have a
list of numbers, we can convert them to strings, or add five to all of them without
changing the number or order of the arguments. Another name for pattern matching
is “destructuring,” and you can use this to get an intuition about what structure
means. When you could pattern match on something, for example, on a Maybe value,
you’re often matching on the structure.

The “structural” and “computational” views of Functor, as well as Applicative and
Monad, are interchangeable. Whichever view of the problem you take, it won’t
change the way you approach code. Picking one view or another can, however,
make it a bit easier to figure out what code to write, since different problems
might lend themselves better to one view or another. Generally, in this book
we’ll prefer to take the structural view of things when we can, but throughout
this chapter we’ll examine both the structural and computational meaning
of the type classes we’re looking at so that you’ll be prepared no matter what
sort of problem comes along.

So, now that we have a general understanding of what they are, let’s look at
a couple of examples of creating instances of the Functor type class. We’ll start
with our old friend Maybe. If we think about what it would mean to “map” over
a Maybe, we could say that one reasonable definition would be to apply a
function to a value if we have one. Let’s take a look at how we could write
fmap for Maybe:

data Maybe a = Nothing | Just a
instance Functor Maybe where

fmap _ Nothing = Nothing
fmap f (Just a) = Just (f a)

Our implementation of fmap lines up with our idea of what mapping means
for a Maybe value. If we have Nothing then we just return Nothing, but if we have
some value, then we apply our function to that value. If you load up ghci we
can test this out (don’t worry about writing this code yourself, the standard
library provides a Functor instance for Maybe for you already). In the following
examples, we’ll use a mixture of both fmap and <$> so you can see how they
each look when they are being used:

-- Show the value, if there is one
λ show <$> Just 1
Just "1"
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-- Increment the value, if there is one
λ (+1) <$> Just 1
Just 2

-- If there's a value, create a tuple of that value and its successor
λ (\a -> (a, succ a)) <$> Just 9
Just (9, 10)

-- If we try to increment the value inside of Nothing, we still get Nothing
λ fmap (+1) Nothing
Nothing

-- Reverse the worder of words in a string, if we have one
λ (unwords . reverse . words) <$> Just "hello, world"
Just "world hello,"

-- Reversing the words in Nothing safely returns Nothing
λ fmap (unwords . reverse . words) Nothing
Nothing

-- The <$ function replaces the value with a different value
λ True <$ Just 4
Just True

-- If we replace the value inside of Nothing, we still get nothing
λ ("peanut butter", "jelly") <$ Nothing
Nothing

-- Even if we operate on a Nothing value, the types still change as expected
λ let nothing = Nothing :: Maybe Int
λ :type nothing
nothing :: Maybe Int
λ :type (True <$ Nothing)
(True <$ Nothing) :: Maybe Bool

Let’s look at another example of something that implements the Functor type
class in a similar way: lists. The standard library provides an implementation
of Functor for lists using map, but let’s write our own so that we can better get
a feel for what’s happening. We’ll begin by creating a new list type, and adding
a couple of utility functions to make it easier to work with:

data List a = Empty | List a (List a)

toList :: [a] -> List a
toList [] = Empty
toList (a:as) = List a (toList as)

fromList :: List a -> [a]
fromList Empty = []
fromList (List a as) = a : fromList as

The Functor instance for our list ends up looking quite a lot like the one we
defined for Maybe. Calling fmap on an Empty list returns an Empty list, just like
calling fmap on Nothing returns Nothing. When we have a non-empty list, we apply
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our function to the head of our list, and then fmap the rest of the list recursively.
Let’s see what it looks like in code:

instance Functor List where
fmap _ Empty = Empty
fmap f (List a as) = List (f a) (fmap f as)

Like with our Maybe example, we’ll use the built-in standard library list and
its Functor instance to visualize how this works in practice. Try it out with your
own custom List type too.

-- map the successor function over all the elements in the list
λ succ <$> [1..5]
[2,3,4,5,6]

-- map then show function over all the elements in the list
λ show <$> [1..5]
["1","2","3","4","5"]

-- replease every element in the list with True
λ True <$ [1..5]
[True,True,True,True,True]

-- Replicate each element of the list 3 times
λ replicate 3 <$> [1,2,3]
[[1,1,1],[2,2,2],[3,3,3]]

-- Replicate each element of the list and map the successor function to it
λ (succ <$>) . replicate 3 <$> [1,2,3]
[[2,2,2],[3,3,3],[4,4,4]]

-- Replicate each element of the list and map the successor function to it
-- then show the list
λ show . (succ <$>) . replicate 3 <$> [1,2,3]
["[2,2,2]","[3,3,3]","[4,4,4]"]

-- Replicate each element of the list and map a function that shows the the
-- successor of it
λ (show . succ <$>) . replicate 3 <$> [1,2,3]
[["2","2","2"],["3","3","3"],["4","4","4"]]

Another common type that has Functor instances is Either. As a reminder, we
can write our own definition of Either this way:

data Either a b = Left a | Right b

The instance for Either is a little bit different from what we’ve seen so far with
Maybe and lists. Both of those types have a single type parameter, but Either
has two type parameters. What does that mean for our Functor instance? It
means that we can’t just go and create an instance of Functor directly, or we’ll
get an error that looks something like this:
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Either.hs:12:18: error:
• Expecting one more argument to ‘Either’
Expected kind ‘* -> *’, but ‘Either’ has kind ‘* -> * -> *’

• In the first argument of ‘Functor’, namely ‘Either’
In the instance declaration for ‘Functor Either’

|
12 | instance Functor Either where

| ^^^^^^

This error might look a bit weird at first, because it’s the first time we’ve run
into a problem with Kinds. You can think of a Kind as “the type of a type.”
Just like functions have different types if they take different numbers of parame-
ters, a type will have a different Kind if it has a different number of type
parameters.

We can look at the kind of a type in ghci using the :kind command. Let’s look
at the kinds of a couple of types to understand what’s going on a bit better.

The kind of a normal type with no parameters, like an Int or a String is *:

λ :kind Int
Int :: *

λ :kind String
String :: *

The kind of a type that has been given all of its type parameters is also *.
You’ll sometimes see types like this be referred to as fully saturated:

λ :kind Maybe Int
Maybe Int :: *

λ :kind [String]
[String] :: *

λ :kind Either String Int
Either String Int :: *

λ :kind (Int -> Bool)
(Int -> Bool) :: *

On the other hand, a type that still needs a type parameter will have the kind
* -> *. You’ll notice that this looks a lot like the syntax we use for functions,
and that’s a good intuition. We can think of types like this as functions that
take a type as a parameter and return a type:

λ :kind Maybe
Maybe :: * -> *

λ :kind []
[] :: * -> *
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λ :kind Either String
Either String :: * -> *

λ :kind (forall a. a -> Int)
(forall a. a -> Int) :: *

And just like a function that takes two parameters will have a different type
than a function that takes one parameter, a type constructor that takes two
parameters will have a different kind than a type constructor that takes a
single parameter. For example, let’s compare the kinds of Maybe, which take
a single type parameter, to the kind of Either, which takes two type parameters:

λ :kind Maybe
Maybe :: * -> *

λ :kind Either
Either :: * -> * -> *

If we look at the type of fmap, we’re talking about a type that takes a single
type parameter, and that means that its kind has to be * -> *.

fmap :: (a -> b) -> m a -> m b

So, when we try to create an instance of Functor using Either, which has the
kind * -> * -> *, the compiler will let us know that we can’t do that, because
the kind of Either doesn’t match the kind that it was expecting.

So, what do we do? If we apply a type to Either then we’ll get a type with the
kind that we need. Of course, we don’t want to pick any specific type, but we
can use a type variable to allow anything for the first type parameter:

instance Functor (Either a) where

If we think back to the type of fmap, we had a type variable, m, that had the
kind * -> *. In this case, we’re going to substitute m for Either a, so the type of
fmap would be:

fmap :: (b -> c) -> (Either a) b -> (Either a) c

The parentheses around (Either a) here are to illustrate how we’ve replaced m
with Either a. Normally we’d write:

fmap :: (b -> c) -> Either a b -> Either a c

So, applying a type variable lets us get the right kind, and create a Functor
instance for Either. What, if anything, does this mean about how we will
implement the instance?

In the case of Either, where the first type parameter corresponds to Left values,
and the second type parameter corresponds to Right values, it means that fmap
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is only going to operate on Right values. Much like how fmap ignores Nothing
values for Maybe, it will ignore Left values for Either a. Knowing that, our imple-
mentation is short and looks a lot like the instance we defined for Maybe:

instance Functor (Either a) where
fmap f (Left a) = Left a
fmap f (Right a) = Right (f a)

After all of this, you might find yourself asking, “What if we wanted to define
a version of fmap that worked on Left values instead of Right ones?” Or more
generally, “What if we want to define an instance on some type parameter
other than the last one?”

Unfortunately, there’s not an easy way to handle this. When we’re working
with functions and values, we have ways of easily applying a value to the
second argument of a function; for type class instances we’re limited to
applying types left-to-right in order.

If you do find yourself in a situation where you need to do this, generally the
best approach is to use a newtype wrapper with the order of the type parameters
reversed:

newtype ReverseEither a b = ReverseEither (Either b a)
deriving Show

instance Functor (ReverseEither a) where
fmap f (ReverseEither (Left a)) = ReverseEither (Left (f a))
fmap f (ReverseEither (Right a)) = ReverseEither (Right a)

Finally, before we move on to Applicative let’s look at one final example of a
Functor that might not be quite so intuitive at first: functions. The normal
everyday (->) style functions that we’ve been using since the very beginning
of the book are another example of Functors. We’ll implement our own version
as an example shortly, but before we do, let’s use ghci to look at an example:

-- create a new function that we can fmap. Its type is: Int -> Int
λ addOne n = n + 1

-- show has type Int -> String, addOneAndShow is also Int -> String
λ addOneAndShow = show <$> addOne

-- reverse here has type String -> String, as does addOneShowAndReverse
λ addOneShowAndReverse = reverse <$> addOneAndShow

-- it works just like function composition would have
λ addOneShowAndReverse 50
"15"

-- And for good measure, let's redefine both right next to one another
λ withComposition = reverse . show . (+1)
λ withFmap = reverse <$> show <$> (+1)
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-- See, they work just the same!
λ withComposition 1024
"5201"
λ withFmap 1024
"5201"

To see how this works, we’d like to implement it ourselves. Reimplementing
(->) would be a bit tricky, so let’s use a newtype to recreate the same behavior
for our own definition of function.

We’ll start by creating a type called Function:

newtype Function a b = Function
{ runFunction :: a -> b }

Just like with Either, Function is a type with two type parameters. In this case,
the first parameter is the input type to the function, and the second parameter
is the output type. Just like with Either, we’ll need to apply a type variable
Function first so that we can create a Functor instance:

instance Functor (Function a) where

When we applied a type variable Either it meant that fmap couldn’t access Left
values, but functions don’t have left and right values, so what’s the implication
for functions?

Calling fmap might change the type of the second type parameter, but it won’t
ever touch the first type parameter. For Function that means fmap might change
the return type of the function, but won’t ever change the type of its argument.

Let’s look at an example of the type of fmap when we’re talking about Function
values:

fmap :: (b -> c) -> Function a b -> Function a c

This might still make it a little hard to see what’s going on. Let’s look at the
type of fmap for a regular (->) function:

fmap :: (b -> c) -> (a -> b) -> (a -> c)

If that looks familiar, it’s because if we strip some unnecessary parentheses then
we can see it’s exactly the same type as the function composition operator, (.):

(.) :: (b -> c) -> (a -> b) -> a -> c

So, writing a Functor instance for Function is nothing more than function compo-
sition:

instance Functor (Function a) where
fmap f (Function g) = Function (f . g)
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Applying Applicatives
Now that you’ve seen several different examples of types that can have a
lawful Functor instance, let’s move on and take a look at Applicative:

class Functor f => Applicative f where
pure :: a -> f a

infixl 4 <*>
(<*>) :: f (a -> b) -> f a -> f b

One thing that is new here is the use of => to define a constraint as part of
our type class definition. This works just like it does when you use type con-
straints in functions. In this case, it allows us to express that anything that
can be an instance of Applicative must also provide an instance for Functor. We
won’t see any examples of this until later chapters, but you can also introduce
constraints when you define instances.

The Applicative type class that we’ve defined has two functions that we really
care about: pure, and the unfortunately hard to pronounce (<*>). The real
Applicative type class also has three extra functions: liftA2, (*>) and (<*). We’ll
ignore those last three for now, because they can all be implemented in terms
of pure and (<*>).

So, what is an Applicative? In the structural view of the world, we said that
Functor represents a class of things that allow us apply a function that would
change the type or value of the Functor without changing its underlying struc-
ture. In this structural view of things, an Applicative allows you to use pure to
introduce a plain value while giving it some new structure, and it allows you
to use (<*>) to take two values that each have their own structure and to
combine those structures in some way.

Alternatively, in the computational view of the world we said that a Functor
was something that would allow us to provide a function to modify the result
that we would eventually end up computing. In this computational view of
the world, pure allows us to introduce some pure value into a new computation.
IO is a great example of this. If we create an IO action using pure, we get back
a pure IO action that will result in the value we originally passed in without
having any other side effects. In the computational view of (<*>), we can create
a new computation that will generate its result by evaluating two other com-
putations and combining their results. For example, if we view Maybe as a
computation that might or might not complete, then when we say f <*> a, we
are creating a new computation that will return a value if, and only if, it can
run the computation f and get a function, and run the computation a to get
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a value to apply to that function. If either of those computations fail, then
the entire computation fails.

Let’s look at a couple of complete examples of creating Applicative instances so
that we can get a better feel for how they work. We’ll start again with Maybe.
The Applicative instance for Maybe is short and simple:

instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
Just f <*> a = f <$> a

As you learned earlier, pure is typically defined by a constructor. In the case of
Maybe, we can use Just, which already does exactly what we need. Our definition
of <*> is also pretty straightforward. The applicative instance of Maybe lets us
apply an optional function, so if the function we want to apply is Nothing, then
we return Nothing. If we have a real function value, then we apply it using fmap.

Like we did with functors, let’s run through a few examples of using the
applicative instance for Maybe so that we can get a feel for how it works:

-- Pure returns Just value
λ pure 1 :: Maybe Int
Just 1
-- <*> Applies Just func to Just val giving Just (func val)
λ Just (+1) <*> pure 1
Just 2
-- Just func <*> Nothing returns Nothing
λ Just (unwords . reverse . words) <*> Nothing
Nothing
-- Create a function that returns an optional function
λ let addSome x = if x < 5 then Just (+x) else Nothing
-- If we get a function then we can apply it
λ addSome 3 <*> Just 1
Just 4
-- If we get Nothing then we return Nothing
λ addSome 5 <*> Just 1
Nothing

Just like with functor, Either a also has an Applicative instance, and it is quite
similar to the instance we’ve just defined for Maybe:

instance Applicative (Either a) where
pure a = Right a
(Left err) <*> _ = Left err
(Right f) <*> g = f <$> g

Not all of the Applicative instances we can define are quite as straightforward
as their Functor counterparts though. Lists, for example, have a bit more
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structure to them than Either or Maybe, and so we have to do a little bit more
work to write a reasonable Applicative instance.

Let’s continue with our own List type and look into what an Applicative list
instance looks like. We’ll start with pure:

instance Applicative List where
pure a = List a Empty

The definition of pure does turn out to be fairly straightforward: we have a
value and we create the minimal required structure to hold that value, which
is a single-element list.

What about (<*>)? To write an implementation of <*>, we need to think about
what it means to merge the structure of two lists. With Maybe we returned
Nothing if we had no function. The equivalent for lists would be to return an
empty list if we have an empty list of functions, so let’s start there:

Empty <*> _ = Empty

So far, so good, but if we have a non-empty list on the left, then that’s a
structure that we somehow have to combine with the list, empty or not, on
the right. How can we do this?

Each element of our left-hand list is a function. One place to start with would
be to fmap each of those functions over the right-hand list. We could try by
writing this:

a <*> b = fmap (`fmap` b) a

Unfortunately this won’t work. The type of the function we’ve just defined is:

List (a -> b) -> List a -> List (List b)

But our fmap implementation is required to have the type:

fmap :: (a -> b) -> List a -> List b

The only reasonable thing we can do is to concatenate each of the lists that
we are generating by fmaping the elements of our first list onto our second
list. That means we’ll need to write a function to concatenate lists:

-- Equivalent to (<>) on regular lists
concatList :: List a -> List a -> List a
concatList Empty as = as
concatList (List a as) bs = List a (concatList as bs)

Now that we have a way of combining lists, we can use it to write the rest of
our applicative instance. For each function in our left-hand list, we’ll want to
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fmap the function over the right-hand list, and then concatenate that list to
the result of calling <*> on the rest of the left-hand operand:

List f fs <*> vals =
(fmap f vals) `concatList` (fs <*> vals)

Here’s the final version of our applicative instance with everything put
together:

instance Applicative List where
pure a = List a Empty
Empty <*> _ = Empty
List f fs <*> vals = (f <$> vals) `concatList` (fs <*> vals)

Finally, let’s again run through a few examples of how we can use the
applicative instance for List so that we can start to develop an intuition for
how it works:

-- define funcList and numList to use throughout these examples
λ let funcList = toList [id, succ, (*2)]
λ let numList = toList [1..5]
-- the result of <*> is the concatenation of each function fmapped to the list
λ fromList $ funcList <*> numList
[1,2,3,4,5,2,3,4,5,6,2,4,6,8,10]
-- Using an empty list as the left-hand operand returns and empty list
λ fromList $ Empty <*> numList
[]
-- Using an empty list as the right-hand operand returns and empty list
λ fromList $ funcList <*> Empty
[]
-- We can combine pure with <*> to apply a single function to our list
λ fromList $ pure (replicate 2) <*> numList
[[1,1],[2,2],[3,3],[4,4],[5,5]]

As a final example, let’s also consider Function and what an Applicative instance
for it might look like. Just like all of our examples so far, pure is fairly easy:
we can lift a pure value into a function by writing a function that always
returns that value:

instance Applicative (Function a) where
pure a = Function $ const a

Our definition of (<*>) will be trickier. Let’s start by looking at the types
involved. Remember that the general type of (<*>) is:

(<*>) :: f (a -> b) -> f a -> f b

For Function in particular, that means:

(<*>) :: Function a (b -> c) -> Function a b -> Function a c
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The first thing we have to ask ourselves is, what does Function a (b -> c) even
mean? If we strip away the newtype wrapper, it means we have a function of
the type:

a -> (b -> c)

Of course we can remove the parentheses here and see that what we’re really
talking about is just:

a -> b -> c

To make things a little bit more clear, let’s also look at the unwrapped version
of (<*>) for plain functions:

fmap :: (a -> b -> c) -> (a -> b) -> a -> c

That’s a little bit of something to try to wrap our heads around! Thankfully,
we can get some help if we let the type drive our implementation. Let’s start
writing this with some blank spots, and fill them in as we think through what
we need to do to satisfy the required type. We’ll start by just writing the left-
hand side of the implementation:

Function f <*> Function g =

Here, f will have the type f :: a -> b -> c and g will have the type g :: a -> b. Let’s
keep those in mind as we take a step forward. We need to return a value with
the type Function a c. That means we need to return a function that takes a
value of type a:

Function f <*> Function g = Function $ \value ->

We need to return a value of type c and the only way to get one is to call f with
a value of type a and a value of type b. value has type a so we can start there:

Function f <*> Function g = Function $ \value ->
f value _

We also need to pass f a value of type b. The only way to get one of those is
to apply value to g. That gives us the final version of our (<*>) implementation
for Function:

instance Applicative (Function a) where
pure a = Function $ const a
Function f <*> Function g = Function $ \value -> f value (g value)

In reality, the Applicative instance of functions doesn’t come up all that often
in this form, but it’s helpful to understand that there is a valid instance so
that you don’t get overly fixated on the idea of these type classes as “contain-
ers.” The Applicative instance of functions does give rise to one particularly
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interesting piece of code golf though. We can use it to define an extremely
terse implementation of the Fibonacci sequence:

λ fibs = 0 : 1 : (zipWith (+) <*> tail) fibs
λ take 10 fibs
[0,1,1,2,3,5,8,13,21,34]

Now that we’ve looked at functors and applicatives, we can look at monads.
In the next section, we’ll talk about monads and how they relate to IO and
interacting with the local system.

Working with the Monad Type Class
For all of the virtual ink spilled in pursuit of monad tutorials, the reality is
that monads aren’t actually as complicated or terrible as everyone makes
them out to be. Monad is actually just a type class, with a few rules about how
the functions defined in the type class should work.

class Applicative m => Monad m where
infixl 1 >>=
(>>=) :: m a -> (a -> m b) -> m b

infixl 1 >>
(>>) :: m a -> m b -> m b
a >> b = a >>= \_ -> b

return :: a -> m a

These functions should all look pretty familiar! Nearly everything that we’ve
been doing so far with IO in this chapter comes from its Monad type class
instance! You’ll also recognize Applicative from the last section, so with every
monad you’ll also get functions that work with Functor and Applicative like fmap
and <*>.

The return function from the Monad type class looks very similar to pure, and as
you’ll see later, these should generally be implemented in the same way. Like
<*>, the >>= function is how monads manage structure while applying a
function. Unlike Applicative though, monads focus on the relationship between
the structure of the input value and the structure of the output value of the
applied function. That probably sounds pretty abstract, so let’s look at a
couple of concrete examples to help cement our understanding of what’s going
on. Like with functors and applicatives, we’ll start with the Monad instance for
Maybe and then we’ll look at List.

instance Monad Maybe where
return = Just
Nothing >>= _ = Nothing
Just a >>= f = f a
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Our Monad instance for Maybe is pretty simple. Just like with pure, our return
function lifts a value into Maybe by calling Just to construct a Maybe value. The
implementation of >>= is almost but not quite the same as our fmap implemen-
tation. When we have Nothing we return Nothing. If we get Just a though, we simply
pass the inner value into our function.

Let’s look at a few examples of how we can use this. We’ll need to start by
defining a few functions that will return a Maybe. We’ll use readMaybe from the
Text.Read module that’s part of the standard library. It’s a safer version of read
that returns Nothing if it can’t parse the value. We’ll also define two functions
ourselves to let us play around with the Monad instance of Maybe:

import Text.Read (readMaybe)

-- Return half of a value if it's even, otherwise Nothing
half :: Int -> Maybe Int
half num =

if even num
then Just (num `div` 2)
else Nothing

-- Takes a boundry. Returns Just the value if it's within the range,
-- and Nothing otherwise
bound :: (Int, Int) -> Int -> Maybe Int
bound (min, max) num =

if (num >= min) && (num <= max)
then Just num
else Nothing

Now that we have some utility functions to use, let’s use them to look at some
ways we can use Maybe as a monad:

-- Every function returns a Just value
λ readMaybe "10" >>= half >>= bound (0,5)
Just 5
-- Trying to parse "Ten" fails, giving a Nothing for the entire expression
λ readMaybe "Ten" >>= half >>= bound (0,5)
Nothing
-- parsing succeeds, but we get Nothing from calling `half 11`
λ readMaybe "11" >>= half >>= bound (0,10)
Nothing
-- we can use return to put a pure function into a series of >>= calls
λ readMaybe "11" >>= bound (0,20) >>= return . succ >>= half
Just 6

Like we’ve seen earlier in this chapter with IO, we can use >>= to help us
build a sequence of functions that are evaluated in order. Let’s write an
Applicative instance for our List type next so we can look at another example of
writing a monad.
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Like with our definition of pure, our definition of return just needs to create a
new single element list:

instance Monad List where
return a = List a Empty

For our definition of >>= we’ll return an empty list if we get one as input, just
like we did with our definition of <*>:

Empty >>= f = Empty

Now, we just need to write the rest of our implementation of >>=. Just like
we did with our implementation of <*>, we’ll work with one element at a time.
We’ll apply our function to each element of the list, and concatenate the result
with a call to >>= for the rest of the list. In fact, our implementation of >>=
is almost exactly like our implementation of pure, except that we can use reg-
ular function application an element at a time instead of needing to fmap our
function over an entire list.

Let’s look at what a complete Monad instance for List looks like:

instance Monad List where
return a = List a Empty
Empty >>= f = Empty
List a as >>= f = (f a) `concatList` (as >>= f)

Just like we did for Maybe, we’ll add a few utility functions to make it easier
for us to experiment with the Monad instance of List.

The first thing we’ll do is define a Show instance for List so that we can work
with it more easily from ghci. We’ll just convert our List to a regular Haskell
list and use its instance of Show for convenience:

instance Show a => Show (List a) where
show = show . fromList

For this example, we’ll need to add the OverloadedStrings extension. We’ll also
need to add a new extension, FlexibleInstances:

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE FlexibleInstances #-}

If you’ve been following along with ghci instead of using source files you can
enable these with the :set command:

λ :set -XFlexibleInstances -XOverloadedStrings

We’ve previously used the OverloadedStrings extension to make it easier for us
to create ByteString or Text values. In this example, we’re going to use Overloaded-
Strings so that we can use string literals to create values of our own List type.
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Once OverloadedStrings is enabled, we can use the string literal syntax to create
a value for any type that has an instance of the IsString class from Data.String.

Before we can create a sensible instance of IsString, we’ll also need to add the
FlexibleInstances extension to remove some restrictions on how we can create
instances of type classes. For our use-case, it will allow us to define an instance
of a type class for one specific instance of a parameterized type. Since we only
want to implement IsString for List Char, we’ll need this language extension. Flex-
ibleInstances is a generally safe language extension. It can sometimes require
you to add additional type signatures where you wouldn’t need to, and in rare
cases can make your programs fail to compile. As a general rule of thumb,
it’s fine to include it if you need it.

FlexibleInstances

The FlexibleInstances extension has been available since GHC 6.8.1.
It’s enabled by default in GHC2021 but you’ll need to enable it
manually if you’re using Haskell2010. This is a generally safe exten-
sion that shouldn’t cause problems with any existing programs.

With those two language extensions, we can create an instance of IsString:

import Data.String

instance IsString (List Char) where
fromString = toList

With this instance added, we can now create List Char values just like we would
regular strings. Thanks to our Show instance we’ll be able to view them too.
Go ahead and try it out in ghci:

λ "Hello, Haskell" :: List Char
"Hello, Haskell"

Writing out List Char is going to get a little tedious so let’s create a type alias
to make it a little easier to work with in our examples:

type StringL = List Char

Finally, let’s write a couple of functions to work with. Let’s start by defining
just the type signatures for the additional functions that we’d like to have:

replicateL :: Int -> a -> List a
wordsL :: StringL -> List StringL
unwordsL :: List StringL -> StringL

Try to create your own implementations of these functions based on the type
signature before looking at the examples:
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replicateL :: Int -> a -> List a
replicateL 0 _ = Empty
replicateL n a =

let tail = replicateL (pred n) a
in List a tail

wordsL :: StringL -> List StringL
wordsL = toList . map toList . words . fromList

unwordsL :: List StringL -> StringL
unwordsL = toList . unwords . fromList . (fromList <$>)

-- Create a nested list of numbers
λ let ll = toList (map return [1..5]) :: List (List Int)
-- Print it out so we know what we're staritng out
λ ll
[[1],[2],[3],[4],[5]]
-- (>>= id) will concatonate elements of a list
λ ll >>= id
[1,2,3,4,5]
-- We can mix pure from Applicative with >>= from Monad.
λ pure "hello haskell" >>= wordsL
["hello","haskell"]
-- Get the words from a string, repeat them 3 times
λ pure "hello haskell" >>= wordsL >>= replicateL 3
["hello","hello","hello","haskell","haskell","haskell"]
-- We can concat them by binding them to id again
λ pure "hello haskell" >>= wordsL >>= replicateL 3 >>= id
"hellohellohellohaskellhaskellhaskell"
-- But we can also call unwords to put them back into a string
λ unwordsL $ pure "hello haskell" >>= wordsL
"hello haskell"
-- If we pass our values into a function that returns an empty list,
-- we get an empty list back
λ unwordsL $ pure "hello haskell" >>= wordsL >>= const Empty
""
-- Same if we have an empty list in the middle
λ unwordsL $ pure "hello haskell" >>= const Empty >>= wordsL
""

That’s it! You’ve been using the IO monad throughout this book, and now
you’ve created instances of monads for two different types. You’ve also learned
about functors and applicatives, which are closely related to monads, and
created instances of those too. In the next section, we’ll move beyond how to
use this and look a little bit at some of the rules you should follow to make
sure that your own functor, applicative, and monad instances are well behaved
and work with all of the tooling the standard library provides to work with
these sorts of types.
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Understanding the Laws of the Land
Haskell functors, applicatives, and monads are more than just the functions
given by their type classes. Each of these type classes also come with a set
of laws that govern what the implementations should look like. While “laws”
might sound rigid and formal, in reality, understanding these laws can be
very helpful because they can often lead you to better understanding of how
to create instances of these type classes in the first place. Many of these laws
originated in pure mathematics, but you don’t need to have a strong math
background to follow this section. We’ll walk through all of the laws purely
using what you’ve learned about Haskell so far in this book. If you encounter
unfamiliar math-y sounding terminology, don’t worry about it too much. You
can make a quick note of any unfamiliar terms and look them up later if you
like. Understanding the terminology used in this section will be a little bit
helpful in deepening your understanding, but a lack of familiarity shouldn’t
impede your ability to follow along.

There’s nothing in the language that will give you an error if you violate these
laws, and sometimes libraries do, so it’s good to think of them more like
guidelines that can lead you toward writing better code. Following the laws
for functors, applicatives, and monads will make it much easier for you to
reason about what your code is doing and will allow you to make use of all
of the different functions that work with those type classes. In this section,
we’ll go over the laws that govern functors, monads, and applicatives. This
section will be useful not only to help you understand the rules that govern
how common types like IO work, but also to help you get practice in reading
and understanding some of the more formal looking parts of the standard
library documentation. If you find yourself having trouble with this section,
bookmark it and come back to it after you’ve finished a few more chapters,
and read through it again.

Using the Functor Laws
Functors are the simplest of our trio of type classes, and also have the simplest
laws, so we’ll start with them. There are two laws that well-behaved functors
should adhere to, and they are both documented in the standard library
documentation. There are two functor laws, identity and composition:

-- Identity
fmap id = id
-- Composition
fmap (f . g) = fmap f . fmap g
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The identity law of functors is pretty simple: mapping the identity function
shouldn’t change the value of the functor. The implication is that fmap should
only ever be a mapping function and shouldn’t change anything in the functor
except for the value that it’s mapping. The second law, composition, follows
naturally from the first. The law of composition says that it shouldn’t matter
whether we compose calls to fmap, or we fmap a composed function. Put simply,
these two laws together state that fmap should “do nothing but simply apply
the mapping to the value(s) inside the functor.”

Both our Maybe and List implementations satisfied the functor laws, so let’s
look at an example of a Functor instance that violates the laws so that we can
get a full picture of what sort of behavior they disallow. We’ll create an Outlaw
type that contains a value and a counter. Our outlaw will increment the
counter every time we call fmap:

data Outlaw a = Outlaw Int a deriving (Eq, Show)

instance Functor Outlaw where
fmap f (Outlaw cnt val) = Outlaw (cnt + 1) (f val)

Let’s create a sample outlaw and a couple of helper functions to use when
we look at testing our functor laws. We’ll use the toUpper function from Data.Char
to let us convert a String to uppercase:

bang = (<> "!")
upcase = map Data.Char.toUpper
billyTheKid = Outlaw 0 "bank robber"

Now we can test our our identity law. We’ll write a simple function that should
return true if our identity law holds:

testIdentity =
fmap id billyTheKid == id billyTheKid

If we run this, we’ll see that we actually get back False, because our outlaw is
violating the functor laws. We can see why if we run each side of our compar-
ison in ghci:

λ testIdentity
False
λ fmap id billyTheKid
Outlaw 1 "bank robber"
λ id billyTheKid
Outlaw 0 "bank robber"

Since our outlaw’s fmap function has the side effect of changing the counter,
our functor law fails to hold. We can see a similar problem when we test the
second functor law:
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testComposition =
fmap (bang . upcase) billyTheKid == (fmap bang . fmap upcase $ billyTheKid)

λ testComposition
False
λ fmap (bang . upcase) billyTheKid
Outlaw 1 "BANK ROBBER!"
λ fmap bang . fmap upcase $ billyTheKid
Outlaw 2 "BANK ROBBER!"

Just like the case with our identity function test, the side effect of incrementing
a counter causes us to get back a different value when we compose the
functions before mapping compared to composing the calls to fmap.

The functor laws are useful guidelines that help us write programs that behave
consistently and are easy to reason about. Whenever you’re creating an
instance of a type class like Functor, Applicative, or Monad, it’s helpful to encode
the laws as unit tests so that you can make sure that you’ve written an
instance that adheres to the laws. In the rest of this section, we’re going to
look at the laws for monads and applicatives. As we go along, try to write
some unit tests to ensure that your List instances for these type classes adhere
to the laws.

Using the Monad Laws
Although Applicative comes before Monad in our type class hierarchy, the Monad
laws are shorter and easier to understand, so let’s focus on them before we
conclude this section by looking at the laws for applicatives. There are three
monad laws: left and right-hand identity laws, and a law of associativity. Let’s
look at how they are shown in the documentation for the standard library,
and then we’ll dig into them in detail:

-- identity (left)
return a >>= m = m s

-- identity (right)
m >>= return = m

-- Associativity
(a >>= b) >>= c = a >>= (\x -> b x >>= c)

The similarity between the monad and functor identity laws aren’t as obvious
written this way as they could be, so let’s rewrite them slightly, and show
them next to the functor identity law, to help make the parallel a bit easier
to see:

-- Functor Identity law
fmap id f = id f
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-- Monad Identity (Left) law
(>>=) (return a) f = f a
-- Monad Identity (Right) law
(>>=) m return = m

In the functor identity law, we said that we had restrictions around what we
chould change when we called fmap. The monad identity laws are similar,
telling us what we can change when we call >>=. Unlike our functor, the
values inside of our monad can change when we call >>=. These laws also
relate to what kind of a value we should get out of calling return.

This all sounds a little bit abstract, but if we think about it in terms of the IO
monad, it’s easier to reason about what the laws are trying to say.

Let’s start by looking at one specific manifestation of the first law:

return "filename" >>= getcontents = getContents "filename"

If we put our filename into an IO action, and then use >>= to pass it to getCon-
tents we shouldn’t expect it to behave any differently than if we’d just passed
the filename in directly in the first place. This should make sense if you recall
back on page 264 where we talk about how IO represents some changes that
have happened out in the real world. The return function creates a blank slate
where we haven’t actually made any changes, and >>= makes sure that our
changes happen in order. Looking at it this way, it should make sense that
“First do these no changes at all, and then read the file” shouldn’t behave
any differently from just reading the file.

The second identity law is pretty similar to the first one. Let’s restate it the
same way that we did the first law:

getContents "filename" >>= return = getContents "filename"

Here we call getContents on our file, and then pass the contents to return with
>>=. Our right-hand identity law basically says that the call to return shouldn’t
change anything. In IO terms, saying “open the file and then do nothing”
should be the same as saying “open the file.”

Our Maybe and List instances also obeyed these identity laws. Just like we did
with Functor, let’s look at an example of an outlaw monad that breaks the
identity laws. We’ll continue the trend of tracking how often fmap was called
by adding a number to our counter every time we call >>=:

instance Monad Outlaw where
return summary = Outlaw 0 summary
(Outlaw cnt a) >>= f =

let (Outlaw cnt' v) = f a
in Outlaw (cnt + cnt' + 1) v
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Like we did before we’ll write a couple of manual test functions to see how
the laws hold up with our outlaw monad. We’ll also add a utility function to
make it easier to test >>= operations.

stoleAHorse :: String -> Outlaw String
stoleAHorse = return . (<> " and horse robber")

testLeftIdentity =
(return "robbed a bank" >>= stoleAHorse) == stoleAHorse "robbed a bank"

testRightIdentity =
(billyTheKid >>= return) == billyTheKid

If we load these up into a REPL, we can see the same sorts of failures we had
with our outlaw functor—introducing changes to our counter that didn’t come
from either of the operands to >>= cause our laws to be violated:

λ testLeftIdentity
False
λ return "robbed a bank" >>= stoleAHorse
Outlaw 1 "robbed a bank and horse robber"
λ stoleAHorse "robbed a bank"
Outlaw 0 "robbed a bank and horse robber"
λ testRightIdentity
False
λ billyTheKid >>= return
Outlaw 1 "bank robber"
λ billyTheKid
Outlaw 0 "bank robber"

Now that we’ve looked at how the first two monad laws work, and when they
are violated, let’s move on to the final monad law: associativity. Associativity
is related to the order that we evaluate values. The most familiar example of
associativity that you’ve probably seen is in arithmetic. Both addition and
multiplication are associative, meaning that you can omit or move around
parentheses however you want, but division and subtraction aren’t associative,
so changing the order of evaluation can change the output:

λ (2 + 3) + 4 == 2 + (3 + 4)
True
λ (2 * 3) * 4 == 2 * (3 * 4)
True
λ (2 - 3) - 4 == 2 - (3 - 4)
False
λ (2 / 3) / 4 == 2 / (3 / 4)
False

The associativity law for monads is really getting to the same point: the way
that we group the monadic actions doesn’t matter in the end, because >>=
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ensures that they’ll be evaluated in a consistent order. Let’s look at this one
in terms of IO actions to make it a little easier to understand:

λ openFile "/tmp/example.txt" ReadMode >>= hGetContents >>= putStrLn
Hello from "example.txt"

λ :{
*System.IO| openFile "/tmp/example.txt" ReadMode
*System.IO| >>= (\handle -> hGetContents handle >>= putStrLn)
*System.IO| :}
Hello from "example.txt"

We can’t use == to compare IO actions, but if we look at what’s happening in
these examples, we can still understand what’s going on with the associativity
law. In both examples, we’re opening a file handle, then reading the contents
and printing them out. The law of associativity says that it doesn’t matter
how we group these IO actions. This might seem a little counterintuitive at
first; after all, how can it not matter if we try to read the contents of a file and
print them out before we open the file? This sort of composability is available
thanks to lazy evaluation. If you look back on page 277 and remember how IO
is evaluated, you’ll understand how the particulars of the way Haskell treats
evaluating IO allows it to fulfill this property.

Using the Applicative Laws
The last of the type class laws that we’ll look at are the laws for Applicative.
Applicative has four laws, and they are a bit trickier than the laws for Functor
and Monad. In particular, the names of the laws might sounds a bit more
intimidating, but as we’ve seen in the last two sets of laws, we can follow the
code and write tests to get a feel for how our particular instances are holding
up to the laws without having to delve too deeply into the underlying mathe-
matical theory. Let’s start with the applicative laws as they are documented
in the standard library:

-- Identity
pure id <*> v = v
-- Composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
-- Homomorphism
pure f <*> pure x = pure (f x)
-- Interchange
u <*> pure y = pure ($ y) <*> u

The applicative identity law is pretty much like the identity laws for monads
and functors. Since we’ve seen two similar examples already, you should be
able to work through this example yourself.
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The composition law of applicatives looks a little bit more complicated than
the composition law for functors, but it’s actually pretty similar. Let’s take a
minute to unpack it and try to really understand what’s happening.

Recall that the type for <*> is Applicative f => f (a -> b) -> f a -> f b, and the type for .
is (.) :: (b -> c) -> (a --> b) -> a -> c. So when we say pure (.) we’re getting back
something like: f ((b -> c) -> (a -> b) -> a -> c). That means that the u and v in our
law need to be functions. So we could rewrite our law so it looks like this:

pure ((b -> c) -> (a ->b) -> a -> c)
<*> f (b -> c)
<*> f (a -> b)
<*> f a
== f (b -> c)
<*> (f (a -> b) <*> f a)

Wow! That’s a lot of arrows! Let’s see if we can simplify this a little bit more
so it’s easier to parse.

The first part of this law is that we’re composing two functions inside of our
applicative. We’ve got two functions to start with:

u :: f (b -> c)
v :: f (a -> b)

And we have a single value:

w :: f a

We want to get out a value with the type f c. The most obvious way we might
do that is to first call v on w with <*>:

w' :: f b
w' = v <*> w

Then we can call u on w':

result :: f c
result = u <*> w'

If we write it all together as a single expression we get:

result :: f c
result = u <*> (v <*> w)

If we were dealing with regular functions instead of applicatives, we could
write this quite simply:

result :: c
result = g (f a)

And if we were writing it with functors we might say:
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result :: f c
result = fmap g . fmap f

We might naturally think that it would be nice to compose functions with .
instead of calling them one after another. Since we’re working inside of an
applicative, we’ll start by lifting composition into our applicative:

apCompose :: f ((b -> c) -> (a -> b) -> a -> c)
apCompose = pure (.)

Now we can compose our two applicative functions. We start with u:

u' :: f ((a -> b) -> a -> c)
u' = apCompose <*> u

And next we bring in v:

v' :: f (a -> c)
v' = u' <*> v

And finally we can apply our newly composed function to get a value:

result :: f c
result = v' <*> w

If we write all that as a single expression, we get the left-hand side of our
composition law:

result :: f c
result = pure (.) <*> u <*> v <*> w

So our applicative law of composition says that no matter which way we want
to go about trying to apply our functions, we should always get the same
value back out.

The next applicative law is the law of homomorphism. Homomorphism is one
of those words that can sometimes make Haskell sound scary and overly
formal, but we’re not going to spend any time on formally defining it. Instead,
we’ll just look at the law and show how it follows from the intuition that we’ve
built up around how some of these laws work. The law of homomorphism
says that:

pure f <*> pure x = pure (f x)

To put it in English: lifting a function and a value into our applicative with
pure and then applying the function with <*> should give us the same value
as just lifting the result of calling the function on the value. This is another
law that formalizes the notion that <*> really shouldn’t be doing much except
for applying the mapping, and that pure should be giving us some sort of rea-
sonable initial value.

report erratum  •  discuss

Using the Applicative Laws • 359

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


We can use lists as a good example of how this works. Let’s look at an
example:

λ pure succ <*> pure 1 :: [Int]
[2]
-- This is the same as if we'd said
λ [succ] <*> [1]
[2]
-- Our monad law says this should be the same
λ (pure succ <*> pure 1 :: [Int]) == (pure (succ 1))
True
-- The same thing words with Maybe Int too
λ pure succ <*> pure 1 :: Maybe Int
Just 2
λ (pure succ <*> pure 1 :: Maybe Int) == (pure (succ 1))
True

These examples show that well-behaved applicatives follow the law of homo-
morphism, and how following these laws makes our code easy to reason
about. Thanks to this law, we can either lift a function and its argument using
pure before applying them with (<*>), or we can use ordinary function applica-
tion and lift the result with pure afterwards.

The last applicative law is the law of interchange. Interchange is related to
commutivity, and the law of interchange provides a way that we can sort of
flip the operands of <*> in a predictable way. The law is given as:

u <*> pure y = pure ($ y) <*> u

The left-hand side of the law is the usual application with applicatives. The
right-hand side might look a bit weird, so let’s break it down.

We’ll start using the left-hand side to fill in some things that we know:

result :: f b
result = u <*> pure y

u :: f (a -> b)
y :: a
pure y :: f a

So, we know that the right-hand side needs to evaluate to a type of f b:

result :: f b
result = pure ($ y) <*> u

Let’s take a minute to recall that the type of $ is ($) :: (a -> b) -> a -> b. Since we
already know y :: a, then we know that the expression ($ y) must have the type
(a -> b) -> b. When we lift that into our applicative with pure we get:

pure ($ y) :: f ((a -> b) -> b)
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When we apply u to that expression with <*> we’re effectively applying a value
of type f (a -> b) to a function of type f ((a -> b) -> b), giving us a result value of f b.

Let’s look back at the law one more time now that we’ve walked through all
of the parts, and then we’ll look at a simple example of it in practice:

u <*> pure y = pure ($ y) <*> u

We can demonstrate this law with Maybe:

λ let u = pure succ :: Maybe (Int -> Int)
λ u <*> pure 3
Just 4
λ pure ($ 3) <*> u
Just 4
λ (u <*> pure 4) == (pure ($ 4) <*> u)
True

The law of interchange allows us to compose functions in different ways while
still being able to reason effectively about the results.

The functor, monad, and applicative laws will make it easier for you to figure
out how to write instances for your own types. In fact, you may find that fre-
quently there’s only one implementation that actually follows all of the laws.
As you spend more time working with these type classes, having an under-
standing of the underlying laws will also make it easier to reason about what
your code is doing. As you’re working through that section, and the rest of
this chapter, keep an eye out for how code we write and decisions that we
make are influenced by these laws.

Summary
In this chapter, you learned about the Functor, Applicative, and Monad type classes,
and how to work with lawful type classes. You’ll work with these type classes
regularly, so getting a good understanding of how they work and why they
work they way they do is useful. Of equal importance, in this chapter you got
a chance to see first hand how to design and implement type classes that
have a wide variety of uses with highly divergent behavior that still adhere to
the basic laws of the classes.

Later on in this book on page 435 you’ll build your own parser and define new
Functor, Applicative, and Monad instances for a brand new type of computation.
After that, you’ll learn how build new Monad instances by composing the
behaviors of existing instances using Monad Transformers on page 467.
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Exercises

Flipping the Script
Try to write instances of Functor, Applicative, and Monad for List where Functor is
defined in terms of Applicative, and Applicative is defined in terms of Monad. Is this
possible? Why or why not?

Not a Functor
Imagine that we’ve created a new type to represent a sorted list of values:

{-# LANGUAGE DerivingStrategies #-}
module SortedListFunctor (SortedList, insertSorted) where

data SortedList a = Empty | Cons a (SortedList a)
deriving stock (Eq, Show)

insertSorted :: Ord a => a -> SortedList a -> SortedList a
insertSorted a Empty = Cons a Empty
insertSorted a (Cons b bs)

| a >= b = Cons b (insertSorted a bs)
| otherwise = Cons a (Cons b bs)

Although SortedList might be useful, it turns out that you can’t write a correct
instance of Functor for a SortedList. Try to define Functor yourself and experiment
with its behavior. See if you can figure out why you can’t write a correct
instance.

The Extended Functor Family
In addition to the standard Functor class that you’ve used in this chapter, there
are other type classes that are related to Functor but with somewhat different
behaviors.

Bifunctors

A Bifunctor is like a Functor but even more so, because a Bifunctor lets you map
two different fields. The Bifunctor class is defined in Data.Bifunctor. Let’s take a
look at a definition for it:

class Bifunctor f where
bimap :: (a -> c) -> (b -> d) -> f a b -> f c d

first :: (a -> c) -> f a b -> f c b
first f = bimap f id

second :: (b -> d) -> f a b -> f a d
second f = bimap id f
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Try to write an instance of Bifunctor for Either.

Contravariant Functors

The Contravariant class from Data.Functor.Contravariant in base defines a _contravariant_
functor. Although we don’t normally refer to them this way, the Functor class
that you’ve been working with so far is a covariant functor. You don’t need to
worry about the terminology too much though. You can think of this as a
“backwards” functor. Let’s look at its definition:

class Contravariant f where
contramap :: (b -> a) -> f a -> f b

Try to create a new version of the Function type that you defined earlier, and
then write an instance of Contravariant for it. Can you also create an instance
of Contravariant for your original definition of Function? Why or why not?

Profunctors

A Profunctor is a combination of a Bifunctor and a Contravariant functor. Profunctor
isn’t defined in base, but you’ll see it defined by some other popular libraries.
Like a Bifunctor, it works on types with two arguments. Like Contravariant functors,
the first argument to a Profunctor works “backwards.” Let’s take a look at a
definition for Profunctor:

class Profunctor f where
dimap :: (c -> a) -> (b -> d) -> f a b -> f c d

lmap :: (c -> a) -> f a b -> f c b
lmap f = dimap f id

rmap :: (b -> d) -> f a b -> f a d
rmap f = dimap id f

Try to create an instance of Profunctor for your original Function type. Can you
write a valid instance? Why or why not? How does this differ from trying to
create a instance of Contravariant for Function?
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CHAPTER 10

Mutable Data in the Real World
Using Mutable References in a Pure Language
Mutable data, that is, data that has a value that you can change over time
as your program is running, is an idea that comes up more or less frequently
in most programming languages. Mutability can allow you to write algorithms
that are more efficient or more clear than their equivalents built without
mutable data, but this mutability comes at a high cost, introducing a potential
for any number of bugs that can cause programs to crash, or worse, to con-
tinue running while behaving incorrectly. Haskell, as a pure functional pro-
gramming language, avoids mutability by default, but in some cases you’ll
find that considered use of mutability can improve your programs.

When you decide to use mutable data in your Haskell program, you have a
choice between several different approaches. Throughout the rest of this
chapter you’ll see some motivating examples for when mutability can help
you write functional programs, see some pitfalls to avoid when dealing with
mutability, and learn how to use some of the different tools Haskell gives you
for creating and working with mutable values.

Working with IORefs
In Haskell, rather than storing a value that is directly mutable, we store an
immutable reference to some data that we can change using the reference.
There are several different types of mutable references that you can use,
depending on the specific needs of your application. You’ll learn about several
different types of references throughout this chapter, but for the moment we’ll
focus on particular type of reference, the IORef.

A value with the type IORef a is a normal Haskell value that holds an immutable
pointer to some internal data that is managed by the GHC runtime.
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You can use an IORef like any other normal Haskell value. You can pass it
into a function, return it, store it in a record, or capture the value in a closure.
Creating a new IORef, or using one to read or write the value at the reference,
is always an IO action. Let’s dive into some basics of how to use IORefs, and
then we’ll move on to some ways that you can use IORefs in real-world
applications.

Creating IORefs
You can create a new IORef a by calling newIORef from Data.IORef and giving it an
initial value to store at your reference. In this example, we’ll create a new
IORef that will hold an Int and initialize it to 0:

λ import Data.IORef
λ numRef <- newIORef @Int 0

Since you need to initialize any newly created reference, there’s no chance of
accidentally getting a null or uninitialized reference. If you have a reference
that may not have a value, you can use a Maybe value, just like you would
with a non-reference value.

λ optionalNumRef <- newIORef @(Maybe Int) Nothing

Reading and Writing IORefs
Data.IORef is a small module with only a few exported functions that let you
create, read, write, and modify IORefs in place. You’ve already learned how
to create a new IORef, so let’s work through an example of how to modify
them. We’ll start by using writeIORef :: IORef a -> a -> IO () and readIORef :: IORef a ->
IO a to first write a value to an IORef and then to read it back:

{-# LANGUAGE TypeApplications #-}
module Main where
import Data.IORef

readWriteRef :: IO Int
readWriteRef = do

myRef <- newIORef @Int 0
writeIORef myRef 7
refValue <- readIORef myRef
pure refValue

main :: IO ()
main = readWriteRef >>= print

In this example, the readWriteRef function is an IO action that creates a new
IORef, writes a value to it, and then reads the value and returns it.
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Using IORefs to Traverse a Directory Tree
To see an example of how to use IORefs in a real-world application, let’s write
a function that will allow us to traverse part of a filesystem. We’ll make use
of two libraries from Hackage for this application:

• directory gives us functions to deal with files and directories.
• containers provides the Set data structure.

Create a new project and add the directory and containers dependencies. We’ll
start by adding the TypeApplications extension and importing a few modules that
we’ll be using:

{-# LANGUAGE TypeApplications #-}
module Main where

import Control.Exception (IOException, handle)
import Control.Monad (join, void, when)
import Data.Foldable (for_)
import Data.IORef (modifyIORef, newIORef, readIORef, writeIORef)
import Data.List (isSuffixOf)
import System.Directory

( canonicalizePath
, doesDirectoryExist
, doesFileExist
, listDirectory
)

import qualified Data.Set as Set (empty, insert, member)
import Text.Printf (printf)

Since we’ll be using several new functions throughout this example, we’ve
listed each function in our import statement. You may choose to import the
entire modules here if you want to experiment with the examples as you work
through them.

Next, we need to define a couple of helper functions that will make it easier
for us to implement our directory traversal. The first helper function we’ll
write, dropSuffix, will let us easily strip off any trailing slashes from a path
provided by a user:

dropSuffix :: String -> String -> String
dropSuffix suffix s

| suffix `isSuffixOf` s =
take (length s - length suffix) s

| otherwise = s

As we’re traversing the contents of a directory, we need to classify the files
that we find. We’ll want to identify subdirectories that we want to descend
into, plain files that we want to work with, and special files (for example,
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named pipes, Unix sockets, or block and character devices) that we’ll ignore.
To make this easier we’ll add a new type, FileType, and a function, classifyFile,
which will take the path to a file and return the file’s type:

data FileType
= FileTypeDirectory
| FileTypeRegularFile
| FileTypeOther

classifyFile :: FilePath -> IO FileType
classifyFile fname = do

isDirectory <- doesDirectoryExist fname
isFile <- doesFileExist fname
pure $ case (isDirectory, isFile) of

(True, False) -> FileTypeDirectory
(False, True) -> FileTypeRegularFile
_otherwise -> FileTypeOther

Let’s start by looking at a naive traversal implementation that doesn’t make
use of IORefs:

naiveTraversal :: FilePath -> (FilePath -> a) -> IO [a]
naiveTraversal rootPath action = do

classification <- classifyFile rootPath
case classification of

FileTypeOther ->
pure []

FileTypeRegularFile ->
pure $ [action rootPath]

FileTypeDirectory -> do
contents <- map (fixPath rootPath) <$> listDirectory rootPath
results <- concat <$> getPaths contents
pure results

where
fixPath parent fname = parent <> "/" <> fname
getPaths = mapM (\path -> naiveTraversal path action)

In our naive example function, we start traversing a directory structure by
classifying the file we’re given. If it’s some special file, we don’t do anything and
return an empty list. If it’s a plain file, we construct a singleton list by applying
the user-provided function to the file. If we’re looking at a directory, we recursively
traverse each file in the directory. You’ll notice that listDirectory returns a relative
file name (without a trailing /), so we prefix our current path to it.

This function works, but we have two problems. The first problem that we
have is an inefficiency—we’re constructing a large number of intermediate
lists that we’re concatenating together. For large directories with many files
and subdirectories also containing many files, this can lead us to making a
lot of allocations and holding a lot of data in memory as we’re trying to create
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our final result. The second problem is a bug. We are not accounting for cir-
cular references that we might encounter while traversing the directory
structure, so there’s a risk that we could end up waiting forever—or at least
until our program runs out of memory and crashes.

IORefs can help us address both of these problems. We’ll still use the same
basic algorithm, but now we’ll keep some history of directories we’ve visited,
and we’ll avoid creating intermediate lists as we’re building up our set of
results.

Our new function, traverseDirectory, will have the same type as our naive traversal
function:

traverseDirectory :: FilePath -> (FilePath -> a) -> IO [a]
traverseDirectory rootPath action = do

Next, let’s consider the problem of encountering loops in our filesystem. A
loop will occur when a directory contains a symbolic link to a directory that
is an ancestor of the current directory. In other words, imagine the following
directory structure:

user@host:/tmp$ tree hasLoop/
hasLoop/
└── foo

└── theLoop -> /tmp/hasLoop

2 directories, 0 files

If we begin traversing in hasLoop we will eventually decend into theLoop. After a
few iterations, we’ll start to see paths like:

user@host:/tmp$ tree /tmp/hasLoop/foo/theLoop/foo/theLoop/foo/theLoop
/tmp/hasLoop/foo/theLoop/foo/theLoop/foo/theLoop
└── foo

└── theLoop -> /tmp/hasLoop

One way to fix this is to use the canonicalizePath function from System.Directory.
This function will look at the path to a file, and if the file is a symbolic link,
it will give us the path that the link references:

λ canonicalizePath "/tmp/hasLoop/foo/theLoop"
"/tmp/hasLoop"

We can use this function to keep track of the canonical path of all of the
directories that we’ve ever tried to descend into, we just need a way to keep
a list of every directory that we’ve seen. We’ll manage that using a Set from
the containers library. Let’s create a new IORef to reference an empty set:

seenRef <- newIORef Set.empty
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We’re also going to create a new IORef to hold the list of results that we want
to eventually return. We’ll make use of this a bit later in our function:

resultRef <- newIORef []

Now that we have a way to hold a set of the directories we’ve already dealt
with, it’d be nice to have a couple of helper functions to make it easy for us
to test whether we’ve already dealt with a directory, and to say we’ve already
dealt with one. We want these functions to have access to the seenRef reference
we just defined, so we’ll define our new functions inside of a let block:

let
haveSeenDirectory canonicalPath =

Set.member canonicalPath <$> readIORef seenRef

addDirectoryToSeen canonicalPath = do
seen <- readIORef seenRef
writeIORef seenRef $ Set.insert canonicalPath seen

In the example, we’ve added two new helper functions. The first, haveSeenDirec-
tory, takes a canonical path and looks to see whether it is a member of the
set that is currently in the IORef.

The second function, addDirectoryToSeen, takes a canonical path and updates
the set of paths that we’ve seen to include this new path. We first extract the
set of paths we’ve seen, then add our new one and update the reference. This
pattern of extracting a value from a reference, updating it, and writing it again
can start to get a little tedious. The modifyIORef has the type modifyIORef :: IORef a
-> (a -> a) -> IO (), and it allows you to apply a function to the value at a reference.
Let’s refactor addDirectoryToSeen to use it:

addDirectoryToSeen canonicalPath =
modifyIORef seenRef $ Set.insert canonicalPath

With the helper functions in place, we can start implementing our traversal
logic. Like haveSeenDirectory and addDirectoryToSeen, we’ll add our new function to
the our let block:

traverseSubdirectory subdirPath = do

The first thing we’ll want to do when we’re looking at any directory is to get
a list of all of the contents:

contents <- listDirectory subdirPath

Once we have a list of the contents of the current directory, we want to iterate
over them so that we can either handle the files, or decend into the subdirec-
tories. Instead of using a map or fold here, we’re going to make use of a new
function from Data.Foldable, for_.
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for_ is handy function that lets you apply some Applicative or Monad computation
to each item in a collection of elements. For example, you can print out a list
of numbers with:

λ for_ [1..10] $ \num -> putStr $ show num <> " "
1 2 3 4 5 6 7 8 9 10
λ

For our directory traversal function we’re going to iterate over the contents that
we’ve just gotten from the current directory.

for_ contents $ \file' ->

Dealing with file IO on a live system is tricky—a lot of things can go wrong.
Files may be deleted between when we list the directory contents and when
we try to access them, broken symbolic links might point to files that no
longer exist, or parts of the filesystem could become unmounted. All of these
cases could lead to IO Exceptions being raised.

In some cases, handling IO exceptions can be quite challenging, but thank-
fully in this case, if we run into an error with handling a file, we can safely
skip it and move on to the next file.

We’ll handle our potential errors with the handle function from Control.Exception.
This function works just like the catch function that you’ve already used, except
the arguments are reversed and we provide our error handler first. In cases
like our current function with very simple error handling this can make our
code easier to read:

handle @IOException (\_ -> pure ()) $ do

The first thing we’ll want to do as we’re processing any given file is to fix up
the name and classify the file type. After that, we’ll match on the file classifi-
cation. For any nonstandard file type, we’ll ignore it and move on:

let file = subdirPath <> "/" <> file'
canonicalPath <- canonicalizePath file
classification <- classifyFile canonicalPath
case classification of

FileTypeOther -> pure ()

Finally, we can add in the code to handle files and directories while making
use of our IORef-based approach. For an individual file, we no longer return
a value, instead we’ll just cons the result of applying our user-supplied
function directly onto our reference list:

FileTypeRegularFile ->
modifyIORef resultRef (\results -> action file : results)
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For directories, we no longer have to keep an intermediate list of results and
concatenate them together, we do however need to ensure that we add our
directory to the list of directories we’ve already processed. We’ll use when from
Control.Monad. This function has the type when :: Applicative f => Bool -> f () -> f (), and
it allows us to conditionally run a computation:

FileTypeDirectory -> do
alreadyProcessed <- haveSeenDirectory file
when (not alreadyProcessed) $ do

addDirectoryToSeen file
traverseSubdirectory file

The last thing we need to do is call traverseSubdirectory with the root path (and
remove the trailing '/' if present), and then return the contents of our list. The
final function is:

traverseDirectory :: FilePath -> (FilePath -> a) -> IO [a]
traverseDirectory rootPath action = do

seenRef <- newIORef Set.empty
resultRef <- newIORef []
let

haveSeenDirectory canonicalPath =
Set.member canonicalPath <$> readIORef seenRef

addDirectoryToSeen canonicalPath =
modifyIORef seenRef $ Set.insert canonicalPath

traverseSubdirectory subdirPath = do
contents <- listDirectory subdirPath
for_ contents $ \file' ->

handle @IOException (\_ -> pure ()) $ do
let file = subdirPath <> "/" <> file'
canonicalPath <- canonicalizePath file
classification <- classifyFile canonicalPath
case classification of

FileTypeOther -> pure ()
FileTypeRegularFile ->
modifyIORef resultRef (\results -> action file : results)

FileTypeDirectory -> do
alreadyProcessed <- haveSeenDirectory file
when (not alreadyProcessed) $ do

addDirectoryToSeen file
traverseSubdirectory file

traverseSubdirectory (dropSuffix "/" rootPath)
readIORef resultRef

We still have some opportunities to refactor this function a bit, but before we
do, let’s load it up in ghci and test it to see how it works. In the following
examples we’ll use this directory structure:
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user@host:~$ tree /tmp/test/
/tmp/test/
├── a
│ └── b
│ └── c
│ └── d
│ └── d-file
├── fizz
│ ├── buzz
│ │ └── buzz-file.1
│ └── fizz-file
└── foo

├── bar
│ ├── bar-file.1
│ └── baz
│ └── baz-file.1
└── foo-file.1

9 directories, 6 files

We can start testing our directory traversal function by using it to give us a
list of all of the files that it encounters:

λ :type traverseDirectory "/tmp/test/" id
traverseDirectory "/tmp/test/" id :: IO [FilePath]
λ traverseDirectory "/tmp/test/" id
[ "/tmp/test/foo/bar/bar-file.1"
, "/tmp/test/foo/bar/baz/baz-file.1"
, "/tmp/test/foo/foo-file.1"
, "/tmp/test/a/b/c/d/d-file"
, "/tmp/test/fizz/fizz-file"
, "/tmp/test/fizz/buzz/buzz-file.1" ]

We can also do some transformations on the filenames. For example, if we
wanted to get the length of the filenames:

λ traverseDirectory "/tmp/test/" length
[28,32,24,24,24,31]

Imagine though that instead of simply working with the names of the files
themselves, we wanted to do something that involved the contents of the file,
like reading the file in and counting the number of bytes:

import Data.ByteString (ByteString)
import qualified Data.ByteString as BS

countBytes :: FilePath -> IO (FilePath, Integer)
countBytes path = do

bytes <- fromIntegral . BS.length <$> BS.readFile path
pure (path, bytes)
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Let’s try passing in countBytes to our traversal function to see what we get back:

λ traverseDirectory "/tmp/test/" countBytes
λ

Nothing! If that’s unexpected, we might get some help from looking at the
type of the expression:

λ :type traverseDirectory
traverseDirectory :: FilePath -> (FilePath -> a) -> IO [a]
λ :type traverseDirectory "/tmp/test/" countBytes
traverseDirectory "/tmp/test/" countBytes

:: IO [IO (FilePath, Integer)]

When we call traverseDirectory with countBytes we’re getting back a computation
that itself contains a list of computations which, if evaluated, will give us the
number of bytes in a file. We can work around this by evaluating all the compu-
tations in the list. The sequence and join functions will take care of this for us:

λ :type sequence
sequence :: (Traversable t, Monad m) => t (m a) -> m (t a)
λ :type join
join :: Monad m => m (m a) -> m a
λ join . fmap sequence $ traverseDirectory "/tmp/test/" countBytes
[("/tmp/test/foo/bar/bar-file.1",0)
,("/tmp/test/foo/bar/baz/baz-file.1",0)
,("/tmp/test/foo/foo-file.1",0)
,("/tmp/test/a/b/c/d/d-file",0)
,("/tmp/test/fizz/fizz-file",0)
,("/tmp/test/fizz/buzz/buzz-file.1",0)]

This approach still has the problem of causing us to accumulate a potentially
large number of unevaluated computations. It would be ideal if our traverseDi-
rectory function could evaluate an IOAction for us as it’s doing its other work.
Let’s take on a small refactor to see this in action:

traverseDirectory :: FilePath -> (FilePath -> IO ()) -> IO ()
traverseDirectory rootPath action = do

seenRef <- newIORef Set.empty
let

haveSeenDirectory canonicalPath =
Set.member canonicalPath <$> readIORef seenRef

addDirectoryToSeen canonicalPath =
modifyIORef seenRef $ Set.insert canonicalPath

traverseSubdirectory subdirPath = do
contents <- listDirectory subdirPath
for_ contents $ \file' ->

handle @IOException (\_ -> pure ()) $ do
let file = subdirPath <> "/" <> file'
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canonicalPath <- canonicalizePath file
classification <- classifyFile canonicalPath
case classification of

FileTypeOther -> pure ()
FileTypeRegularFile ->
action file

FileTypeDirectory -> do
alreadyProcessed <- haveSeenDirectory file
when (not alreadyProcessed) $ do

addDirectoryToSeen file
traverseSubdirectory file

traverseSubdirectory (dropSuffix "/" rootPath)

This version of our function no longer keeps a results reference around.
Instead of appending a result to a list of results, we instead simply run some
IOAction with the current file. This means that we don’t, necessarily, need to
store any intermediate files at all. If, for example, we wanted to print the file
sizes out as we go, we can say:

λ traverseDirectory "/tmp/test/" $ \file -> countBytes file >>= print
("/tmp/test/fizz/buzz/buzz-file.1",0)
("/tmp/test/fizz/fizz-file",0)
("/tmp/test/a/b/c/d/d-file",0)
("/tmp/test/foo/foo-file.1",0)
("/tmp/test/foo/bar/baz/baz-file.1",0)
("/tmp/test/foo/bar/bar-file.1",0)

You can also recreate the capabilities of the original function by factoring out
the use of an IORef to accumulate results into a new function:

traverseDirectory' :: FilePath -> (FilePath -> a) -> IO [a]
traverseDirectory' rootPath action = do

resultsRef <- newIORef []
traverseDirectory rootPath $ \file -> do

modifyIORef resultsRef (action file :)
readIORef resultsRef

These two functions, traverseDirectory and traverseDirectory', demonstrate one of
the common ways that you’ll use IORefs in real-world applications. By creating
an IORef that is part of the closure of a function that you pass around, or
call recursively, you can get data and run computations that would be awk-
ward or expensive to do without external mutable state.

Let’s look at one more example, just to drive the point home. Imagine that
you want to get the contents of the largest file in our directory tree. We’ll
assume for the sake of the example that the filesystem does not allow any
easier way to get the size of a file except for reading it into memory. If you
were to use the original version of traverseDirectory that returns a list of values,
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you could read the contents of each file and then take the longest file, but
that would mean that you’d need to possibly store all of the contents of all of
the files in memory. That could put quite unreasonable memory pressure on
the application. Alternatively, you could store a computation that returns the
length and fold over it, but that requires traversing the entire directory
structure twice. Using an IORef, we can re-use our existing traverseDirectory
function and get the longest file in a single pass:

longestContents :: FilePath -> IO ByteString
longestContents rootPath = do

contentsRef <- newIORef BS.empty
let

takeLongestFile a b =
if BS.length a >= BS.length b
then a
else b

traverseDirectory rootPath $ \file -> do
contents <- BS.readFile file
modifyIORef contentsRef (takeLongestFile contents)

readIORef contentsRef

Using an IORef here allows us to re-use our existing traversal function, make
a single pass through the directory structure, and keep at most two files worth
of data in memory at a time.

Building a Basic Metrics System with IORefs
So far, you’ve learned how to create a reference that has the lifetime of some
single IO action, but in some cases it would be convenient to have a reference
that is available to your entire program, and for the lifetime of the application.
Although global mutable data is often cast as inadvisable at best, and an
antipattern at worst, there are situations where module-level global variables
can be quite useful. One of these situations is when dealing with global con-
cerns like logging or metrics. In this section, we’ll look at how to build a
minimal metrics system that you can use to instrument a program.

Let’s start by defining a new record, AppMetrics, that we’ll use to hold all of our
different metrics. For our simplified application, we’re going to hold three
different metrics: successCount will count all of the times a function call succeed-
ed, failureCount will return all the time a function failed, and callDuration will count
the total amount of time that we have spent in each function. We’ll be using
Data.Map.Strict from the containers library for the examples in this section. A Map
is a dictionary that lets us efficiently associate keys with values. For example,
we’ll use a Map String Int to let us efficiently look up Int values given String keys:
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module Metrics where
import qualified Data.Map.Strict as Map
import Data.IORef

data AppMetrics = AppMetrics
{ successCount :: Int
, failureCount :: Int
, callDuration :: Map.Map String Int
} deriving (Eq, Show)

In a real application, you would typically store the set of metrics dynamically
rather than choosing a fixed set of things to measure upfront, but for this
minimal example we’ll stick with a few prechosen metrics.

Metrics present an interesting challenge to us when we’re trying to design
our software. Metrics must be mutable, since their entire purpose is to change
as things in our program happen. They must also be available throughout
our entire program, since we will ideally be instrumenting much of our
application to track what is happening. It is inconvenient to pass around a
pure metrics value that we return along with values in our program, so we’d
like to have metrics that exist separately from our main application. These
constraints make them good candidates for existing as an IORef.

Let’s look at an example of how we might use an IORef to implement metrics
for a small sample program.

We know that we want to have our metrics be global to our module so that
we can track metrics from any function, and we know that our metrics value
needs to be mutable, so a reasonable starting point might be to create a top-
level IORef:

metrics :: IO (IORef AppMetrics)
metrics = newIORef AppMetrics

{ successCount = 0
, failureCount = 0
, callDuration = Map.empty
}

Next, for the sake of testing, let’s write a function that can print some metrics
out to the screen so that we can easily verify that our metrics are working as
expected:

printMetrics :: IO ()
printMetrics =

metrics >>= readIORef >>= print

We’ll also need some functions to update metrics. For the moment, let’s be opti-
mistic and we’ll just implement a function to increment the success counter:
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incrementSuccess :: IO ()
incrementSuccess =

metrics >>= flip modifyIORef incrementSuccess
where
incrementSuccess m =

m { successCount = 1 + successCount m }

Finally, let’s write a couple of functions so that we can test our metrics out:

successfullyPrintHello :: IO ()
successfullyPrintHello = do

print "Hello"
incrementSuccess

printHelloAndMetrics = do
successfullyPrintHello
printMetrics

We can load our module into ghci to test it:

λ printHelloAndMetrics
"Hello"
AppMetrics

{successCount = 0, failureCount = 0, callDuration = fromList []}

You might notice that this approach didn’t work at all! What happened?

Let’s take another look at our metrics function:

metrics :: IO (IORef AppMetrics)
metrics = newIORef AppMetrics

{ successCount = 0
, failureCount = 0
, callDuration = Map.empty
}

The problem that we have right now is that metrics is a an IO action, and each
time we run that action we get a new reference that is initialized with an
empty set of metrics. In other words, every time we pass metrics into (>>=)
or get a metrics value in a do block using <-, we’re going to get a brand new
empty collection metrics. Instead of getting the metrics when we need it by
calling metrics we’re going to need to create a single source of truth for metrics
and pass it around through all of our computations.

We could, of course, directly pass around our IORef, but that leaks an imple-
mentation detail that we might want to change later. Instead, let’s create a
new type that represents an IORef that holds some metrics data.

At this point, we have two choices for how we could do this. One option would
be to create a record that holds separate references to each of the things we’d
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like to potentially update. In this case, we’d replace our existing AppMetrics type
with one like this:

data AppMetrics
{ successCount :: IORef Int
, failureCount :: IORef Int
, callDuration :: IORef (Map.Map String Int)
}

This can be a great approach to take when you might want to have different
threads updating metrics independently, or when want to pull out specific
metrics and pass them around while hiding the rest of the metrics from some
particular function. The down side to this approach is that it can be a little
bit more work to manage, because we now have to implementing updating
each reference separately. This can introduce performance problems if you
have a lot of functions that want to work with several different metrics, since
you’ll have to read and write multiple references for each metrics update.

An alternative approach would be to keep our original AppMetrics definition,
and add a newtype wrapper around a reference to the metrics:

newtype Metrics = Metrics { appMetricsStore :: IORef AppMetrics }

This approach makes it more efficient to update the entire set of metrics at
once, but at the cost of some degree of parallelism. For now, we’ll stick with
our original AppMetrics definition and the Metrics wrapper, because it will let us
write a bit less code as we’re working through the examples. In an exercise
at the end of this chapter, you’ll have an opportunity to refactor some of your
metrics code to make use of multiple references.

To go along with our newtype wrapper, let’s rename metrics and have it actually
return a Metrics value:

newMetrics :: IO Metrics
newMetrics =

let
emptyAppMetrics = AppMetrics
{ successCount = 0
, failureCount = 0
, callDuration = Map.empty
}

in Metrics <$> newIORef emptyAppMetrics

The idea behind using a newtype wrapper around our IORef is that we’d like
users of our metrics API to be able to ignore the implementation detail that
we’re using an IORef to handle the metrics. So far, we’ve updated metrics by
modifying the reference value directly, but that’s not going to work if we want
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to hide the fact that we’re dealing with a reference from the user. Instead,
let’s add some utility functions that allow us to modify the metrics. Let’s start
with a pair of functions to increment our success and failure counters:

tickSuccess :: Metrics -> IO ()
tickSuccess (Metrics metricsRef) = modifyIORef metricsRef $ \m ->

m { successCount = 1 + successCount m }

tickFailure :: Metrics -> IO ()
tickFailure (Metrics metricsRef) = modifyIORef metricsRef $ \m ->

m { failureCount = 1 + failureCount m }

Next, let’s add a timeFunction call that will let us run an IO action with a given name
and time how long it took to execute. For this function, we’ll need to make sure
we’ve added a dependency on the time library to our cabal file, and we’ll import a
few functions from Data.Time.Clock to let us do some time calculations:

import Data.Maybe (fromMaybe)
import Data.Time.Clock

( diffUTCTime
, getCurrentTime
, nominalDiffTimeToSeconds
)

timeFunction :: Metrics -> String -> IO a -> IO a
timeFunction (Metrics metrics) actionName action = do

startTime <- getCurrentTime
result <- action
endTime <- getCurrentTime

modifyIORef metrics $ \oldMetrics ->
let
oldDurationValue =

fromMaybe 0 $ Map.lookup actionName (callDuration oldMetrics)

runDuration =
floor . nominalDiffTimeToSeconds $

diffUTCTime endTime startTime

newDurationValue = oldDurationValue + runDuration

in oldMetrics {
callDuration =

Map.insert actionName newDurationValue $
callDuration oldMetrics

}

pure result

Our timer function is a bit longer than tickSuccess and tickFailure, but not much
more complicated. The majority of the work that we’re doing here is to calculate
the total amount of time being spent in a given function by first finding the
time when we start and finish running the function that was passed in and
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then adding that time to any already accumulated time for this particular
action.

Finally, to make things easier to test, let’s add a displayMetrics function that will
print our current metrics to the screen. Since we’re going to want access to
all of the fields in our metrics store, we’ll enable RecordWildCards to make it
easier:

{-# LANGUAGE RecordWildCards #-}

displayMetrics :: Metrics -> IO ()
displayMetrics (Metrics metricsStore) = do

AppMetrics{..} <- readIORef metricsStore
putStrLn $ "successes: " <> show successCount
putStrLn $ "failures: " <> show failureCount
for_ (Map.toList callDuration) $ \(functionName, timing) ->

putStrLn $ printf "Time spent in \"%s\": %d" functionName timing

Now that we’ve got a few functions that we can use to collect metrics, we can
start testing it out. Let’s re-use our traverseDirectory code from earlier in this
chapter, but now we’ll collect metrics like how many times we succeeded or
failed to open a file, and how long we spent in the various functions that we
needed to call to process the files.

We’ll start by modifying traverseDirectory to make use of our metrics code. The
changes will be fairly minimal, so let’s look at the final version of the function:

{-# LANGUAGE TypeApplications #-}
import qualified Data.Set as Set
import Control.Exception

traverseDirectory :: Metrics -> FilePath -> (FilePath -> IO ()) -> IO ()
traverseDirectory metrics rootPath action = do

seenRef <- newIORef Set.empty
let

haveSeenDirectory canonicalPath =
Set.member canonicalPath <$> readIORef seenRef

addDirectoryToSeen canonicalPath =
modifyIORef seenRef $ Set.insert canonicalPath

handler ex = print ex >> tickFailure metrics

traverseSubdirectory subdirPath =
timeFunction metrics "traverseSubdirectory" $ do

contents <- listDirectory subdirPath
for_ contents $ \file' ->

handle @IOException handler $ do
let file = subdirPath <> "/" <> file'
canonicalPath <- canonicalizePath file
classification <- classifyFile canonicalPath
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result <- case classification of
FileTypeOther -> pure ()
FileTypeRegularFile ->

action file
FileTypeDirectory -> do

alreadyProcessed <- haveSeenDirectory file
when (not alreadyProcessed) $ do
addDirectoryToSeen file
traverseSubdirectory file

tickSuccess metrics
pure result

traverseSubdirectory (dropSuffix "/" rootPath)

We’ve added a new parameter, bound to the name metrics, so we can actually
keep track of the metrics we want to handle in the function. Additionally,
we’ve changed the main loop in traverseSubdirectory so the function it calls is
wrapped by timeFunction. This lets us keep track of the total amount of time
we’re spending traversing through the directory tree. We’re also now incre-
menting our failure count if we catch an exception while trying to process a
file, and incrementing the success count if we successfully process it.

Our new function will take the path to a directory and will traverse it using
our new metrics-aware traverseDirectory function. For each file in the directory
listing, we’ll print out the number of words in the file, and we’ll update a
global histogram that counts the number of occurrences of each character
across all of the files that we’ve processed. Once we’re done traversing the
directory we’ll print out the histogram and a summary of our metrics.

We’ll start by importing a couple of modules from the text library to help us
deal with the contents of the files:

import qualified Data.Text as Text
import qualified Data.Text.IO as TextIO

Next we’ll start defining our function. We’ll begin by creating some new metrics
and an IORef that we can use to keep track of the histogram that we’ll be
updating with each file that we process:

directorySummaryWithMetrics :: FilePath -> IO ()
directorySummaryWithMetrics root = do

metrics <- newMetrics
histogramRef <- newIORef Map.empty

Next, we’ll call our new metric-aware traverseDirectory function, and we’ll pass
it in the empty metrics store that we’ve just created:

traverseDirectory metrics root $ \file -> do
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The first thing we want to do for each file is to print out the name of the file
we’re trying to process. After that, we’ll read the contents of the file into a Text
value so that we can process it:

putStrLn $ file <> ":"
contents <- timeFunction metrics "TextIO.readFile" $

TextIO.readFile file

You’ll notice here that we’re using the readFile function provided to use in
Data.Text.IO. This is a strict function that will ensure we actually read the file
right away. If you recall the example you worked through when you first
started learning about IO on page 277, you saw how using laziness with IO
could introduce errors, like accidentally exhausting the number of open file
descriptors. Not only will using Text here give us a significant performance
improvement over String, but using strict IO here will help us avoid some of
the problems that can crop up when we are using laziness with IO. Another
unexpected benefit of using TextIO.readFile in our case is that it will fail if it tries
to read data that isn’t valid Unicode text. Normally we wouldn’t consider
failure to be a benefit, but we have failure metrics we’d like to test and this
gives us an easy way to populate a directory with files that will fail and let us
see that we’re counting those failures correctly.

Now that we have the contents of the file, let’s do some things with it. We’ll
start by counting the number of words. As before, we’d like to time this so
that we have an idea of how much time we’re spending with this particular
file. We’ll start by printing out the number of words in the file:

timeFunction metrics "wordcount" $
let wordCount = length $ Text.words contents
in putStrLn $ " word count: " <> show wordCount

Next, let’s update the histogram. We’ll start by reading the current histogram
out of our reference. We’ll use that as the starting point and fold over each
of the characters in current text that we have:

timeFunction metrics "histogram" $ do
oldHistogram <- readIORef histogramRef
let

addCharToHistogram histogram letter =
Map.insertWith (+) letter 1 histogram

newHistogram = Text.foldl' addCharToHistogram oldHistogram contents
writeIORef histogramRef newHistogram

The insertWith function here allows us to provide a merge function to be used
in case we happen to have a collision in the map. In our case, we’re using
this to let us increment the count of a letter each time we find one. The first
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time we see a new letter, Map.insertWith will add new entry with the letter as the
key and the value 1. The next time we see that letter, it’ll call our function,
(+), with the old count and the new value that we want to insert, which is
always 1, meaning that each time we see a character we’ll increment the count
at that position in the map.

As a final step, we’ll print out the histogram data and then print out all of
our metrics:

histogram <- readIORef histogramRef
putStrLn "Histogram Data:"
for_ (Map.toList histogram) $ \(letter, count) ->

putStrLn $ printf " %c: %d" letter count

displayMetrics metrics

The final version of our function is:

directorySummaryWithMetrics :: FilePath -> IO ()
directorySummaryWithMetrics root = do

metrics <- newMetrics
histogramRef <- newIORef (Map.empty :: Map.Map Char Int)
traverseDirectory metrics root $ \file -> do

putStrLn $ file <> ":"
contents <- timeFunction metrics "TextIO.readFile" $

TextIO.readFile file
timeFunction metrics "wordcount" $

let wordCount = length $ Text.words contents
in putStrLn $ " word count: " <> show wordCount

timeFunction metrics "histogram" $ do
oldHistogram <- readIORef histogramRef
let

addCharToHistogram histogram letter =
Map.insertWith (+) letter 1 histogram

newHistogram =
Text.foldl' addCharToHistogram oldHistogram contents

writeIORef histogramRef newHistogram

histogram <- readIORef histogramRef
putStrLn "Histogram Data:"
for_ (Map.toList histogram) $ \(letter, count) ->

putStrLn $ printf " %c: %d" letter count

displayMetrics metrics

If you use this function to try to get information about a large directory, you
might notice something unexpected. First, the output of the program will
start out working like you’d expect: all of the files in the directory will be
listed, along with the number of words in them. Once the program has finished
outputting the word counts though, it will pause for a while. Depending on
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the size of the directory you were calculating metrics on, the pause might be
anywhere from less than a second up to several seconds. Once it’s done, you
might see some metrics like this:

successes: 20611
failures: 43
Time spent in "TextIO.readFile": 24
Time spent in "histogram": 0
Time spent in "traverseSubdirectory": 91389
Time spent in "wordcount": 4304

Calculating the histogram should be a fairly time-consuming operation. The
fact that we are waiting a while for the final histogram to be printed out is
evidence that there is work there to do, but our metrics code seems to think
that we’re spending no time at all here. What’s going on? It turns out that
we’ve encountered a bug in our program caused by lazy IO. This is a common
problem in Haskell programs, and in the next section, we’ll dive into what
causes these problems, how to troubleshoot them, and some techniques for
fixing the problem.

Dealing with Laziness and IO
When we see the behavior of our program, our first instinct might be to look
at how we’re recording the time spent in the histogram code—perhaps we’ve
accidentally introduced a bug that causes us to not record times correctly?
The fact that we have more reasonable values for our other calls is evidence
against this though.

The problem we’ve run into is writeIORef handles the value it’s writing into the
reference lazily. Although we’re always writing something into the reference
immediately each time we’re calling writeIORef, the value we’re writing isn’t our
newly updated histogram. Instead, we’re writing a thunk that contains the
computation that will give us an updated histogram when we need it. Creating
a thunk is fast enough that at the millisecond-resolution we’re rounding down
to zero each time we call the function. It’s only once we try to actually look
at the values in the map that we finally have to compute them.

One way that we could work around this is by adding a new timer around
the code that we’re using to actually print out the histogram:

timeFunction metrics "print histogram" $ do
histogram <- readIORef histogramRef
putStrLn "Histogram Data:"
for_ (Map.toList histogram) $ \(letter, count) ->

putStrLn $ printf " %c: %d" letter count
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Now when we run our program, we’ll see that while our histogram construction
continues to not take any time, we can track the amount of time it takes to
evaluate the histogram so that we can print it out:

successes: 20611
failures: 43
Time spent in "TextIO.readFile": 25
Time spent in "histogram": 0
Time spent in "print histogram": 5788
Time spent in "traverseSubdirectory": 3850
Time spent in "wordcount": 0

Unfortunately, the problem here goes deeper than just not having a correct
accounting of the time that we spent computing the histogram. We’ve also
introduced a type of problem known as a space leak.

Understanding Space Leaks
Space leaks are a type of error we can run into in Haskell when laziness starts
to work against us, and we start to see a large number of thunks accumulated
that are not evaluated. This can manifest in several different ways, including
causing our programs to use too much memory, to have poor or unpredictable
performance patterns, or more rarely, to crash at runtime with a stack over-
flow. What we’ve seen so far when trying to run our directory traversal program
is an example of how space leaks can make themselves known when the
performance isn’t what we expect. Specifically, we would expect generating
the character histogram to take a lot of time, but in fact it takes almost no
time at all.

The idea that a space leak can show up as a problem with unexpected perfor-
mance characteristics can be counterintuitive, but as we look into what
happened with our program in this case it will start to be clear just why the
unusual performance was an indicator of a space leak.

Before we dive into the code and start working on a fix, let’s get some hard
data. When we suspect that we have a space leak, it can be helpful to look
at information about the amount of memory we’re allocating, and what the
garbage collector is doing. Even if the data doesn’t initially tell us where to
look for the error, it gives us a baseline to measure against, so we can see if
the changes we’re making are actually having a positive impact on the runtime
characteristics of the application.
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We can’t get the kind of information that we need from ghci, so let’s create a
new file and make sure that we have main defined so that we can compile the
application as a stand-alone program:

import System.Environment (getArgs)

main :: IO ()
main = getArgs >>= directorySummaryWithMetrics . head

If you haven’t already created a new cabal project for this program, you can
take a minute to do so now, or you can compile the program directly with ghc.
In either case, make sure that you’ve enabled -O2 level optimizations. GHC is
able to do a number of optimizations, and we want to avoid spending too
much time chasing down optimizations that the compile will take care of for
us anyway.

$ ghc -O2 DirectorySummary.hs -o DirectorySummary

Once you’ve built the program, we want to run it, but instead of running the
program like normal, we’re going to pass in some extra flags to the Haskell
runtime so that we can ask it to collect some information about memory usage
as our program is running. Flags like this that we use to control the way the
Haskell runtime works, or to ask it for some extra information about our
program, are called RTS flags. RTS flags are normal command line flags, but
we need to differentiate between options we want to pass to the Haskell run-
time and the options that we want to pass to our program. To do so, we start
by passing in the special +RTS argument. This argument will cause the runtime
to interpret all the arguments that it sees as arguments to the runtime system,
until it sees the -RTS argument. This lets us pass in as many arguments as
we want to the runtime system without our application having to know about
or handle them.

In our particular case, we only want to pass a single RTS flag, -s. This flag
will ask the runtime to generate summary statistics about the memory utiliza-
tion of our application:

$ ./DirectorySummary +RTS -s -RTS ./example-dir/

When you run the program with this RTS flag you’ll get all of the normal
output you’d expect, and then at the end before your program exits you’ll see
some output like this:
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1,911,494,744 bytes allocated in the heap
44,005,608 bytes copied during GC
12,816,336 bytes maximum residency (10 sample(s))
6,051,224 bytes maximum slop

39 MiB total memory in use (3 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 1764 colls, 0 par 0.026s 0.026s 0.0000s 0.0004s
Gen 1 10 colls, 0 par 0.007s 0.007s 0.0007s 0.0012s

INIT time 0.000s ( 0.000s elapsed)
MUT time 0.363s ( 0.363s elapsed)
GC time 0.033s ( 0.033s elapsed)
EXIT time 0.000s ( 0.000s elapsed)
Total time 0.396s ( 0.396s elapsed)

%GC time 0.0% (0.0% elapsed)

Alloc rate 5,262,713,737 bytes per MUT second

Productivity 91.7% of total user, 91.6% of total elapsed

There’s a lot of information here that we won’t cover in this book, but you
can refer to the GHC User Guide1 for comprehensive documentation on the
meaning of all these fields. For the moment we’re going to focus on the maxi-
mum residency field, which tells us the amount of memory that our program
was actually using at its peak.

If you look at the total size, in bytes, of all of the data in your example direc-
tory, you’ll notice that it is fairly similar to the total residency of our applica-
tion. For example, if we look at the total number of bytes in all of the files in
example-dir, we’ll see that they total about 12.3 megabytes, which is a little bit
less than the total residency of our application, but suspiciously close:

$ du -s -B 1 ./example-dir/
12365824 ./example-dir/

The fact that our maximum residency is so similar to the size of all of the files
in our directory can start to give us a hint about what has happened. When
we read the contents of a file in so that we can calculate the character his-
togram, we’re not freeing that data right away. Instead, we’re keeping all of
the files in memory. The fact that we see observable delay before the histogram
is printed out on the screen gives us a bit more information: we’re reading all
of the files, but not actually calculating the histogram until we’re ready to
print it out. It seems like, in this case, laziness might be causing trouble.
Let’s take a look at what’s going on, and in the next section, we’ll look at a
few ways to address this particular type of problem.

1. https://downloads.haskell.org/ghc/latest/docs/html/users_guide/index.html
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Laziness, Strictness, and IO
The root cause of the problem we’ve run into is that we’re mixing lazy and
strict values, and it’s causing our program to act unexpectedly. Let’s take a
look at our histogram calculation code again for reference:

traverseDirectory metrics root $ \file -> do
contents <- timeFunction metrics "TextIO.readFile" $

TextIO.readFile file

-- Omitting some things here

timeFunction metrics "histogram" $ do
oldHistogram <- readIORef histogramRef
let
addCharToHistogram histogram letter =

Map.insertWith (+) letter 1 histogram
newHistogram = Text.foldl' addCharToHistogram oldHistogram contents

writeIORef histogramRef newHistogram

The first thing that we need to keep in mind here is that TextIO.readFile is a strict
function. Whenever we call it, we’re going to get the entire contents of the file
brought into memory. Similarly, combining IO actions using (>>=) or in a do
block is always strict. As we’re traversing the directories, we’re always going
to read the contents of the file before we write an update to histogramRef or
before we move on and read the contents of the next file.

The second thing that we have to keep in mind is that Haskell is lazy by
default, so all of the things that don’t have to be strict are going to generate
thunks instead of strictly evaluated values. That means that whenever we
create a new histogram, we’re not really computing the value of a brand new
histogram, we’re just creating a new thunk that can compute a histogram
when a histogram is needed:

newHistogram = Text.foldl' addCharToHistogram oldHistogram contents

Perhaps unintuitively, a value to an IORef is not strict. When we call writeIORef,
we’re not forcing the value newHistogram to be computed, instead we just write
the thunk into the reference.

The last thing to keep in mind is a thunk keeps around references to every-
thing that is needed to compute a value. In this case, each thunk we’re writing
into the reference is keeping a reference to the previous thunk that was stored
in the IORef and a reference to the contents of the text file we’ve just read.
Since we have a reference to the contents of the text file, that data can’t be
garbage collected. Since we have a reference to the previous thunk, which in
turn has a reference to the contents of its text file, that text file can’t be
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garbage collected either. By the time we’ve finished traversing the directory,
we have a chain of thunks that are keeping open references to all the data
from all the files we’ve opened—plus a bit of overhead for the other calculations
we need to do.

The solution to this problem is to reduce the amount of laziness in our pro-
gram. If we can compute the value of the histogram thunk immediately, then
we will no longer need to keep references to the contents of the file or the
previous thunk, and the garbage collector can clean everything up for us.
This is a common enough problem in Haskell programs that we have not just
one, but several different approaches we can use to solve the problem. Before
we dive into reviewing the options though, let’s take a slight detour to
understand exactly what we mean when we’re talking about strictness, lazi-
ness, and what it means to evaluate an expression. This will give us the tools
to better understand when and how to introduce strictness, and also make
sure we’re better prepared to avoid this type of space leak in the future.

Thunks and Evaluation in Haskell Programs
Much earlier in this book you learned about how thunks can enable us to do
creative things like creating infinitely linked lists on page 74, and more
recently, you saw an example of how a thunk being created unexpectedly
created a space leak that caused us to use far more memory than necessary
when we were counting the frequency of characters in a directory full of files.
Most of the time as we are writing Haskell, we don’t have to think too much
about the details of what thunks are being created and when, and thankfully,
most of the time if we do think about them it’s because they are helping us
write things that might be harder to express in a strict language. Sometimes
though, laziness causes problems, and when that happens we need to under-
stand a little bit more about how our programs are actually being run. In this
case, that means we need to know a bit more about what thunks are and
how they work so that we can fix our space leak and ensure we don’t have
similar problems in the future.

So, what is a thunk? Up until now, we’ve used a pretty simple mental model
of a thunk as a value that hasn’t yet been computed. This is right, but there’s
a little bit more to it than is apparent from that explanation. To better explore
what thunks are and how they impact the way our programs are run, let’s
work through an example. Our example will recreate the same space leak
caused by writing into an IORef that we encountered when we were working
with our timer function, but in a much smaller and simpler program so that
we can avoid too many extraneous details.
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Our example program will have two functions. Our first function, character-
Counter, will read the contents of a file and return an IO action that will give
us a way to count the number of occurrences of some character or substring
inside of the contents of the file:

characterCounter :: FilePath -> IO (Text.Text -> Int)
characterCounter filePath = do

haystack <- TextIO.readFile filePath
pure $ \needle ->

Text.count needle haystack
+ Text.count needle (Text.pack filePath)

Next, we’d like to call characterCounter. Our second function, someExample, is going
to do some work to figure out what path we should open, and then count the
number of spaces in the file at that path and write the count into an IORef:

someExample :: FilePath -> IO (IORef Int)
someExample path = do

countRef <- newIORef 0
let

somePath = complicatedPathFinding path
counter <- characterCounter somePath
writeIORef countRef (counter " ")
pure countRef
where

-- You can use any function you'd like here
complicatedPathFinding = id

The first thing to think about when we’re dealing with performance problems
like space leaks or unexpected slowness in a Haskell program should be
memory allocation. Allocations and freeing up memory are core to the way
that Haskell programs are run. Space leaks, unexpectedly slow programs,
stack overflows, and bugs like exhausting the number of file descriptors are
all examples of problems that are closely tied to the way things are allocated.

Most of the things we’re dealing with when we write programs end up existing
at runtime as heap objects. Heap objects are how the Haskell runtime allocates
memory for everything from literal values like numbers, to values we’ve created
using value constructors, to functions and thunks. Understanding how heap
objects work is the first step to understanding more about how thunks and
laziness works in Haskell.

At a high level, all of the heap objects that we create in our program have the
same structure: a header that contains some metadata about what kind of
heap object we’re dealing with, followed by some additional information that
varies depending on the type of heap object, and finally, a payload that con-
tains data, or references to data, that is needed by the heap object.
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Some of the most common types of heap objects we deal with in most Haskell
programs are called thunks. The GHC runtime keeps track of several different
kinds of thunks internally, but for our purposes we don’t need to differentiate
between them, and for the sake of simplicity we’ll collectively refer to all of
them as “a thunk.”

When a thunk is first created, it’s going to have three different sets of data.
First, the header will tell the GHC runtime what kind of thunk it’s dealing
with, and will have all of the other housekeeping information that all heap
objects need. The next section contains the code that needs to run so that
the thunk can be evaluated when and if the result of the thunk is needed.
Finally, the payload section keeps around a table of references to the values
that that the code section needs to refer to in order to calculate a value.

To help make this a bit more concrete, let’s look at our example code and think
about what happens when we define somePath. When we define somePath in our
let binding, the runtime is going to manage that by creating a new thunk:

let
somePath = complicatedPathFinding path

Type: Thunk

somePath

λpath ��
  complicatedPathFinding path

#1� complicatedPathFind 
#2� path

Metadata

Code

Payload

The header data for our new heap object will have a type that tells the runtime
we’re dealing with a thunk, and the code section will tell us we need to call
a function named complicatedPathFinding, applying a value to it named path. A
reference to the actual complicatedPathFinding function and a reference to the
string we’re applying are stored in the payload so that we can reference them
if we need to run the code to get a value for the thunk.

This thunk by itself isn’t doing much, so let’s move on to the next thing we’re
defining: our character counter function, named counter. We’re getting the
function we’re binding counter to by running an IO action. IO actions can be
stored in thunks just like everything else, but since the implementation details
of IO can be a little tricky and aren’t relevant to the problem at hand, we’re
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going to skip over that and instead focus on what’s happening inside of char-
acterCounter when it gets evaluated.

The first thing we do inside of characterCounter is read the contents of the file
using the path that we passed in. Since the value we applied to this function
is the somePath thunk from earlier, we’re finally going to need to calculate a
value for our path.

When we need the value of a thunk, the first thing that happens is we run
the code in the code section of the heap object. Generally, that will result in
some new value being created and stored as a brand new heap object. That
new value is the actual value of our thunk. Once that’s done, we need a way
to get to the answer from the thunk, so the value of the thunk is updated.
Any references we were holding onto in the payload section can be released,
and thunk is updated with an indirection. The indirection tells us where to
look for the value we calculated from the thunk. All this happens transpar-
ently and automatically the first time we try to read the value of the thunk,
and all we see is the final result: the path to the file we want to open.

With our path available, we can read the contents of the file; again we’ll skip
over the details of IO for now. The last thing we do is to return a new function.
Functions, like thunks, are allocated as heap objects, and just like a thunk,
a function will store references to anything it needs to compute a value in the
payload section of the heap object. Let’s take another look at the function
we’re returning so we can figure out what references it would need to have
in its payload:

\needle ->
Text.count needle haystack
+ Text.count needle (Text.pack filePath)

There are quite a few different values that we’re referencing in this function.
First, we’re calling the Prelude function (+), and we’re calling both count and pack
from the Data.Text module. Keeping references to top-level functions like this
doesn’t typically have much of a performance impact, since the same values
can be referenced by everything in the program that needs to refer to them.
In addition to the top-level functions that we’re referencing, the body of our
function is also referencing the value of its parameter, needle. Since this is a
parameter to the function, and not a value that’s referencing some existing
heap object, we don’t actually need to store anything for that now. The last
two values we’re referencing are filePath and haystack. These are both part of the
function’s closure. That’s a fancy way to say that they are values that are in
scope when we’re defining this function, but they aren’t top-level values or
functions that can be shared across the entire program.
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What we’ve just described is the information stored in the heap object for a
function, but like anything else we’re not going to start by generating a function.
Instead, we’ll return a thunk that when evaluated will compute a function. In
practice, thunks and function heap objects are quite similar though, and all
the values we had to store in the function object’s payload will also be in the
thunk’s payload.

The last thing we do in our example is call ‘writeIORef‘ to update our counter. The
value that we pass to it is yet another thunk. This thunk contains the thunk
that we created that will eventually evaluate to the counting function we
returned from characterCounter, along with the parameter we want to pass to
that function. Just as in our earlier example, we’ve created a small space leak
here. The problem once again is that when we write the thunk into our IO
reference, we’re keeping around a reference to the contents of our text file,
preventing that data from being garbage collected. Now that we understand
a bit more about how thunks and heap objects work, we can start to formulate
a solution to this type of problem.

counter " "

#1: counter 
#2: " "

Type: Thunk

λneedle ->
  count needle haystack
  + count needle (pack filePath)

#1: count 
#2: pack 
#3: haystack 
#4: filePath

Type: Thunk
call to countercounter

Type: Thunk (Indirection)

Reference to Evaluated File Path

counter
Type: Value Consturctor

headValue : tailValue

#1: headValue 
#2: tailValue

counter

The crux of the problem in both our original code and our smaller example
here is that when we write a value into our reference, what we’re writing is a
thunk that contains references to all of the data in its closure, including the
contents of our file. If we could force the thunk to get evaluated, we might be
able to let the garbage collector free the memory that we’ve allocated to hold
the contents of our file, but only if we evaluate the thunk in the right way.

Right now we have a thunk that contains this code:

(counter ' ')
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If we could naively evaluate this thunk, we’d replace the code in this thunk
with a reference to a computed value that calls counter, which is just another
thunk. Even if we evaluated the counter thunk, we’d still be left with a function
heap object that contains the file contents in its closure. We need a way to
get our thunk evaluated enough that we don’t have to hold this kind of
information anymore. To do that, we need to evaluate the value into weak
head normal form.

A value in weak head normal form has to follow some very particular rules.
First, it can’t be a thunk, although it can have references to other thunks.
Second, the heap object has to be either a function or a constructor. Finally,
if the object is a function, we have to have applied any arguments to it that
we could have applied.

Let’s look at some examples. First, we’ll look at some value constructors that
are in weak head normal form:

100
'H' : <thunk>
\x -> x + 1
Just <thunk>

In these examples, 100 is in weak head normal form because a numeric literal
is a value constructor for a numeric type. The list 'H' : <thunk> is in weak head
normal form because the heap object contains a value constructor for a list,
(:). Even though the tail of the list is a thunk, the expression is in weak head
normal form because the actual heap object is a data constructor. Next, the
function \x -> x + 1 is in weak head normal form because we don’t have any
values that we can apply to the function. Finally, Just <thunk> is in weak head
normal form because it, like our list, is a value constructor, even though the
actual value is a thunk.

On the other hand, we can also write some expressions that aren’t in weak
head normal form. Let’s see some examples of those:

<thunk>
(\x -> x + 1) 5
5 + 1

The first example here is an unevaluated thunk. Even if the thunk would be
evaluated to a function or value constructor, the thunk itself is neither, and
so it’s not in weak head normal form. In our second example, the expression
(\x -> x + 1) 5 isn’t in weak head normal form either. In this case, we have a
value, 5, that we could apply to the function. If we did apply 5 to our function,
we’d get to our final example, 5 + 1. This function is also not in weak head
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normal form, since (+) is a function. This is more obvious if we rewrite 5 + 1
using prefix notation, (+) 5 1. Since we have parameters we haven’t yet applied,
it isn’t in weak head normal form.

Let’s work through turning our thunk representing (counter " ") into weak head
normal form manually to see what we’d get by doing the reduction.

First, let’s expand counter, replacing it with its definition:

(\needle ->
Text.count needle haystack
+ Text.count needle (Text.pack filePath)) " "

We can see right away that before we can have a value in weak head normal
form we’ll need to apply our parameter. That gives us this new expression:

Text.count " " haystack + Text.count " " (Text.pack filePath)

Next we have several other functions that haven’t had all of their arguments
applied. If we take yet another reduction that next step, we’d end up with
something like this:

Text.count " " "haystack contents" + Text.count " " "/path/to/haystack"

We still need to apply our values to Text.count on both sides of our expression,
which gives us: 1 + 0. That’s still not in weak head normal form, so we need to
apply our parameters one more time, and we’re left with the value constructor 1.

By reducing the expression down to weak head normal form, we’ve removed
any heap objects that need to hold references to the contents of the file we’ve
opened, so that it can be safely garbage collected. We’ve also freed up several
intermediate heap objects and removed a lot of indirection, potentially giving
ourselves better performance. Of course, if we weren’t ever going to use the
results of our count, we might have done all of that work for nothing, so we
wouldn’t want to go reducing things for no reason.

The main problem we have left is that we’ve manually reduced our value down
to weak head normal form as an example, but we need a way to tell the
compiler to do it for us. Thankfully, we have a few ways to do it.

The first option that we have, and in this particular case the easiest, is to use
a strict function to write data into our IORef. Some functions, like modifyIORef,
offer strict versions that will reduce one of their arguments to weak head
normal form when they are called. In this case, we can use the strict modifyIORef'
to ensure our counter is reduced before it’s written.
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In this particular example, turning our lazy call to writeIORef into a strict call
to modifyIORef' is a single line change that can drastically improve the perfor-
mance of our program:

modifyIORef' countRef (const $ counter " ")

If we apply the same change to our metrics application, we’ll also see a drastic
reduction in the amount of memory being used. For example, by changing
our timer function slightly, we can reduce both the total amount of memory
in use and the maximum residency significantly:

timeFunction metrics "histogram" $ do
oldHistogram <- readIORef histogramRef
let

addCharToHistogram histogram letter =
Map.insertWith (+) letter 1 histogram

newHistogram = Text.foldl' addCharToHistogram oldHistogram contents
modifyIORef' histogramRef (const newHistogram)

If we run our example program from earlier with the single small change, we
can see that we’ve significantly reduced the memory usage of our application:

1,999,084,672 bytes allocated in the heap
46,426,400 bytes copied during GC
2,210,696 bytes maximum residency (26 sample(s))

513,144 bytes maximum slop
8 MiB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 1828 colls, 0 par 0.023s 0.023s 0.0000s 0.0003s
Gen 1 26 colls, 0 par 0.011s 0.011s 0.0004s 0.0005s

INIT time 0.000s ( 0.000s elapsed)
MUT time 0.422s ( 0.421s elapsed)
GC time 0.034s ( 0.034s elapsed)
EXIT time 0.000s ( 0.000s elapsed)
Total time 0.456s ( 0.456s elapsed)

%GC time 0.0% (0.0% elapsed)

Alloc rate 4,739,720,785 bytes per MUT second

Productivity 92.6% of total user, 92.5% of total elapsed

Unfortunately, not all functions offer a strict version that works for us out of
the box. If we need to implement strictness ourselves, there are several helper
functions that are available in base and in some libraries. Most of these use
one of two basic approaches to making data strict: calling the seq function,
or using a popular GHC extension, BangPatterns.
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BangPatterns

The BangPatterns extension has been available since GHC 6.8.1. It’s
enabled by default in GHC2021, but you’ll need to manually enable
it in Haskell2010. This is a safe extension and shouldn’t generally
cause any changes to code that doesn’t directly use the feature.

The seq function is available in Prelude. Its type is seq :: a -> b -> b, and its
purpose is to ensure that its first argument is evaluated to weak head normal
and to return its second argument. It’s typically used when you need to
strictly evaluate an argument that you’ll pass into a function. For example,
we could replace our call to modifyIORef' with some code that uses seq directly
instead:

newHistogram `seq` writeIORef histogramRef newHistogram

Here we have forced newHistogram to be reduced to weak head normal form
before we pass it into writeIORef. In cases like this where the last parameter of
a function is the one that we want to apply strictly, we can also use the strict
function application operator from base, ($!). This function works just like
the regular ($) operator that you’re already familiar with, but it reduces its
right-hand argument to weak head normal form before applying it to the
function. For example, we can rewrite our somewhat verbose seq version much
more tersely:

writeIORef histogramRef $! newHistogram

The use of the ! symbol in $! mirrors the last tool that we have for evaluating
values to weak head normal form: using the BangPatterns extension. This
extension allows us to add a strictness annotation by putting a ! symbol in
front of let bindings and named parameters to ensure that they are evaluated
to weak head normal form. Although they aren’t usually used this way, we
can use a bang pattern to ensure that newHistogram is evaluated to weak head
normal form:

{-# LANGUAGE BangPatterns #-}

let
addCharToHistogram histogram letter =

Map.insertWith (+) letter 1 histogram
!newHistogram = Text.foldl' addCharToHistogram oldHistogram contents

writeIORef histogramRef newHistogram

More commonly, bang patterns are used with the parameters of functions to
ensure one or more of the function’s arguments are evaluated strictly, or with
the fields in records to ensure that the data in the record is always reduced
to weak head normal form before being stored. For example, instead of using
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modifyIORef' we could write our own writeIORef' function that ensures that the
value we are writing is strict:

writeIORef' :: IORef a -> a -> IO ()
writeIORef' ref !val = writeIORef ref val

By including the bang pattern on the val parameter, we ensure the argument
will always be evaluated to weak head normal form whenever the result of
the function is evaluated. Since writeIORef' is an IO action that will generally
be evaluated right away, we’ll immediately evaluate the histogram thunk
before we write it into the references.

Using bang patterns in records and data constructors follows the same pattern.
Imagine if, instead of writing the histogram as a number, we had defined a
new data type to hold the histogram:

data FileStats = FileStats (Map.Map Char Int)

Let’s update the timer function of our code with the minimal changes required
to use this new data type:

timeFunction metrics "histogram" $ do
(FileStats oldHistogram) <- readIORef histogramRef
let

addCharToHistogram histogram letter =
Map.insertWith (+) letter 1 histogram

newHistogram =
FileStats (Text.foldl' addCharToHistogram oldHistogram contents)

writeIORef' histogramRef newHistogram

Running this version of the code with summary metrics, you’ll notice we’ve
regressed back to our original larger memory footprint, even though we are
continuing to use our strict writeIORef' function that was previously giving us
substantial improvements. The problem is our implementation of writeIORef'
reduces its argument to weak head normal form. Now that we’re writing a
FileStats value instead of a map into our reference, reducing the argument to
weak head normal form means we’re only reducing the value down as far as
the value constructor, and keeping the histogram calculation inside of a
thunk. What we actually want is for the field of the record to be evaluated to
weak head normal form when we construct the record.

Using BangPatterns we can add a strictness annotation to the types of fields in
data types and records. Let’s rewrite FileStats to ensure that our histogram will
always be evaluated to weak head normal form:

data FileStats = FileStats !(Map.Map Char Int)
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If we’d used a record for FileStats the syntax would be similar:

data FileStats = FileStats
{ fileHistogram :: !(Map.Map Char Int)
}

With this small change, if we rebuild and re-run our program we can once
again see that we’re back to the lower memory footprint that we had before
we added the value constructor.

Summary
Haskell programs tend to use mutability sparingly, but in the real world
problems arise where mutable references can offer us a way to write substan-
tially more simple or efficient code, and in most large applications there will
be at least a few cases where mutable references are the best solution. In
practice, many of the situations where you will find yourself wanting to use
mutable references are also situations where you need to think carefully about
laziness, and when and how parts of your program will be evaluated.

Exercises

traverseDirectoryIO
Write a new function, traverseDirectoryIO, that has the type:

traverseDirectoryIO :: FilePath -> (FilePath -> IO a) -> IO [a]

This function should behave like traverseDirectory' but should accept a function
returning an IO action, rather than a value.

Timing Pure Functions
The timeFunction that you built as you worked through this chapter only supports
timing IO actions. Try writing a version of this function that also works for
pure values, with the type:

timePureFunction :: Metrics -> String -> a -> IO a

What are the limitations to your implementation function? Are there things
that a user of the function could do to ensure that the timing information
was better?
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Metrics Strictness
Consider the MetricsStore type that you defined earlier in this chapter:

data MetricsStore = MetricsStore
{ successCount :: Int
, failureCount :: Int
, callDuration :: Map.Map String Int
} deriving (Eq, Show)

How might you make use of strictness to improve the performance of metrics?
Try writing some metrics collecting functions using several different approaches
to strictness and profiling the results.
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CHAPTER 11

Serializing Heterogenous Data
Heterogenous Data in Haskell
So far in this book, you’ve learned how to use polymorphism to create data
structures and functions that can work with many different types. In all of
the examples you’ve worked through so far, you’ve had to select a single type
for any given instance of a polymorphic type. For example, while you can
create a list that can hold any type, once instantiated, that list is restricted
to only holding values of that one specific type that you selected.

In some cases, having data structures that are restricted to being uniform in
the type they can hold can be quite inconvenient. In these situations, we turn
to heterogenous data structures, which can hold values from an arbitrary
collection of types. One particularly common example of a problem space
where heterogenous data is helpful is in building tools to serialize and dese-
rialize data. Throughout this chapter, you’ll work through building a tool to
archive and extract sets of files, similar to the standard Unix tar command.
As you’re working through this tool, you’ll get a chance to learn about three
common approaches to dealing with heterogenous data. First, you’ll learn
how to serialize and deserialize data using tools you are already familiar with,
like sum types and records. Second, you’ll learn about a more powerful
technique for building a serializer using existential quantification that will
allow you to build a library that can support serializing any arbitrary collection
of types. Third, in the next chapter, you’ll continue with this project by
building tools to deserialize the archives that you’ve been creating.

A First Pass at a File Archiver
Throughout this chapter, you’ll work through building a library for a tool
called filepack. The FilePack library that we build will allow users to create
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archives of files that can be saved to disk, stored in a database, or sent over
the internet. The examples you build as you work through this chapter will
only support the programmatic creation and extraction of archives, but you
are encouraged to create a complete application around this library as an
additional example.

For maximum compatibility with third-party systems and tooling, we’ll store
the contents of our files as base64 encoded string data. Base64 encoding is
a well-known approach to encoding binary data in plain ASCII text so that it
can be handled in systems that assume they are dealing with plain text.
Rather than implementing the base64 encoding algorithm ourselves, we’ll
import the base64-bytestring package. This package provides the Data.Byte-
String>Base64 module that we’ll be using throughout the chapter.

Exploring the Base64 Encoding Package
We can see some examples of base64 encoding and decoding in ghci. We’ll
start by turning on the OverloadedStrings extension so that we can easily type
ByteString literals, and we’ll import both Data.ByteString and Data.ByteString.Base64:

λ :set -XOverloadedStrings
λ import qualified Data.ByteString as BS
λ import Data.ByteString.Base64 (encode,decode)

The two functions we’ll be most interested in from the module are encode and
decode, which allow us to encode a ByteString as base64, or decode it from base64
respectively. We can look at the types in ghci:

λ :type encode
encode :: BS.ByteString -> BS.ByteString
λ :type decode
decode :: BS.ByteString -> Either String BS.ByteString

To encode a ByteString we pass it to encode. The ByteString that we get back
out will look nothing like the input. You can try running a few examples to
see what base64 encoded strings look like:

λ encode "Hello, World"
"SGVsbG8sIFdvcmxk"
λ encode "String To Encode"
"U3RyaW5nIFRvIEVuY29kZQ=="

Decoding a string could fail if we pass in a value that isn’t a valid base64
string. If the value is a valid base64 string, we should always get back precisely
the same string that we originally encoded:

λ decode (encode "Hello, World")
Right "Hello, World"
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λ decode "Hello, World"
Left "invalid character at offset: 5"

Creating the Basic Application
We’ll start by creating a new project with cabal and adding a new module,
FilePack, to the library. In this example, we’re going to need to add the Overload-
edStrings extension. Since we know that we’re going to need them, we’ll also go
ahead and import the ByteString and Base64 encoding modules:

{-# LANGUAGE OverloadedStrings #-}

module FilePack where

import Data.ByteString (ByteString)
import qualified Data.ByteString as BS
import qualified Data.ByteString.Char8 as BC
import qualified Data.ByteString.Base64 as B64
import Data.Word
import System.Posix.Types (FileMode, CMode(..))
import Text.Read (readEither)

A file pack is really nothing more than a collection of files, so the next thing
we need to figure out is how we want to represent an individual file. For now,
let’s start with something minimal, and we’ll expand on what we can do with
it throughout the chapter.

We’ll create a new record, FileData, to store information about a file. We’ll have
four fields in our record:

• fileName will hold the name of the file on disk.
• fileSize will hold the size of the unpacked file.
• filePermissions will store the file’s permissions.
• fileData will store the actual contents of the file.

Since a file size can never be negative, we’ll store the size as a Word32. The
Word types, from Data.Word, allow us to store unsigned numeric values.

System Dependent Code Ahead

In this chapter, we’ll assume that a CMode is an alias for Word32.
CMode might alias other numeric types depending on your operating
system. In that case, you may need to define some additional type
class instances to fully support your operating system.

We’ll store the permissions using the CMode type from System.Posix.Types. This
type will let us store a numeric representation of the file permissions in normal
Unix permissions style as a three-digit octal number. We’ll also bring in File-
Mode, which is an alias for CMode that has a more easily understandable name.

report erratum  •  discuss

A First Pass at a File Archiver • 405

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


Finally, we’ll store the contents of our file as a ByteString. This will make our
lives easier since it is the native type that our base64 encoder wants to use,
and can represent arbitrary binary data.

With these fields in place, we can create our new FileData record:

data FileData = FileData
{ fileName :: FilePath
, fileSize :: Word32
, filePermissions :: FileMode
, fileData :: ByteString
} deriving (Eq, Read, Show)

The FileData record represents a single file. A FilePack is a collection of files that
should be stored in an archive. We’ll use a newtype wrapper for our file pack:

newtype FilePack =
FilePack {getPackedFiles :: [FileData]} deriving (Eq, Read, Show)

Now we’re ready to serialize our file pack into an archive. Sticking with the
theme of starting with a minimal implementation, we’ll use Show to serialize
our file pack into a String, then BS.pack to convert the String into a ByteString, and
finally we’ll call B64.encode to generate the final archive:

packFiles :: FilePack -> ByteString
packFiles filePack =

B64.encode . BC.pack . show $ filePack

We need to do a bit more work to unpack our file, but not too much. We’ll start
by importing another module from bytestring, Data.ByteString.Char8. This module
has most of the same functions that are available in Data.ByteString, but they
work with String and Char values rather than lists of bytes. Data.ByteString.Char8
re-exports the same ByteString type that is exported by Data.ByteString, so you
don’t need to worry about converting between Data.ByteString.ByteString and
Data.ByteString.Char8.ByteString.

Next, we’ll need to try to decode the serialialized data that we’ve gotten. If that
fails we can give up, because there’s nothing more that we can do. On the
other hand, if we do get a decoded value, then we can try to use our Read
instance to convert that value back to a FilePack.

We can’t just call read though. There are two issues we’ll need to solve. First,
read might fail at runtime. It would be nice if we could get some better error
reporting if something goes wrong. To do that, we can use the readEither function
from Text.Read in base. This function works like read but returns an Either value
rather than failing at runtime.
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The other issue is that readEither and other similar functions all work with String
values rather than bytestrings, so we’ll call BC.unpack to convert our ByteString
into a string before trying to parse it.

With all of that in place, here’s what our unpack function looks like:

unpackFiles :: ByteString -> Either String FilePack
unpackFiles serializedData =

B64.decode serializedData >>= readEither . BC.unpack

As a general rule, using Show and Read for important serialization work as
we’ve done in this example is a bad idea. Both read and show are quite closely
tied to the specific implementation of a record. The strings generated by show
include the names of all of the record fields, in the order they are written in
the code. Similarly, read will fail if any fields have been added, removed,
renamed, or the order of fields in a record have changed. Later on in this
chapter we’ll stop depending on these and implement serialization and dese-
rialization ourselves, but for now we’ll keep using these as a quick way to
develop our first prototype.

Writing In-Line Tests
As we’re working through the development of our library, it’ll be nice to test
our code in ghci, but it can start to get a little annoying to rewrite the tests we
want to run repeatedly. In cases like that, one handy approach is to add some
tests in our module that will be available to run interactively each time we
load the code into ghci. Once you’ve finished active work on the feature, you
can delete your test code or use them as the foundation for unit tests.

testPackFile :: ByteString
testPackFile =

packFiles sampleFilePack

testUnpackFile :: Either String FilePack
testUnpackFile = unpackFiles testPackFile

testRoundTrip :: FilePack -> Bool
testRoundTrip pack =

(Right pack) == (unpackFiles $ packFiles pack)

These test functions will now let us look at the result of packing and
unpacking FilePack values, as well as verifying that we can round-trip our data
by ensuring that decoding some encoded data gives us back what we started
with.

λ testRoundTrip
True

report erratum  •  discuss

A First Pass at a File Archiver • 407

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


Supporting Multiple File Types
Our simple version of FilePack works remarkably well for being such a small
library, but there are a few drawbacks to the approach that we’ve taken. The
most immediate one is we’re requiring our users to do the hard work of turning
their data into a ByteString before they can ever create a file. It’d be nice if we could
allow users to instead work with whatever types they are already using to repre-
sent their file data, but pack those files directly into a file pack.

The next incremental step that we could take to giving our users more flexi-
bility in how they represent their data is to make use of a sum type. Instead
of taking a ByteString to serialize data, we can take any of several different types
of data that could represent the file.

For the moment, let’s consider a couple of other popular ways to represent
Haskell data. ByteString will allow us to easily support binary data, so next,
let’s add support for Text to support text content. We’ll also add support for
text stored as a String so that users who are working with strings don’t need
to pack and unpack their data.

We’ve already added bytestring into our cabal dependencies, and String support
comes from base. We’ll also need to add text as a dependency in our cabal file.

Next, we need to import a couple of modules. Data.Text will give us access to
Text types. The Text type is an efficient way to represent and work with Unicode
text data:

import Data.Text (Text)
import qualified Data.Text as Text

With our imports in place, we can move on to defining a type to represent our
file contents. Since we have three different formats to choose from, we’ll create
a new sum type, FileContents:

data FileContents
= StringFileContents String
| TextFileContents Text
| ByteStringFileContents ByteString
deriving (Eq, Read, Show)

And next, let’s update our our FileData record to use FileContents:

data FileData = FileData
{ fileName :: FilePath
, fileSize :: Word32
, filePermissions :: FileMode
, fileData :: FileContents
} deriving (Eq, Read, Show)
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Finally, we need to update our sampleFilePack to select a particular encoding of
our data:

sampleFilePack :: FilePack
sampleFilePack = FilePack $

[ FileData "stringFile" 0 0 $ StringFileContents "hello string"
, FileData "textFile" 0 0 $ TextFileContents "hello text"
, FileData "binaryFile" 0 0 $ ByteStringFileContents "hello bytestring"
]

Using a sum type here allows us to create a slightly more flexible API while
having to write minimal code. In cases where you know ahead of time that
you’ll only need to support a few specific input types, making use of a sum
type to represent all of the options is often the easiest way forward.

In the case of our file packer, however, we want to allow users of our library
to package any sort of data into files without restricting them to a particular
set of representations.

Serializing with Type Classes
Using Show and Read in our prototype certainly made things easier on us when
we were serializing and deserializing things, but that wasn’t the only benefit.
It also meant that we didn’t have to think much about how users would
interact with our library. Show and Read are both common type classes that
have implementations for most basic types, and our users might already have
them implemented for their own data.

Now that we’re going to be dropping these type classes in favor of something
that works more reliably for our problem, we are going to need to ensure that
we’re still giving users the ability to interact with our library using whatever
types they happen to be using to represent their own file data. We’ll still
handle this with type classes, but now instead of relying on preexisting type
classes, we’ll define our own.

We’ll start with a class for encoding data into a bytestring:

class Encode a where
encode :: a -> ByteString

Let’s also create a type class for decoding things that we have encoded. You’ll
build a complete decoder for file packs in the next chapter, but defining the
type class now will give you something that you can use to test with as you
work through this chapter:

class Decode a where
decode :: ByteString -> Either String a
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Now that we have defined a type class, we need to start creating some
instances for it. Eventually we’ll want to create instances for things like FileData
and FilePack, but we’ll start by creating instances for more basic types, so that
we can re-use them when we’re implementing our bigger instances.

Creating Instances for Basic Types
Let’s start creating instances for our basic types with ByteString. Since we’re
defining our own type classes for encoding and decoding things, we’re free to
pick any approach that we want. We’re free to continue using base64 encoding
for our fields, or to simply use the underlying bytestring directly. For now,
let’s just make our encode and decode functions for ByteString preserve the
input string unmodified:

instance Encode ByteString where
encode = id

instance Decode ByteString where
decode = Right . id

We can create instances for Text and String with just a little bit more work. For
Text we’ll use the encodeUtf8 and decodeUtf8 functions fromData.Text.Encoding to do
the conversion for us:

import Data.Text.Encoding (encodeUtf8, decodeUtf8)

instance Encode Text where
encode = encodeUtf8

instance Decode Text where
decode = Right . decodeUtf8

Similarly, our instances for String can simply re-use the work already done for
us by pack and unpack from Data.ByteString.Char8. We’ll need to add the FlexibleIn-
stances extension for these instances. Without FlexibleInstances we’re not allowed
to create an instance of a type class that specifies a particular value for a
type parameter. Since String is an alias for [Char], that means we wouldn’t
ordinarily be allowed to create an instance for it. Instead, we’d need to create
a more general instance for [a]. With FlexibleInstances we’re allowed to be more
specific and restrict our instance to only [Char]:

{-# LANGUAGE FlexibleInstances #-}

instance Encode String where
encode = BC.pack

instance Decode String where
decode = Right . BC.unpack
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With our various string types accounted for, let’s turn our attention to a type
that has a more interesting instance: Word32.

Serializing Word32
The Word32 type represents an unsigned four-byte (32-bit) number. Word32 is the
first major departure from our serialization pattern so far, because it’s not string
data but instead raw binary data. Although we might naively choose to convert
our number to a string and encode that string the same way we encoded Text
and String values, in this example, we’ll stick to our chosen approach of avoiding
show and read and instead encoding the data ourselves. As you’ll see later on in
this chapter, the choice to encode the raw binary data now will end up paying
dividends to us later when it’s time to deserialize our files.

Thankfully, as its name implies, ByteString works under the hood with raw
binary data. Specifically, raw individual bytes. Until now we’ve ignored the
“binary-ness” of ByteString and worked with them through interfaces that let
us think of them as textual string data, but we are perfectly free to skip these
interfaces and work directly with the underlying bytes that make up a ByteString.

Earlier, when we wrote our Encode and Decode instances for String we used the
pack and unpack functions from Data.ByteString.Char8. The pack function takes a
list of characters and returns a new ByteString, and unpack takes a ByteString and
returns a list of characters.

If we want to work with the underlying bytes instead of character strings, all
we need to do is to use the pack and unpack functions from Data.ByteString instead
of Data.ByteString.Char8:

λ :type BS.pack
BS.pack :: [Word8] -> ByteString
λ :type BS.unpack
BS.unpack :: ByteString -> [Word8]

This is pretty convenient, but the difficulty we’re going to run into is that
we’re dealing with a four-byte Word32 value, and somehow we need to convert
that to four one-byte Word8 values instead.

Let’s write a function called Word32ToBytes that will handle the conversion for
us. It’ll have the type:

word32ToBytes :: Word32 -> (Word8, Word8, Word8, Word8)

We’ll start our implementation by importing Data.Bits from base. This will give
us access to some useful bitwise operators that we can use to split up our
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Word32: The bitwise-and operator (.&.), the bitwise-or operator (.|.), and the
bitwise shift function.

import Data.Bits ((.&.), (.|.), shift)

Bit Twiddling

If you haven’t worked with bitwise operations in a while, you might
find some of the examples in this section hard to follow. In that
case, you should use ghci to experiment with the operations before
you move forward. You can use the printf function from Text.Printf to
easily display values in binary to make this easier: showBinary = printf
"%b\n".

The implementation of our function makes use of some bit twiddling to get
the underlying bytes out of our Word32 value:

word32ToBytes :: Word32 -> (Word8, Word8, Word8, Word8)
word32ToBytes word =

let a = fromIntegral $ 255 .&. word
b = fromIntegral $ 255 .&. (shift word (-8))
c = fromIntegral $ 255 .&. (shift word (-16))
d = fromIntegral $ 255 .&. (shift word (-24))

in (a,b,c,d)

In this function, we take one-byte sections out of our Word32 one at a time by
shifting the value to the right and then using 255 .&. to take only the lower
byte of the shifted value. In the end, we’ll have gotten each of the bytes one-
by-one. If you haven’t encountered this sort of bit twiddling before, or don’t
remember much about it, you don’t need to worry. We’ll revisit this one more
time later on in this section when we reconstruct the values, and afterwards
we won’t need to return to the details of this function again.

We can get a better idea of how this works by writing a quick function in ghci
to help us visualize this. We’ll need to import Text.Printf so that we can easily
print out hex digits, and then we can create a small helper function, printBytes,
which takes a four-tuple of bytes and prints them out:

λ import Text.Printf
λ printBytes (a,b,c,d) = printf "%02x %02x %02x %02x\n" a b c d

And now we can print out some values:

λ printBytes $ word32ToBytes 0xAABBCCDD
dd cc bb aa
λ printBytes $ word32ToBytes 255
ff 00 00 00
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λ printBytes $ word32ToBytes 65535
ff ff 00 00
λ printBytes $ word32ToBytes 0xffff0000
00 00 ff ff

The order of bytes in the output will depend on the native byte order (or
“endianness”) of your system. The previous examples are from a little endian
x86-64 system, which puts the least significant bytes first.

Since we’re not going to be working directly with the bytes in our application,
other than encoding and decoding them, we don’t need to be immediately
concerned with the byte order in our data. We would, however, need to con-
sider byte order if we were going to try to make our application work with
files that were created on systems with a potentially different byte ordering.

Now that we have a way to get the individual bytes out of a Word32, we can
pack them into a bytestring without too much extra work. We’ll start by
building a function that will let us create a new ByteString from a Word32:

word32ToByteString :: Word32 -> ByteString
word32ToByteString word =

let (a,b,c,d) = word32ToBytes word
in BS.pack [a,b,c,d]

We can also create a function that will let us add a Word32 to the beginning
of an existing bytestring. This will come in handy later as we start to serialize
our data:

consWord32 :: Word32 -> ByteString -> ByteString
consWord32 word bytestring =

let packedWord = word32ToByteString word
in packedWord <> bytestring

Now that we have a way to turn a Word32 into a ByteString we can encode one
by calling word32ToByteString:

instance Encode Word32 where
encode = word32ToByteString

Now that we have a working encoder, let’s turn our attention toward decoding
a value. Our decoder function needs to turn a bytestring back into a single
Word32 by putting the individual bytes in the word back together. Before we
start dealing with the ByteString data, let’s first write a simpler function that
will start with the raw bytes and put them back together into a Word32:

word32FromBytes :: (Word8, Word8, Word8, Word8) -> Word32
word32FromBytes (a,b,c,d) =

let
a' = fromIntegral a
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b' = shift (fromIntegral b) 8
c' = shift (fromIntegral c) 16
d' = shift (fromIntegral d) 24

in a' .|. b' .|. c' .|. d'

This function is the inverse of our previous word32ToBytes function. Each value
was originally shifted to the right by 0, 1, 2, or 3 bytes, so we shift them back
to their correct position and then use bitwise-or (.|.) to combine them back into
a single value.

Once you’ve written this function, you can validate that it’s correct by writing
a function to test Word32 values to ensure that converting a value to bytes and
back returns the original value.

Turning a ByteString into a Word32 using our new word32FromBytes function isn’t
going to be very hard, but it does have the potential to fail. Unlike when we
were created a ByteString, we now have to consider the possibility of failure. A
Word32 must be made up of precisely four bytes, so we need to check the size
of our input and return an error if we get more or less data than we expect.

We’ll handle this by unpacking our bytestring and pattern matching on the
resulting list. If we get exactly four bytes, we can convert them into a Word32
and otherwise we’ll report an error:

bytestringToWord32 :: ByteString -> Either String Word32
bytestringToWord32 bytestring =

case BS.unpack bytestring of
[a,b,c,d] -> Right $ word32FromBytes (a,b,c,d)
_otherwise ->

let l = show $ BS.length bytestring
in Left ("Expecting 4 bytes but got " <> l)

Finally, we can write our Decode instance for Word32 by directly calling
bytestringToWord32:

instance Decode Word32 where
decode = bytestringToWord32

Serializing FileMode
A FileMode is an alias for CMode, which is itself a newtype wrapper around Word32.
This means we can easily re-use the work we’ve just done with Word32 to
serialize and deserialize FileMode too:

instance Encode FileMode where
encode (CMode fMode) = encode fMode

instance Decode FileMode where
decode = fmap CMode . decode
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Serializing FileData
Now that we’ve written instances to let us serialize all of the types that we’re
using inside of FileData, we can move on to serializing a FileData value itself. As
a first step, let’s refactor FileData. Instead using a sum type like FileContents to
list a small set of supported files, we’ll add a type parameter to keep track of
the type of the contents in our file:

data FileData a = FileData
{ fileName :: FilePath
, fileSize :: Word32
, filePermissions :: FileMode
, fileData :: a
} deriving (Eq, Read, Show)

newtype FilePack a =
FilePack {getPackedFiles :: [FileData a]}
deriving (Eq, Read, Show)

Next, let’s move on to writing an Encode instance for FileData. Unlike our earlier
examples, FileData is a record that has several values that will need to be packed
together. Let’s start with a relatively simple attempt at encoding file data:

instance Encode a => Encode (FileData a) where
encode FileData{..} =

encode fileName
<> encode fileSize
<> encode filePermissions
<> encode fileData

In this example, we’re depending on the Encode instance for whatever type
we’re using to store the contents of the file. We already have instances defined
for the types we’re using to store metadata. This is enough to let us encode
each individual field in the record, and from there we can concatenate them
together to get encoded file data. This approach will compile, and we can see
it working to encode data in ghci. Now that we can support several different
content types, we’ll use a type application to tell the compiler what kind
of contents we’re intending to use:

λ encode $ FileData @String "testPath" 0 0 "Foo"
"testPath\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NULFoo"

Unfortunately, we’ve created a problem for ourselves when we want to decode
a value. If we try to implement an equally straightforward decoder we’ll
quickly see what happened:
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instance Decode a => Decode (FileData a) where
decode encodedFileData =

case decode encodedFileData of
-- ...

Do you see the problem yet? We get a single ByteString in as input, and the first
thing that we try to decode will consume our entire bytestring. If all of our
fields were of a fixed size, then we could just take enough data out of the
bytestring for each field and decode that, but we’re dealing with both string
data from FilePath and unknown data with the field our user provides.

We need some way to separate out the individual fields so that we can decode
them effectively. We could add a separator to our strings so that we can mark
the end of one section of data and the start of another, but since we might
be storing arbitrary data, there aren’t any separators that we could use that
couldn’t also occur naturally in the data that we’re encoding.

We can avoid this problem by prefixing each field with the size, in bytes, of
the field. Then, when we’re decoding things, we can always just take the exact
amount of the string that we need and decode it.

To support adding size information to everything that we encode, let’s add a
second function to our Encode type class called encodeWithSize:

class Encode a where
encode :: a -> ByteString
encodeWithSize :: a -> ByteString

Of course, if we have a definition of encode we can always come up with a
reasonable definition of encodeWithSize by looking at the length of the encoded
value, so we can add a default implementation:

encodeWithSize :: a -> ByteString
encodeWithSize a =

let s = encode a
l = fromIntegral $ BS.length s

in word32ToByteString l <> s

On the other hand, if we’re provided a valid implementation of encodeWithSize,
we can come up with a valid implementation of decode by dropping off the
leading size field. So, we can add a default implementation for it as well:

encode :: a -> ByteString
encode = BS.drop 4 . encodeWithSize

As a last step, let’s add a MINIMAL pragma to let our users know that they need
to provide an implementation of at least one of these two functions. With that,
our final type class definition will be:
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class Encode a where
encode :: a -> ByteString
encode =

BS.drop 4 . encodeWithSize

encodeWithSize :: a -> ByteString
encodeWithSize a =

let s = encode a
l = fromIntegral $ BS.length s

in word32ToByteString l <> s
{- MINIMAL encode | encodeWithSize #-}

We’ve already implemented encode for all of our values, so we could move on.
For most of our instances, there’s no way that we can do better than our
default encodeWithSize implementation, so we only need to update our Word32
instance.

Since we know that Word32 will always take up four bytes when it’s encoded,
we don’t need to look at the length of the encoded string at all. We can save
some effort and hard-code the size ahead of time:

instance Encode Word32 where
encode = word32ToByteString
encodeWithSize w =

let (a, b, c, d) = word32ToBytes w
in BS.pack [ 4, 0, 0, 0

, a, b, c, d]

This implementation should be significantly more efficient since we’re only
constructing a single ByteString.

Now that we have a way to keep track of the size of each field in FileData, we
can return to our instance implementation. We’ll use our new function to
encode each of our fields with their size. We’ll also encode the entire thing
together as a single bytestring so we keep all the internal pieces together:

instance Encode a => Encode (FileData a) where
encode FileData{..} =

let
encodedFileName = encodeWithSize fileName
encodedFileSize = encodeWithSize fileSize
encodedFilePermissions = encodeWithSize filePermissions
encodedFileData = encodeWithSize fileData
encodedData =

encodedFileName
<> encodedFileSize
<> encodedFilePermissions
<> encodedFileData

in encode encodedData
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For the moment we’ll skip implementing Decode for our FileData. Later on in this
chapter, we’ll return to the subject of decoding records and other compound
value types.

Serializing Tuples and Lists
Before we finish up with this section on serializing data, let’s add two more
instances that will come in handy later on in the chapter. As with FileData,
we’ll serialize them now, and add Decode instances later on.

We’ll start by serializing tuples. As with FileData, we’ll make use of encodeWithSize
to let us differentiate between our first and second fields:

instance (Encode a, Encode b) => Encode (a,b) where
encode (a,b) =

encode $ encodeWithSize a <> encodeWithSize b

Next, we’ll add an instance that will let us encode any list of encodable values.
We don’t know ahead of time how many elements we’ll be processing, but we
can still apply our pattern of encoding to every element of our list with its
size, concatenating them together, and encoding the final result.

We’ll use the foldMap function to do this. foldMap, like the name implies, is a
combination of a fold and a map. It applies a function to each element in a list
and combines the results with (<>):

instance Encode a => Encode [a] where
encode = encode . foldMap encodeWithSize

Unfortunately, this instance doesn’t work! If we try to compile it we’ll get an
error. Your error might look a bit different, but it should resemble this one:

FilePack.hs:49:10: error:
• Overlapping instances for Encode String

arising from a use of ‘FilePack.$dmencodeWithSize’
Matching instances:

instance Encode String -- Defined at FilePack.hs:49:10
instance Encode a => Encode [a] -- Defined at FilePack.hs:85:10

• In the expression: FilePack.$dmencodeWithSize @(String)
In an equation for ‘encodeWithSize’:

encodeWithSize = FilePack.$dmencodeWithSize @(String)
In the instance declaration for ‘Encode String’

|
49 | instance Encode String where

| ^^^^^^^^^^^^^

The important part here is the part that says Overlapping instances.
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The problem is we’ve told the compiler to do the same thing in two different
ways. In the instance we just wrote, we told it for any list it should use that
instance’s version of encode. When we created an instance for String we also
told it to use that instance any time it had a list of characters. So the compiler
throws up its arms, and an error, and refuses to compile our program.

Of course, to us it’s obvious what we’d like to happen. We want our special
case of String to be used when it can be, and we want to fall back to our gen-
eral case of [a] otherwise. We can tell the compiler to do just that by telling it
that our new instance is OVERLAPPABLE. The OVERLAPPABLE pragma is a way that
we can tell GHC to always prefer a different instance if there happens to be
a conflict.

With the pragma in place our instance now looks like this:

instance {-# OVERLAPPABLE #-} Encode a => Encode [a] where
encode = encode . foldMap encodeWithSize

And with the conflict resolved, GHC will happily compile our code again and
work as we’d like.

Overlapping instances are a common problem. If you run into them you can
use the OVERLAPPABLE instance as we’ve done here to specify an instance that
should not be chosen if there is a conflict, or you can use the OVERLAPS pragma
to provide one that should be authoritative.

The OverlappingInstances extension enables overlapping on all instances without
the pragma, but this extension is deprecated and you should not use it in
new code.

Building a List of FileData Values
Now that we have created a way to hold information about a specific file, and
to serialize it, we should turn our eyes toward representing a collection of
files. The minimal implementation here is pretty easy thanks to the work that
we’ve done with supporting encoding lists. We’ll make a newtype wrapper
around a list of values, and while we’re at it, we’ll go ahead and give it an
Encode instance. We’re manually specifying the instance here because if we
use newtype deriving we’ll once again run into an overlapping instances
problem.

instance Encode a => Encode (FilePack a) where
encode (FilePack a) = encode a
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We can use this to create files pretty easily:

λ filePack = FilePack [ FileData "file1" 0 0 "data1"
, FileData "file2" 0 0 "data2"
, FileData "file3" 0 0 "data3" ]

λ :type filePack
filePack :: FilePack (FileData String)

This works great so long as we only ever want to pack a single kind of file into
an archive, but what if our user has a file that contains text data stored as
a Text and a file that contains some image data stored as a ByteString?

λ textFile = FileData @Text "textfile.txt" 0 0 "some text"
λ imageData <- BS.readFile "image.jpg"
λ imageFile = FileData "image.jpg" 0 0 imageData
λ filepack = FilePack [textFile, imageFile]

<interactive>:75:32: error:
• Couldn't match type ‘ByteString’ with ‘Text’

Expected type: FileData Text
Actual type: FileData ByteString

• In the expression: imageFile
In the first argument of ‘FilePack’, namely ‘[textFile, imageFile]’
In the expression: FilePack [textFile, imageFile]

As you might have expected, this failed because we’re trying to put values
with two different types into a list. Up until now, when we ran into this situ-
ation we’d throw our hands up in the air and think of a different way to rep-
resent our code, but in this example being able to represent files with different
types of content is really fundamental to what we’re trying to build. Surely
Haskell can’t be stymied by a requirement like this.

Supporting Multiple File Types with Sum Types
One way that we could solve this problem is by creating a new sum type that
would let us hold different sorts of files. There are a couple of ways we could
do this. We might try a fairly high-level and user-friendly approach, like
enumerating different sorts of files a user might be dealing with:

data SomeFile
= SomeTextFile (FileData Text)
| SomeImageFile (FileData ByteString)
| SomeAudioFile (FileData ByteString)

As you can imagine, that would start to become quite a long list, and it would
be impossible to predict all of the different sorts of files that a user might
want to store. Alternatively, we could use a lower-level representation and
just wrap the file data type directly:
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data SomeFile
= SomeStringFile (FileData String)
| SomeTextFile (FileData Text)
| SomeByteStringFile (FileData ByteString)

This approach is more general, but even now we’re limited to just a handful
of file types, and we’ve completely defeated the work that we did earlier to
allow users to create their own file content types.

Some Failed Attempts
If you stare at the problem for a while, the next thing that might come to your
mind as a way to get around this problem is to use forall.

We’ll start by looking at FilePack. We have a type parameter that we’re using
to keep track of what kind of data is in our list. This is a problem because
it’s limiting us to a single type of value. Let’s remove it:

λ newtype FilePack = Filepack [a]

<interactive>:7:30: error: Not in scope: type variable ‘a’

This doesn’t work because GHC doesn’t have any idea what a is or where it
came from. If a isn’t a type parameter we need to introduce it somehow. We
can use the forall keyword here to introduce a type variable. Let’s try it:

newtype FilePack = FilePack (forall a. Encode a => [a])

Hey, that works! We can create a FilePack that can hold any sort of data that
has an Encode instance. Let’s create a value:

λ filepack = FilePack [FileData "file" 0 0 "file"]

<interactive>:22:22: error:
• Couldn't match expected type ‘a’

with actual type ‘FileData [Char]’
‘a’ is a rigid type variable bound by

a type expected by the context:
forall a. Encode a => [a]

at <interactive>:22:21-48
• In the expression: FileData "file" 0 0 "file"
In the first argument of ‘FilePack’, namely

‘[FileData "file" 0 0 "file"]’
In the expression: FilePack [FileData "file" 0 0 "file"]

Foiled again. This time we’re telling our newtype wrapper that it needs to hold
some polymorphic value that can be any Encode value, but then we’re trying
to give it a value with a specific type. Since that specific type isn’t polymorphic,
it fails to typecheck.
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Impredicative Polymorphism
One of the problems that we’re going to run into with all of these attempts is
that even if they would otherwise typecheck, we’re using forall outside of our
list. No matter how flexible we might be with picking a value, we’re still going
to come up with a list of values of the same type. What we’d really like to have
is a list of anything, so long as it can be encoded. Let’s try another approach:

λ data FilePack = FilePack [forall a. Encode a => a]

<interactive>:29:17: error:
• Illegal polymorphic type: forall a. Encode a => a
GHC doesn't yet support impredicative polymorphism

• In the definition of data constructor ‘FilePack’
In the data type declaration for ‘FilePack’

This still doesn’t work…yet. As you might note from the error message here,
impredicative polymorphism is on the roadmap for GHC and may even be
available in newer releases of the compiler. If this works for you, congratula-
tions! You can move on to the next section of this chapter. If, however, you
are working with an older GHC version, or working in a code base that was
written before impredicative types were added, we have a different approach
we can use to work around this problem.

Existential Types
Existential types in Haskell give you a way to “weaken” a type into a represen-
tation that is more general, but about which you have less information. In
our case, we’d like to take all of the different FileData types that we might have,
like FileData String or FileData Text, and forget everything about them except that
they are something we can encode. When we do that, what we end up with
is an existential type that we can use in places where we have to use a single
type—for example, in a list. To make use of them we have to add the Existen-
tialQuantification extension.

ExistentialQuantification

The ExistentialQuantification extension has been available since GHC
6.8.1. It’s enabled by default in GHC2021 but you’ll need to enable
it manually in Haskell2010. This extension implies the ExplicitForAll
feature, so you don’t need to enable it if you’ve already enabled
ExistentialQuantification. This is generally a safe extension that shouldn’t
cause problems with any existing code.

Let’s look at an example to start with. We’ll create a new type, Packable, that
will hold values that we can put into a FilePack:
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{-# LANGUAGE ExistentialQuantification #-}

data Packable = forall a. Encode a => Packable { getPackable :: FileData a }

You’ll notice in this example that although we’re using a type variable, a, we’re
not actually referring to that type variable anywhere in the type declaration.
This means that our existential type, Packable, doesn’t carry around any
information about the type of the variable we used to construct it. Erasing
this information is what lets us use Packable to do things like create a list that
holds different sorts of file data.

Instead of holding the type information as a parameter to Packable, we’ve
introduced it in our statement:

forall a. Encode a => Packable

This allows us to not only introduce the type variable, but also add in any
constraints that we might need. Adding constraints at this point is important,
because once we’ve constructed a value of our existential type we no longer
have access to any information about the type of the value.

To understand this limitation a little bit better, let’s try to write something
that will get our FileData out of a Packable value:

getPackedFileData (Packable fileData) = fileData

Let’s load this up in ghci and see what happens:

FilePack.hs:125:41: error:
• Couldn't match expected type ‘p’ with actual type ‘FileData a’

because type variable ‘a’ would escape its scope
This (rigid, skolem) type variable is bound by

a pattern with constructor:
Packable :: forall a. Encode a => FileData a -> Packable,

in an equation for ‘getPackedFileData’
at FilePack.hs:125:20-36

• In the expression: fileData
In an equation for ‘getPackedFileData’:

getPackedFileData (Packable fileData) = fileData
• Relevant bindings include

fileData :: FileData a (bound at FilePack.hs:125:29)
getPackedFileData :: Packable -> p (bound at FilePack.hs:125:1)

|
125 | getPackedFileData (Packable fileData) = fileData

| ^^^^^^^^
Failed, no modules loaded.

That’s quite an error message. The internet is full of questions about “rigid
skolem” variables from intrepid Haskell developers who have run into problems
trying to work with existential types.
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The problem here is that, as you’ve learned, when we create a new Packable
value we erase any information we had about the type that we created it with,
except that it is encodable.

When we try to pattern match with (Packable fileData) we’re bringing into existence
some variable, fileData. When we go to return that value, it needs to have a
type, but there’s no type that we can actually assign to it because we’ve already
lost that information. Not only that, the limited information that we do have
about our value, forall a. Encode a, is captured by our Packable value. The type
can’t exist outside of Packable, so we don’t have any way of extracting that
value.

The idea that the erased type information might somehow leak out of an
existential type is sometimes referred to by saying that the variable might
“escape its context,” and you’ll sometimes get error messages from GHC that
refer to the error this way. For example, if we rewrite getPackedFileData to be
pointfree we’ll get a different error:

λ getPackedFileData = getPackable

<interactive>:39:21: error:
• Cannot use record selector ‘getPackable’ as a function due to escaped
type variables
Probable fix: use pattern-matching syntax instead

• In the expression: getPackable
In an equation for ‘getPackedFileData’:

getPackedFileData = getPackable

Although the error message in this case is different, the fundamental problem
is the same. We can’t leak any type information out of an existential type.

Just because we can’t leak type information out of our existential type doesn’t
mean that we can’t do anything useful with existential data. One way you
can make use of existential types is to use a record that contains some
functions you might want to call. As an example, let’s create a new existential
type that can hold a value and some functions:

{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE RecordWildCards #-}
module ExistentialDemo where

data SomeExistential b = forall a. SomeExistential
{ someValue :: a
, modifyValue :: a -> a
, combineValues :: a -> a -> a
, consumeValue :: a -> b
}
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Although we have a type parameter here, b, we’re still creating an existential
type because we’re erasing the existence of a. Inside of our record, we have
several functions that reference both of our type variables, a and b. All of the
normal typing rules apply here within our record, so someValue and the types
of all of our functions are referring to the same type when they use the type
variable a. Similarly, when we refer to b in consumeValue we’re referring to the
b type parameter that we’ve added to our type constructor, so if we have a
value with the type SomeExistential Int then we know that consumeValue must take
as input whatever type someValue happens to be, and it must return an Int.

Since the type of a gets erased when we create an existential, we can’t ever
get at it directly, but we are allowed to use the values and functions inside
of our record as long as we never end up with a value whose type would leak
out from the existential. Let’s look at a concrete example.

We’ll start by writing a function that will let us create one of our existential
values that holds some numeric value:

addAndMultiplyInt :: Integral a => a -> SomeExistential Int
addAndMultiplyInt n = SomeExistential

{ someValue = n
, modifyValue = (+n)
, combineValues = (*)
, consumeValue = fromIntegral
}

We can’t do much with this directly, but we can write a function to do some
work with our existential value and give us back something that we can work
with. Let’s write one:

runExistential :: SomeExistential a -> a
runExistential SomeExistential{..} =

consumeValue $
combineValues (modifyValue someValue) someValue

In this function, we’re referring to values that we don’t, and can’t, know the
type of. We can do that, because we don’t know what type someValue is, but
we do know that whatever type it has, modifyValue can accept one and returns
one. Similarly, combineValues takes two of them and returns one. At the end of
our computation we’re calling consumeValue. Once again, we don’t know what
type is going into consumeValue, but we do know the type that it will return. For
example, if we pass runExistential, a value with the type SomeExistential Int, we don’t
know what the values are inside of the existential, but we do know that
whatever we get out must be an Int, and if we look up the type information in
ghci it will tell us as much:
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λ :type runExistential . addAndMultiplyInt
runExistential . addAndMultiplyInt :: Integral a => a -> Int
λ runExistential $ addAndMultiplyInt 4
32

In this example, we’re passing in a number and getting a number back out,
but of course with our existential type we might be wrapping up anything.
Let’s create a version that holds a string:

reverseAndUnwordsString :: String -> SomeExistential String
reverseAndUnwordsString s = SomeExistential

{ someValue = s
, modifyValue = reverse
, combineValues = \a b -> unwords [a,b]
, consumeValue = id
}

And if we apply one of these to runExistential, we’ll get back a string:

λ runExistential $ reverseAndUnwordsString "Hello, World"
"dlroW ,olleH Hello, World"

Since consumeValue has a known return type, we can also use that as an entry
point to be able to modify our existential record. For example, we could start
by saying:

modifyExistential :: (a -> b) -> SomeExistential a -> SomeExistential b
modifyExistential f SomeExistential{..} = SomeExistential

{ someValue = someValue
, modifyValue = modifyValue
, combineValues = combineValues
, consumeValue = f . consumeValue
}

If you look at the type of this function, you might recognize it from earlier in
this book. It’s the type of fmap, so we can define a Functor instance for our
existential type as well:

instance Functor SomeExistential where
fmap = modifyExistential

This makes it easy for us to start making some changes to the eventual value
returned by runExistential, as you can see in the demo:

λ runExistential $ show <$> addAndMultiplyInt 7
"98"
λ runExistential $ length <$> reverseAndUnwordsString "hello"
11
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Of course, we’re not limited to a single function to evaluate an existential, we
could write others as well. For example, this one returns the result of con-
sumeValue directly:

λ runSimple SomeExistential{..} = consumeValue someValue
λ runSimple $ length <$> reverseAndUnwordsString "hello"
5
λ runSimple $ reverseAndUnwordsString "hello"
"hello"

You might have noticed at this point that what we’ve been doing is similar to
another Haskell feature you’ve already used: type classes. In fact, much of
what we have done so far could have been done with type classes instead
of using an existential record, but with a little bit less flexibility.

For example, let’s consider the type class equivalent to SomeExistential and
addAndMultiplyInt:

First of all, we’ll need to add a couple of additional language extensions:

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE FlexibleInstances #-}

AllowAmbiguousTypes

The AllowAmbiguousTypes extension has been available since GHC
7.8.1. It isn’t enabled by default in either Haskell2010 or GHC2021.
Although this extension is generally safe to use, in some cases
it can make it more difficult to track down errors in your pro-
gram. As a general rule, it’s best to enable this extension on a
module-by-module basis when you need it rather than enabling
it project-wide.

MultiParamTypeClasses

The MultiParamTypeClasses extension has been available since GHC
6.8.1. This extension is enabled by default in GHC2021, but you’ll
need to enable it explicitly if you are using Haskell2010. This is gen-
erally a safe extension that shouldn’t cause problems with any
existing code.

Our type class definition doesn’t look much different than the definition of
our existential, except that we don’t need to actually store a value at all.
Instead, we’ll just add the functions:
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class SomeClass a b where
modifyClassValue :: a -> a
combineClassValues :: a -> a -> a
consumeClassValue :: a -> b

This type class has two parameters, a and b. This mirrors both the type
parameter, b, and the quantified type, a in our existential type. We also need
to add AllowAmbiguousTypes, since neither modifyClassValue nor combineClassValues ever
refer to b; they are ambiguous—if we call them the compiler doesn’t know
which instance it should use, and so without this extension it will not try at
all and will give us an error.

Next we can create an instance. Let’s make one for integral types that output
an Int, just like addAndMultiplyInt:

We’ll need to enable FlexibleInstances so that we can tell GHC what type we want
to use for our second type parameter. Otherwise, this instance looks quite
similar to the existential version that we created earlier:

instance Integral a => SomeClass a Int where
modifyClassValue a = a + a
combineClassValues = (*)
consumeClassValue = fromIntegral

Finally, let’s write runSomeClass, a function that will be the type class equivalent
to runExistential. We’ll need to add another couple of extensions here as well:

{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE ScopedTypeVariables #-}

runSomeClass :: forall a b. SomeClass a b => a -> b
runSomeClass val =

let
modified = modifyClassValue @a @b val
combined = combineClassValues @a @b modified val

in consumeClassValue combined

We’ve had to enable TypeApplications and ScopedTypeVariables here so that we can
tell GHC exactly what types we want to use when we call modifyClassValue and
combineClassValues. We have to do this for the same reason that we had to enable
AllowAmbiguousTypes earlier when defining our class: since these types never
refer to b explicitly, without a type annotation GHC can’t figure out what
versions of the function to call.

Other than our new type applications, runSomeClass again looks pretty similar
to our existential version, and if we run it we’ll see that it does indeed return
the same values:
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λ runSomeClass 5 :: Int
50
λ runExistential $ addAndMultiplyInt 5
50
λ runSomeClass 3 :: Int
18
λ runExistential $ addAndMultiplyInt 3
18

There are some cases where we can’t trivially create a type class that’s
equivalent to an existential record. Let’s imagine a different existential record
that simply returns its input no matter what:

constExistential :: Int -> SomeExistential Int
constExistential n = SomeExistential

{ someValue = n
, modifyValue = const n
, combineValues = const $ const n
, consumeValue = const n
}

If we re-use our existing runExistential function here, you’ll see that we do in
fact always get out what we put in:

λ runExistential $ constExistential 7
7
λ runExistential $ constExistential 2
2
λ runExistential $ constExistential 0
0

On the other hand, if we try to redefine our SomeClass instance to do the same
thing, you’ll find that we can’t really directly port our code. Ultimately, we
can’t create a consumeClassValue function that always returns our original input,
because that input is part of runSomeClass and not the instance itself. Since we
can only have one instance of a type class per type, or in the case of our
SomeClass, per pair of types a and b, we’d need to either create a newtype
wrapper and instance for every integer constant we wanted to use, or create
a new type class. In fact, that we needed to try to redefine our existing type
class at all shows one of the advantages of existential records. We can arbi-
trarily have many different existential records that we can pass around,
whereas with type classes we are limited to a single instance per type.

From these examples, you can see that existential records can be useful in
cases where you want something like a lightweight and ad hoc type class, or
where you need some additional constant values associated with your func-
tions without the overhead of defining multiple type classes. Even so, in most
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cases you can restructure your code to avoid using an existential record.
When it’s possible, you are usually going to be better served using a type
class than an existential record because type classes are more idiomatic
Haskell. Type classes give you nice things like constraints. They don’t force
you to lose track of type information, and the fact that they can only have a
single implementation is often a feature for readers of your code who can
better predict what is going to happen on any given function call, because
they can understand the behavior of a type class once and re-use that
knowledge.

Type Classes and Existential Constraints

You’ve just learned how you can use existential record types to recreate some
of the flexibility of type classes, and why you usually shouldn’t, but these two
features aren’t often in opposition. In fact, the most common way to use
existential types in practice is in combination with type class constraints.

When you define an existential type, you can include type class constraints
on the quantified variable. For example, we can create an existential type
whose value must be showable:

data CanBeShown = forall a. Show a => CanBeShown a

Just like in our previous examples, we can’t get a value out of CanBeShown
directly, but because we know a must have an instance of Show we are free to
use that to get information back out of our existential value. We could, for
example, write a show function:

showWhatCanBeShown :: CanBeShown -> String
showWhatCanBeShown (CanBeShown value) = show value

And we can create type class instances for our existential type, so long as we
don’t rely on knowing the type of the value that is inside of it:

instance Show CanBeShown where
show (CanBeShown a) = show a

Existential types like this are particularly useful because they give us a way
of creating collections of things that share some common behaviors, like being
able to be printed. Since we’re erasing the type information of the values
inside our existential, we can create collections of existential values that were
created with different types:

print [CanBeShown "hello", CanBeShown 12, CanBeShown True]
["hello",12,True]
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Let’s take a moment to appreciate this. We’ve just created a list of a string, a
number, and a boolean value and printed them out. Existential types helped
us work around the “single type of element in a list” restriction by erasing
the type information and only keeping around the relevant type class con-
straints that we needed.

Existential File Packing
Now that you understand existential types and how we can use them, you
might already see how we can create a pack of files containing different types
of underlying values. We will create a new existential type that represents
any data that we can encode:

data Packable = forall a. Encode a => Packable { getPackable :: FileData a }

instance Encode Packable where
encode (Packable p) = encode p

And now we can trivially define a FilePack as a list of Packable values:

newtype FilePack = FilePack [Packable]

instance Encode FilePack where
encode (FilePack p) = encode p

One of the problems with using existential types this way is that it can be
inconvenient for our users to have to manually wrap all of their values inside
of our existential type. We can make this more ergonomic by giving users a
way to easily add any ‘FileData‘ to a file pack without having to wrap it
themselves:

addFileDataToPack :: Encode a => FileData a -> FilePack -> FilePack
addFileDataToPack a (FilePack as) = FilePack $ (Packable a) : as

This is also a good opportunity to use an infix operator to recreate the conve-
nience of creating lists:

infixr 6 .:
(.:) :: (Encode a) => FileData a -> FilePack -> FilePack
(.:) = addFileDataToPack

emptyFilePack :: FilePack
emptyFilePack = FilePack []

With that done, we’ve successfully built a system that will let us encode het-
erogenous file data into a single packed file. Let’s look at a demo:
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testEncodeValue :: ByteString
testEncodeValue =

let
a = FileData
{ fileName = "a"
, fileSize = 3
, filePermissions = 0755
, fileData = "foo" :: String
}

b = FileData
{ fileName = "b"
, fileSize = 10
, filePermissions = 0644
, fileData = ["hello","world"] :: [Text]
}

c = FileData
{ fileName = "c"
, fileSize = 8
, filePermissions = 0644
, fileData = (0,"zero") :: (Word32,String)
}

in encode $ a .: b .: c .: emptyFilePack

We’ll skip showing the output here since it’s just a blob of encoded binary
data, but if you run this in ghci you may be able to pick out some of the key parts
of these files in the encoded data now that you are familiar with exactly how
everything is being encoded.

Summary
In this chapter, you learned how to make effective use of type classes, and
how to use a new feature of Haskell’s type system called existential types.
While existential types are not a feature that you’ll use frequently, they are
a critical tool for working with certain types of real-world workloads where
you can’t otherwise easily deal with the variety and flexibility of the data that
you need to support. The limitations that existential types put on how you
can use your data will also be useful later on in this book when you learn
how to work with certain types of mutable data.

Exercises

Nested FilePacks
Try building filepacks that contain other filepacks. Is there anything you can
do to make the API more ergonomic? What do you notice about the API you’ve
already built that makes this process easier or harder?
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Building a Real Archival tool
Throughout this chapter, you’ve built a library that will help you create a file
archive. Try using this library, along with what you’ve learned over the last
few chapters, to build a command line tool that will let you pack up files.

Build a Trace Tool
In this chapter, we focused on building a file archival tool, but many of the
ideas you learned here are applicable to other domains as well. Another area
where you could use existential types is in building a tool to collect a trace
of function calls.

Consider this example:

{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE RecordWildCards #-}
module CallTrace where
import Text.Printf

data TraceData -- fill me in
newtype Trace -- fill me in

emptyTrace :: Trace
emptyTrace = undefined

traceCall
:: (Show a, Show b)
=> String
-> (a -> (Trace, b))
-> a
-> (Trace, b)

traceCall = undefined

showTrace :: Trace -> String
showTrace = undefined

factor :: Int -> (Trace, [Int])
factor n =

traceCall "factor" factor' (n, 2)
where

factor' :: (Int, Int) -> (Trace, [Int])
factor' (num, curFact)
| num == 1 = (emptyTrace, [])
| (num `mod` curFact) == 0 =

let nextNumber = num `div` curFact
message = "consFactor " <> show curFact
(trace, results) = traceCall message factor' (nextNumber, curFact)

in (trace, curFact : results)
| otherwise =

let nextFactor = curFact + 1
in traceCall "skipFactor" factor' (num, nextFactor)
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verboseFactor :: Int -> IO ()
verboseFactor n = do

let (trace, factors) = factor n
putStrLn "factors: "
print factors
putStrLn "trace: "
putStrLn (showTrace trace)

Try to implement the missing pieces so that your program compiles and gives
you some appropriate output. Here are a couple of examples so that you can
test your own code:

λ verboseFactor 3
factors:
[3]
trace:
stack depth: 3
factor (3,2) => [3]

skipFactor (3,3) => [3]
consFactor 3 (1,3) => []

λ verboseFactor 1080
factors:
[2,2,2,3,3,3,5]
trace:
stack depth: 11
factor (1080,2) => [2,2,2,3,3,3,5]

consFactor 2 (540,2) => [2,2,3,3,3,5]
consFactor 2 (270,2) => [2,3,3,3,5]
consFactor 2 (135,2) => [3,3,3,5]

skipFactor (135,3) => [3,3,3,5]
consFactor 3 (45,3) => [3,3,5]
consFactor 3 (15,3) => [3,5]

consFactor 3 (5,3) => [5]
skipFactor (5,4) => [5]
skipFactor (5,5) => [5]

consFactor 5 (1,5) => []
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CHAPTER 12

Deserializing Heterogenous Data
Extracting Heterogenous Values from the Archive
In the last chapter, you built a library named FilePack that will allow you to
combine files with various types of data into a single archive. Throughout
that chapter, you learned about using existential types to deal with heteroge-
neous collections of data. Although you were able to build a library with a
nice API for creating archives, there was one glaring problem: after creating
a file pack you had no way of unpacking the data.

In this chapter, we’ll work on the other half of the file packing program:
decoding a file pack that can contain many different types of data. Just like
when we were encoding data, we’ll want to support arbitrary data types that
can be defined by the user, and we’ll want to support file packs that are made
up of files with different types.

A File Archive Builder
Before we get started on the underlying problem of parsing our file archive,
let’s review the code that we built in the last chapter that we’ll be re-using
heavily throughout this chapter. If you already have a project with the code
you built in the last chapter, then you can re-use that project in this chapter
as well. If not, make sure to create a new project and copy the example code
so that you’ll have everything you need as you work through the project in
this chapter.

We started by creating a new record, FileData, that would let us store a file with
some metadata:

{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE TypeApplications #-}
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module FilePackParser where
import Data.Bits (shift, (.&.), (.|.))
import Data.ByteString (ByteString)
import qualified Data.ByteString as BS
import qualified Data.ByteString.Char8 as BC
import Data.Text (Text)
import Data.Text.Encoding (decodeUtf8, encodeUtf8)
import Data.Word
import System.Posix.Types (CMode (..), FileMode)

data FileData a = FileData
{ fileName :: FilePath
, fileSize :: Word32
, filePermissions :: FileMode
, fileData :: a
} deriving (Eq, Show)

To make it easier for us to encode and decode file archives, we defined two
new type classes: Encode and Decode. We also created some short instances for
many common types that we expected we’d be using throughout our code:

class Decode a where
decode :: ByteString -> Either String a

instance Encode ByteString where
encode = id

instance Decode ByteString where
decode = Right

instance Encode Text where
encode = encodeUtf8

instance Decode Text where
decode = Right . decodeUtf8

instance Encode String where
encode = BC.pack

instance Decode String where
decode = Right . BC.unpack

instance Encode FileMode where
encode (CMode fMode) = encode fMode
encodeWithSize (CMode fMode) = encodeWithSize fMode

instance Decode FileMode where
decode = fmap CMode . decode

We knew that we’d want to be able to encode Word32 values, but we decided
to pack these directly into the ByteString, rather than printing them and storing
the ASCII-encoded representations of the numbers. We wrote a couple of
helper functions to help us write Encode and Decode instances for Word32:

word32ToBytes :: Word32 -> (Word8, Word8, Word8, Word8)
word32ToBytes word =

let a = fromIntegral $ 255 .&. word
b = fromIntegral $ 255 .&. shift word (-8)
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c = fromIntegral $ 255 .&. shift word (-16)
d = fromIntegral $ 255 .&. shift word (-24)

in (a,b,c,d)

word32FromBytes :: (Word8, Word8, Word8, Word8) -> Word32
word32FromBytes (a,b,c,d) =

let a' = fromIntegral a
b' = shift (fromIntegral b) 8
c' = shift (fromIntegral c) 16
d' = shift (fromIntegral d) 24

in a' .|. b' .|. c' .|. d'

word32ToByteString :: Word32 -> ByteString
word32ToByteString word =

let (a,b,c,d) = word32ToBytes word
in BS.pack [a,b,c,d]

bytestringToWord32 :: ByteString -> Either String Word32
bytestringToWord32 bytestring =

case BS.unpack bytestring of
[a,b,c,d] -> Right $ word32FromBytes (a,b,c,d)
_ ->

let l = show $ BS.length bytestring
in Left ("Expecting 4 bytes but got " <> l)

instance Encode Word32 where
encode = word32ToByteString
encodeWithSize w =

let (a, b, c, d) = word32ToBytes w
in BS.pack [4,0,0,0,a,b,c,d]

instance Decode Word32 where
decode = bytestringToWord32

With all of our Encode instances in place, we were able to also define an Encode
instance for FileData:

instance Encode a => Encode (FileData a) where
encode FileData{..} = encode $

encodeWithSize fileName
<> encodeWithSize fileSize
<> encodeWithSize filePermissions
<> encodeWithSize fileData

Finally, to support packing more than one file into the archive, we also added
Encode instances for lists and tuples, and created a new FilePack type that con-
tains a list of Packable values that can describe a heterogeneous collection of
encodable file data:

instance (Encode a, Encode b) => Encode (a,b) where
encode (a,b) = encode $ encodeWithSize a <> encodeWithSize b
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instance {-# OVERLAPPABLE #-} Encode a => Encode [a] where
encode = encode . foldMap encodeWithSize

data Packable = forall a. Encode a =>
Packable { getPackable :: FileData a }

instance Encode Packable where
encode (Packable p) = encode p

newtype FilePack = FilePack [Packable]

instance Encode FilePack where
encode (FilePack p) = encode p

Deserialization as Parsing
In the last chapter, you built a tool to encode a file archive as raw binary
data. One of the biggest challenges that we ran into as we were developing
that project was the fact that we wanted to support files with different types
in a single archive. We were able to do this by using existential types to erase
the information about a specific type but keep the important information that
it had an Encode instance.

The fundamental reason that this approach worked for encoding was that,
at some point, the user of our library had to create values that were loaded
into a FilePack, and those values had to have instances that said how the data
should be encoded. Our existential type allowed us to forget the other infor-
mation about that type, but we still carried the particular implementation of
encode that each type used along with its data. That meant that when it came
time to call encode on the entire FilePack, our program was able to figure out
which particular encode function it needed to call for every single piece of data.

Decoding a FilePack is going to bring in a new wrinkle: when we’re loading in
a new file archive and decoding it, all we have is some raw binary data. We
don’t know what type it should be, so we have no idea which Decode instance
we should use to extract the data.

In order to extract data, we’ll need the user to tell us what kind of data they
want to extract, and then we can make a best effort at extracting the data
into that type using the binary data we have. Of course, the user might be
trying to deserialize some corrupt data, or might be wrong about the way the
data was encoded originally, so we’ll need to be able to report errors to them
as well.

You might recognize that what we’re talking about here is a parsing problem.
Deserializing data, especially in the general way that we want to support for
FilePack usually comes down to a parsing problem. We’ll approach the problem
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of extracting our encoded data as a parsing problem. This means that as you
work through this chapter, keep in mind that the techniques you’re using
here will apply equally well to parsing other types of data, like JSON or XML
data, binary file formats, or text input you receive directly from a user.

Creating a Parsing Function
Before we can start unpacking an entire archive we need to think smaller. A
filepack archive is made up of one or more different FileData values, and each
of those FileData values are in turn made up of all of the individual values in
the overall record. If we want to unpack a FileData, we’ll need to start by being
able to unpack each of the individual types that make up a FileData record.

Let’s start by decoding Word32 values. Not only do we need to decode these
because they are one of the types that make up a FileData record, but we’re
also going to need to deal with the Word32 size field prefixes that we added to
help us encode compound values more easily.

We already have a Decode instance for Word32 that makes use of the bytestring-
ToWord32 function that we built earlier to help us test our code. We’ll keep
using those functions, but we’re going to need to do a little bit of extra work
to extract an actual Word32 value our of our file pack. The first thing we need
to account for is the fact that we’re not just encoding the Word32 values
directly into our FilePack. All of the data that we encoded was prefixed with an
additional Word32 that told us the size of the next fields. Let’s start by writing
a function, naiveDecodeWord32, that will help us get a Word32 field:

naiveDecodeWord32 :: ByteString -> Either String Word32
naiveDecodeWord32 inputString =

decode (BS.drop 4 inputString)

In this very naive version of our decoding function, we’re simply dropping the
first four bytes of our input string and then using our existing Word32 decode
instance to try to parse the rest of it. We can try it out in ghci and see that it
works not only to successfully parse a correctly encoded value, but it also
gives us some degree of error handling against bad values:

λ naiveDecodeWord32 (encodeWithSize @Word32 255)
Right 255
λ naiveDecodeWord32 (encode @Word32 255)
Left "Expecting 4 bytes but got 0"
λ naiveDecodeWord32 (encode @String "Greetings")
Left "Expecting 4 bytes but got 5"

This is a pretty good starting spot, and works well for a naive function. The
biggest problem with our current implementation is that we discard any of
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the input that we’re not using to parse our Word32. It would be nice if that
were all we had to do for our decoders, and in fact we’ll get there in the end,
but for now we can’t rely on our upstream callers to know implementation
details like how much data we need to decode our number. Instead, we should
take what we need to parse a value from the input, and return the rest of it
to be used for the next thing that needs to be parsed.

Sticking with our most naive possible implementation, we can do this by first
dropping the four-byte size prefix, and then splitting the rest of the string
into two parts: the encoded word that we want to parse, and everything else.
The splitAt function from Data.ByteString does this for us, so it’s pretty easy:

naiveDecodeWord32 :: ByteString -> Either String (Word32, ByteString)
naiveDecodeWord32 inputString =

let
(encodedWord, rest) = BS.splitAt 4 (BS.drop 4 inputString)

in do
decodedWord <- decode encodedWord
pure (decodedWord, rest)

This is starting to look a bit better—we still have some error handling for free
thanks to the Decode instance we wrote for Word32, and now we’re returning the
remainder of the string for additional parsing. This implementation is still a bit
rough around the edges though. For one thing, our error messages could be
better. We don’t make it clear to the user the error is referring to the number of
bytes after the size prefix, and we don’t differentiate at all between the case
where we didn’t even get enough bytes for the size prefix, or where we did get
enough for the prefix but didn’t have enough leftover to parse the word. We’re
also making a blanket assumption the size prefix will always be four bytes. It’s
true it should always be four bytes if the input we’re getting is indeed a correctly
encoded Word32, but if our function is being called with some other kind of data
then our user is probably already having a hard enough time and we can make
their day a little easier by differentiating this error case from the others. In fact,
all these improved error messages can go a long way toward helping a user who
is trying to debug an encoder or decoder, or to troubleshoot why some data they
want to parse isn’t getting parsed as they expect.

Let’s take one more pass at our function by adding more robust error handling
for all of these edge cases:

import Control.Monad (when)

naiveDecodeWord32 :: ByteString -> Either String (Word32, ByteString)
naiveDecodeWord32 inputString = do

when (BS.length inputString < 4) $
Left "Error, not enough data to get the size of the next field"
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let (encodedSizePrefix, rest) = BS.splitAt 4 inputString
sizePrefix <- fromIntegral <$> bytestringToWord32 encodedSizePrefix
when (sizePrefix /= 4) $

Left "the field size of a word should be 4"
when (BS.length rest < fromIntegral sizePrefix) $

Left "Not enough data for the next field size"
let (encodedWord, rest') = BS.splitAt sizePrefix rest
decodedWord <- decode encodedWord
pure (decodedWord, rest')

The when Function

The when function in this example comes from the Control.Monad module, which is part
of base. This function is quite useful when we’re writing procedural style code in a do
block as we’ve done here, since it lets us conditionally run some action without having
to put the rest of our code into an if or case expression. In this example, we’re only
evaluating Left if the field size isn’t what we expect. Since a Left value will terminate
our Either action, it can be used as a way to early-abort on errors.

Now that we can decode Word32 values effectively, let’s move on to strings.
Once again, we’ll aim to provide useful error messages when we can, and we’ll
return the remainder of the data that we didn’t consume with our parsing.

Let’s start by looking at the implementation for a naive String decoder:

naiveDecodedString :: ByteString -> Either String (String, ByteString)
naiveDecodedString inputString = do

when (BS.length inputString < 4) $
Left "Error, not enough data to get the size of the next field"

let (encodedSizePrefix, rest) = BS.splitAt 4 inputString
sizePrefix <- fromIntegral <$> bytestringToWord32 encodedSizePrefix
when (BS.length rest < fromIntegral sizePrefix) $

Left "Not enough data for the next field size"
let (encodedString, rest') = BS.splitAt sizePrefix rest
decodedString <- decode encodedString
pure (decodedString, rest')

Do you notice anything? We’ve renamed a couple of things since we’re working
with strings instead of words now, and we’ve removed the check to verify the
size of the field should always be exactly four bytes. Otherwise, these two
functions are nearly identical. If we continued to implement other decoders,
we could keep using the same pattern, but we’re hiding almost all the inter-
esting logic behind the same repetitive bits of code to deal with the mechanics
of how we’ve encoded the format. It seems like it might be time to do a bit of
refactoring to break this function up into some re-usable components.
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One of the most fundamental things we’re going to be doing with all of our
decoding functions is taking some bytes out of the input string to parse, and
returning the rest of the data unmodified. Let’s start refactoring by writing a
function to handle this for us:

extractBytes
:: Int
-> ByteString
-> Either String (ByteString, ByteString)

extractBytes n byteString = do
when (BS.length byteString < n) $

Left $ "Error, extract bytes needs at least " <> show n <> " bytes"
pure $ BS.splitAt n byteString

Another thing we’ll want to do regularly is to look at the size of the next block
of data by reading the size prefix at the start of the current input to figure
out how much data we should extract for the next segment of input. We can
re-use the extractBytes function that we just wrote to make that easier:

nextSegmentSize :: ByteString -> Either String (Word32, ByteString)
nextSegmentSize byteString = do

(nextSegmentStr, rest) <- extractBytes 4 byteString
parsedSegmentSize <- bytestringToWord32 nextSegmentStr
pure (parsedSegmentSize, rest)

Most of the time when we want to parse a field, we’re going to follow a pattern:
first we’ll get the size of the next segment, then we’ll take however many bytes
we need from the input string again. We can also write a function to do all of
this for us and just give us the next segment of data that we need to decode:

nextSegment :: ByteString -> Either String (ByteString, ByteString)
nextSegment byteString = do

(segmentSize, rest) <- nextSegmentSize byteString
extractBytes (fromIntegral segmentSize) rest

Something still doesn’t feel right here. We’ve refactored our code into very
small functions, and yet in all of these examples, the majority of the code that
we’re writing is bookkeeping. We’re still manually dealing with pattern
matching out the value we care about and the remainder of the ByteString fre-
quently. The work that we’re doing to re-use our functions is starting to get
a little tedious.

It turns out that we still have a significant refactoring opportunity that can
greatly reduce the tedium of writing code like this for both us and users who
want to use our parsing library: refactoring our ad hoc parser into a monadic
parser.
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Building a Monadic Parser
Monadic parsers are a common pattern in Haskell applications. The term
monadic in a monadic parser is a little bit misleading, because as you’ll see
later on in this chapter, a lot of the benefit from this style of parsing comes
from its Applicative instance, rather than its Monad instance. Still, creating a
Parser monad allows users of our library to use the familiar do notation.

To get an idea of where we’re going and what this will look like in practice,
let’s start with a short demo of what it will look like to decode the values that
we encoded in testEncodeValue earlier:

testDecodeValue
:: ByteString
-> Either String
( FileData String
, FileData [Text]
, FileData (Word32,String)
)

testDecodeValue = decodeAndParse $ do
a <- extractValue
b <- extractValue
c <- extractValue
pure (a,b,c)

So far we’ve been parsing things using one-off functions to parse different
types of data, and each of our functions have had a slightly different type,
depending on the particulars of what we were doing and what we were trying
to parse. As we’re building our monadic parsing library we’ll still be building
up a number of small functions, but we want those to capture the differences
in the logic for the different things that we want to parse. To distill out the
important differences, we should start by looking at the commonalities. One
of the things that a lot of these functions had in common is that they have a
very similar type. If we were to define a general parsing function, we might
give it this type:

parseFunction :: Decode a => ByteString -> Either String (a, ByteString)

In other words, functions that take some input and return either an error, or
a tuple of a parsed value and the remainder of the input that wasn’t consumed
parsing that value. Let’s start building our monadic parser by creating a
newtype wrapper around functions with that general type. We’ll omit the Decode
constraint for now to keep things more general:

newtype FilePackParser a = FilePackParser
{ runParser :: ByteString -> Either String (a, ByteString) }
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You learned much earlier in this book, when you first started creating your
own types on page 144 how creating a data type that held a function could let
you write code that was easier to compose, and in the previous chapter, you
learned how you could create an instance of Functor for a regular function.
Now we’ll build on some of those ideas as we’re creating our monadic parser,
starting with defining a Functor instance for FilePackParser.

If we want to eventually create a Monad instance for FilePackParser, we’ll need to
start by creating a Functor instance. Remember that creating a Functor instance
requires that we define a single function, fmap. For our purposes, the type of
fmap will be:

fmap :: (a -> b) -> FilePackParser a -> FilePackParser b

So, we want to take a function and a parser, and return a new parser that
applies the function to the value that we’ve just parsed. Let’s start with a bit
of a naive implementation that makes it clear what’s happening, and then
we’ll refactor it into something more idiomatic.

The function we call fmap with—let’s name it changeParsedOutput—needs to work
on a value we’ve actually already parsed. To get a parsed value, we need the
parser we are mapping over—let’s call that parseFunction—and we need some
input data we can apply to parseFunction to get output out. We know what we
need, so let’s start our implementation by writing a helper function:

functorHelper
:: (a -> b)
-> (ByteString -> Either String (a, ByteString))
-> ByteString
-> Either String (b, ByteString)

functorHelper changeParsedOutput parseFunction input = do
(parsedValue, remainder) <- parseFunction input
pure (changeParsedOutput parsedValue, remainder)

So, our helper function tries to parse input with parseFunction and, if we fail, we
propagate the error. If we succeed though, we take the result of our parsing
and apply it to changeParsedOutput to get the new result that we want, and we
return that along with the unmodified remainder leftover from when we parsed
our original value.

Let’s look at how we can use this to create a Functor instance:

instance Functor FilePackParser where
fmap changeParsedOutput parser = FilePackParser $ \input ->

functorHelper changeParsedOutput (runParser parser) input
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As you can see, this definition of fmap offloads most of the work to the helper
function we’ve just written. We pass along changeParsedOutput completely
unmodified, along with the parse function that’s inside of parser. We also need
to pass along some input so we can actually run the parser. We get that input
by passing along the input that is given when we run the FilePackParser we’re
returning. The first time you encounter this pattern it can be a bit confusing
trying to understand where our input is actually coming from. It can seem
like we’re introducing input magically. The thing to remember is since FilePack-
Parser holds a function, at some point our user will eventually give us an input
string to start with, and that will become the value of input that we use.

To cement this idea, let’s work through a short example. For the sake of
simplicity we won’t really parse much of anything in this example, but we’ll
start with a “parser” that tries to take the first ten characters out of an input,
and counts the number of occurrences of the letter “a”.

parseCount :: FilePackParser Int
parseCount = FilePackParser $ \input ->

let
countLetters letter =

BS.length . BC.filter (== letter)
in

if BS.length input < 10
then Left "Error: not enough input"
else

let (toParse, rest) = BS.splitAt 10 input
in Right (countLetters 'a' toParse, rest)

In this example, we’re using the same pattern of creating a FilePackParser by
passing it a function that uses some input. We can run it with a few different
inputs to see how it parses each of them:

λ runParser parseCount "aaaaaaaaaaaa"
Right (10,"aa")
λ runParser parseCount "bbbaaaaaaaaa"
Right (7,"aa")
λ runParser parseCount "bbbaaaaa"
Left "Error: not enough input"

If we use our Functor instance, you’ll see that we’re in a similar situation; we’re
getting back a FilePackParser that still needs some input in order to do anything.

λ showParseCount = fmap show parseCount
λ runParser showParseCount "aaaaaaaaaaaa"
Right ("10","aa")
λ reverseShowParseCount = reverse <$> show <$> parseCount
λ runParser reverseShowParseCount "aaaaaaaaaa00"
Right ("01","00")
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In these examples, the FilePackParser that we’re getting back when we call fmap
(or (<$>), which is the infix operator version of fmap), is going to take whatever
input we give it, and then pass that input along to the parser that we originally
called fmap with, parseCount in this case.

Now that we’ve explored how our original fmap definition worked, let’s make
a quick refactor to remove our unnecessary helper function:

instance Functor FilePackParser where
fmap f parser = FilePackParser $ \input -> do

(parsedValue, result) <- runParser parser input
pure (f parsedValue, result)

This version is less verbose and a bit easier to read for not having an extra
function we have to keep track of. We’re no longer passing along a bunch of
values for no reason, and instead we’re implementing the actual logic of fmap
directly in its definition.

Next, let’s move on to defining an Applicative instance. While our Functor instance
was broadly similar to the instance we defined for functions, our Applicative
instance for FilePackParser will be a bit different.

We’ll start, as usual, by creating an instance and defining pure:

instance Applicative FilePackParser where
pure a = FilePackParser $ \s -> pure (a, s)

Our pure function here is taking the entire input string that we get and moving
it directly to the remainder, and setting the parsed value to the value passed
into pure. If we take the computational view of our parser, where consuming
some of the input is a side effect, then this definition of pure makes a lot of
sense. We’re inserting a pure value into the parser, which means that we
don’t have any side effects—we’re not consuming anything from the input.

Let’s stick with this computational view, where consuming values are side
effects, as we start to think about how we can define (<*>). In this view of the
world, we have two computations. One of them will consume some of the
input to give us a function, and the other will consume some of the input to
give us a value that we can apply to that function. We need to return a new
computation that combines both of those side effects and returns the result:

instance Applicative FilePackParser where
pure a = FilePackParser $ \input -> pure (a, input)
f <*> s = FilePackParser $ \input -> do

(f', initialRemainder) <- runParser f input
(a, finalRemainder) <- runParser s initialRemainder
pure (f' a, finalRemainder)
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You can see here that the first thing we do is consume some of the input to
get a function, f'. We take the state, in this case the remainder of our input,
and thread that through into our call to s. We return that remainder—the
remainder after consuming the input of both parsers—along with the result
of calling our function.

You’ll note here that order matters. Some types have Applicative instances that
can be run in any order, or even in parallel, but for things like this where the
order does matter, it’s conventional to keep the order of operations left-to-
right, as we’ve done here.

Parsing with Applicatives
Now that we’ve built an Applicative instance, we have everything we need to
extract a FilePack value, and to allow our users to build their own decoding
tools based on our decoder. Before we move on to writing a Monad instance,
let’s finish writing our decoders using what we have available so far from the
Applicative type class. This will give you a chance both to see how far we can
get with Applicative as well as an opportunity to see what restrictions we are
under when we don’t have a Monad instance.

As you know, Applicative types give us a way of combining some computations in
a particular way. The general pattern you’ll see for applicative parsers is we’re
combining a computation that’s progressively building up a new fully parsed
value with a second computation that’s progressively consuming parts of an
unparsed value. This’ll be a bit easier to understand as we look at an example.

Since we’ve already written a few variations of it, let’s start by writing the part
of our parser that consumes individual parts of our larger unparsed input.
The extractValue parser will combine a lot of the functionality we’ve already
written into a single parser called extractValue:

extractValue :: Decode a => FilePackParser a
extractValue = FilePackParser $ \input -> do

when (BS.length input < 4) $
Left "Input has less than 4 bytes, we can't get a segment size"

let (rawSegmentSize, rest) = BS.splitAt 4 input
segmentSize <- fromIntegral <$> bytestringToWord32 rawSegmentSize

when (BS.length rest < segmentSize) $
Left "not enough input to parse the next value"

let (rawSegmentValue, rest') = BS.splitAt segmentSize rest

case decode rawSegmentValue of
Left err -> Left err
Right a -> Right (a, rest')
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This parser follows the same pattern of many other parsing functions that
we’ve already built. The first thing that we do is to try to get the size of the
next input field by reading the field prefix and then taking that many bytes
out of the input. If we don’t have enough input data, we generate an error.
Next, we try to decode the segment that we’ve extracted, and we also return
an error if that fails. Finally, we return the decoded value along with the
remainder of the input that we didn’t use.

Before we move on, let’s try this out in ghci so that we can see it in action:

λ runParser (extractValue @Word32) $ encodeWithSize @Word32 12345
Right (12345,"")

λ runParser (extractValue @String) $ encodeWithSize @String "Parsing is fun"
Right ("Parsing is fun","")

λ runParser (extractValue @Word32) $ encodeWithSize @String "Errors aren't fun"
Left "Expecting 4 bytes but got 17"

You can see in these examples that we can encode and decode single values
now using our applicative decoder. One minor inconvenience here is that
when we run the parser this way, we’re also getting back an empty string
that’s leftover from our processing. To make our lives a bit easier, let’s add a
helper function to make it easier for us to test our parsers as we’re working
through some more examples in this chapter:

execParser :: FilePackParser a -> ByteString -> Either String a
execParser parser inputString =

fst <$> runParser parser inputString

This function will allow us, and other users of our library, to more easily get
a value out of an encoded input without needing to manually discard the
leftover data that is included with runParser. As we’re testing our own code,
this is just a small convenience, but for other users of our library this
abstraction also serves to hide unnecessary implementation details from users
who might not care about how we handle passing along the parse state.

The choice of how we want to order the arguments here can have a small but
meaningful impact on how users will interact with our library. In fact, it’s
common to see libraries like this provide named functions for both functions
that take a parser first, followed by input, and functions that take input first
followed by a parser. As you’re working through some of the examples in the
rest of this chapter, think about how the ergonomics of parsing would be
different if the order of arguments to execParser were flipped.
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Before we look at how to decode larger data types, we need to define one. We’ll
return to our FileData and FilePack examples shortly, but for the moment let’s
create a small one-off record we can use to explore applicative style decoding:

data SomeRecord = SomeRecord
{ recordNumber :: Word32
, recordString :: String
, recordTuple :: (Word32, String)
} deriving (Eq, Show)

exampleRecord :: SomeRecord
exampleRecord = SomeRecord 1 "two" (3, "four")

packRecord :: SomeRecord -> ByteString
packRecord SomeRecord{..} =

encodeWithSize recordNumber
<> encodeWithSize recordString
<> encodeWithSize (fst recordTuple)
<> encodeWithSize (snd recordTuple)

Unlike some of our previous examples, we can’t just call extractValue here,
because we don’t have a Decode instance defined for SomeRecord. We’re also
dealing with a more complicated record type with a number of different fields.
So, how do we go about decoding a value?

Our goal is to get each of the fields we need to reconstruct our record out of
the encoded input, one by one, and pass them into the SomeRecord value con-
structor. At each step of the process, we’ll consume a bit more data from the
unprocessed part of our input, and add that decoded value into our record.

We’ll call our new parser someRecordParser:

someRecordParser :: FilePackParser SomeRecord

Rather than looking at how we can implement an entire parser for SomeRecord
though, let’s take it a piece at a time. We’ll start by just parsing out the first
field. As a refresher, remember that value constructors are functions that
take in all of the elements in that type and return a new value, so the type of
SomeRecord is:

SomeRecord :: Word32 -> String -> (Word32, String) -> SomeRecord

So, we’ll start with a Word32 value. You’ve already extracted some Word32 values
out of an encoded string using extractValue and that’s exactly what we’re going
to do here:

someRecordParser = SomeRecord
<$> extractValue
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The first time you see this pattern you might have a hard time following the
leap that we just made here, so let’s take a moment to slow down and make
sure that we’ve fully understood what’s happening.

You’ll recall from several examples throughout the book the type of (<$>) is:

(<$>) :: Functor f => (a -> b) -> f a -> f b

This might leave you wondering for a moment how we are able to say Some-
Record <$> extractValue when SomeRecord takes three arguments, but the first
argument to (<$>) is a function of a single argument. The reason this work is
our friend, currying. After all, we can rewrite the type of SomeRecord using some
extra parentheses to be:

SomeRecord :: Word32 -> (String -> (Word32, String) -> SomeRecord)

So, SomeRecord really does fit the shape of a function (a -> b) it’s just that the b
is itself a function with the type (String -> (Word32, String) -> SomeRecord). This means
that when we use (<$>), what we’re going to end up with is a FilePackParser that
parses a value and returns function:

SomeRecord <$> extractValue
:: FilePackParser (String -> (Word32, String) -> SomeRecord)

Another way to look at this is that we’re taking the Word32 value that we get
as a result of running our parser and applying that to SomeRecord. We’re
keeping the leftover data that we didn’t consume when we parsed the Word32
value unmodified, so now we have a parser that will give us back a partially
applied value constructor, plus the remainder of the input that wasn’t used
to parse the value that we just applied.

Next up, we need to get a String. We already have a Decode instance defined for
String, so we can use extractValue to get one of those too. The difference here is
that when we started, SomeRecord was a normal function that we wanted to
apply to a parsed value with fmap, but that left us with a parser. Of course,
we just spent the last section building exactly what we need to handle this
situation! The Applicative instance that we just defined will let us handle
exactly this situation, with (<*>):

someRecordParser = SomeRecord
<$> extractValue
<*> extractValue

We can apply the same reasoning to using (<*>) that we did when we first
used (<$>). Remember that the type of (<*>) is:

(<*>) :: Applicative f => f (a -> b) -> f a -> f b
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In this case, a is String and b is ((Word32, String) -> SomeRecord). If we think about
what this is doing, using what we know about both Applicative in general and
the specific implementation that we’ve built, you can see that we’re building
up a new parser that will take some input and use it to run a computation
that will generate a function. Next, we take the leftover input from running
that computation and feed it into the extractValue parser to get a value, which
we apply to the function we’ve just parsed.

The last parameter we need to pass into SomeRecord is again a little bit different.
Instead of the plain single values we’ve passed in so far, we need to deal with
a tuple: (Word32, String). So, how do we get a FilePackParser (Word32, String) out of the
input? It’s a compound value, and we can build it exactly the same way that
we’ve been building our current parser: using (<$>) and (<*>):

{-# LANGUAGE TupleSections #-}

someRecordParser :: FilePackParser SomeRecord
someRecordParser = SomeRecord

<$> extractValue
<*> extractValue
<*> extractTuple
where

extractTuple :: FilePackParser (Word32, String)
extractTuple = (,) <$> extractValue <*> extractValue

TupleSections

The TupleSections extension has been available since GHC 6.12. It’s
enabled by default in GHC2010 but you’ll need to enable it manually
if you are using Haskell2010. This is a safe extension that shouldn’t
cause any problems with existing code.

Now that we have a parser, we can hand it over to execParser to get a function
that will directly transform some input into our desired output (or fail with
an error message at the very least).

parseSomeRecord = execParser someRecordParser

This gives us a nice function that we can use to evaluate any given input into
a parsed output. It’s handy if we have a bunch of different records that we
want to parse:

getSeveralRecords :: [ByteString] -> Either String [SomeRecord]
getSeveralRecords = traverse (execParser someRecordParser)

Another way to use execParser is by defining our actual parser directly inline,
instead of defining someRecordParser as a FilePackParser separately. For example,
we can rewrite it as:

report erratum  •  discuss

Building a Monadic Parser • 451

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


someRecordParser :: ByteString -> Either String SomeRecord
someRecordParser = execParser $ SomeRecord

<$> extractValue
<*> extractValue
<*> ((,) <$> extractValue <*> extractValue)

Now that we’ve figured out how to deal with extracting compound data types,
we can apply these ideas directly to a couple of our Decode instances for tuples
and FileData:

instance (Decode a, Decode b) => Decode (a,b) where
decode = execParser $ (,) <$> extractValue <*> extractValue

instance Decode a => Decode (FileData a) where
decode = execParser $ FileData

<$> extractValue <*> extractValue <*> extractValue <*> extractValue

You’ll notice here that since decode should return an Either String value, we are
able to again make use of execParser to get back a function that will take some
input and immediately use it to try to decode the parser that we’ve defined
in-line.

Now that we have everything we need to encode and decode FileData let’s write
one more function to help us use ghci to manually test that we can correctly
round-trip our data. If you aren’t familiar with it, round-trip testing is a term
commonly used to describe tests that ensure encoding a value and then
decoding it gets you back the same value that you originally started with.

testRoundTrip :: (Encode a, Decode a, Show a, Eq a) => a -> IO ()
testRoundTrip val =

case decode (encode val) of
Left err ->
putStrLn $ "Failed to round-trip value: " <> err

Right roundTripVal
| roundTripVal == val ->

putStrLn "It works!"
| otherwise -> do

putStrLn "Round-trip failed!"
putStrLn $ "expected: " <> show val
putStrLn $ "got: " <> show roundTripVal

runRoundTripTest :: IO ()
runRoundTripTest =

testRoundTrip $ FileData
{ fileName = "c"
, fileSize = 8
, filePermissions = 0644
, fileData = (0,"zero") :: (Word32,String)
}
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If you try this out in ghci you should see that “It Works!” We can now make
use of our Applicative parser to more easily decode compound types, including
our FileData type. Unfortunately, the work we’ve done so far doesn’t quite get
us all the way to being able to fully decode an entire FilePack. In the next section,
we’ll expand the capabilities of our parser to allow us to fully parse an entire
archive.

Parsing a List of Values
So far you’ve successfully unpacked a single FileData value using your Applicative
parser, but to unpack an entire archive we need to support being able to
decode an entire list of values. In theory, this shouldn’t be too hard, as we’ve
been working with lists since the first chapter of this book, but the fact that
we’re now dealing with parsers instead of plain lists means we need to think
a bit differently about how we build support for decoding values.

Fundamentally, what we’d like to do is to have our user give us a way of
parsing a single element, and we’d then like to use that parser to parse as
many elements as there are in the input we’re given.

One way to do this is build our own recursive parser that will call extractValue
to get each element of our list, as long as we have some input. Let’s write a
function called extractValues that will handle this for us:

{-# LANGUAGE OverloadedStrings #-}

extractValues :: Decode a => FilePackParser [a]
extractValues = FilePackParser $ \input ->

if BS.null input
then Right ([], "")
else do

(val, rest) <- runParser extractValue input
(tail, rest') <- runParser extractValues rest
pure (val:tail, rest')

In this function we test to see if we’re at the end of the input, and if so, we
return an empty list. This is our base case. Otherwise we try to extract the
next element, which will be the head of the list, and then recursively parse
the remainder of the input. Aside from the small detail that we’re running
inside of a FilePackParser, this resembles a lot of other direct recursive functions
that we’ve built throughout the book. This works, and we can test it out in
ghci to see it in action:

λ execParser (extractValues @Word32) $ encode @[Word32] [1..10]
Right [1,2,3,4,5,6,7,8,9,10]
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The first problem with this approach is that it’s not very flexible. We’re using
extractValue to parse values, but that only works as long as we have a Decode
instance. If we want to decode a list of values using some other parser, we’d
need to define a brand new Decode instance, possibly using a newtype wrapper,
or we’d need to write a new version of extractValues.

As a concrete example, let’s imagine that we have a parser named decodeEven
that will extract Word32 values that are even, but will fail on odd values:

parseEven :: FilePackParser Word32
parseEven = FilePackParser $ \input -> do

(n, rest) <- runParser extractValue input
when (odd n) $

Left $ show n <> ": value is odd"
pure (n, rest)

There’s an easy way that we can deal with this without needing to change
extractValues too much: instead of hard-coding extractValue we can pass in the
parser that we want to use. Since we’re not always calling extractValue, let’s
also rename our function to something a little bit more meaningful:

parseMany :: FilePackParser a -> FilePackParser [a]
parseMany parseElement = FilePackParser $ \input ->

if BS.null input
then Right ([], "")
else do

(resultHead, rest) <- runParser parseElement input
(resultTail, rest') <- runParser (parseMany parseElement) rest
pure (resultHead : resultTail, rest')

Now, we can turn any arbitrary parser for a single element into a list parser
that will consume all of the input and give us back a list of values:

λ execParser (parseMany @Word32 parseEven) $ encode @[Word32] [2,4..10]
Right [2,4,6,8,10]

And, we can get some useful errors out if something goes wrong:

λ execParser (parseMany @Word32 parseEven) $ encode @[Word32] [1..10]
Left "1: value is odd"

This approach to parsing a list of values is a good one, so long as we always
want to consume the entire input when we parse. Unfortunately, sometimes
we’ll run into situations where we need to consume an unknown number of
inputs into a list without consuming the entire input. To handle this kind of
situation we only have one option: keep parsing data until we encounter an
error, and then move on.
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One way to handle this is to continue to modify our existing function so that
instead of passing back a failure when our element parser fails, we instead
return an empty list:

parseMany :: FilePackParser a -> FilePackParser [a]
parseMany parseElement = FilePackParser $ \input ->

case runParser parseElement input of
Left _err ->
pure ([], input)

Right (val, rest) -> do
(tail, rest') <- runParser (parseMany parseElement) rest
pure (val:tail, rest')

This is fine, it will let us parse lists the way that we want, but let’s consider
a similar problem. Imagine if, instead of a list, we wanted to parse an
optional value. We might follow the same pattern we just used for decoding
lists and write a function called extractOptional that returns Nothing instead of
an empty list if we fail to parse a missing value:

extractOptional :: FilePackParser a -> FilePackParser (Maybe a)
extractOptional parseElement = FilePackParser $ \input ->

case runParser parseElement input of
Left _err -> pure (Nothing, input)
Right (val, rest) -> pure (Just val, rest)

It turns out that both of these functions are special cases of a more general
problem that comes up regularly when we’re dealing with things like parsers:
trying one parser, and if it fails then trying an alternative parser. This pattern
is common enough that it’s defined by the Alternative type class in Control.Applicative
in base.

The Alternative type class is defined in base like this:

class Applicative f => Alternative f where
empty :: f a
(<|>) :: f a -> f a -> f a
some :: f a -> f [a]
many :: f a -> f [a]
{-# MINIMAL , (<|>) #-}

Alternative gives us a way to combine two different Applicative values, and it’s
frequently used when building parsers to represent the idea of choice between
two options. If the first option succeeds, it’s returned, otherwise the second
option is returned. Before we dive into what that means for FilePackParser, let’s
use ghci to look at a couple of examples of Alternative instances that are already
defined for us.
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The empty function gives us back an “empty” value. The precise definition of
empty can vary a lot depending on the type of thing we’re dealing with. For
example, the empty value of Maybe is Nothing:

λ empty @Maybe
Nothing

For lists, the empty value is, intuitively, an empty list:

λ empty @[]
[]

Another example of something with an Alternative instance is IO. This case is a
little bit different, because the value we get back from an empty IO is an
exception. This might seem counterintuitive at first, but shortly we’ll look at
why this ends up being convenient in practice.

λ empty @IO
*** Exception: user error (mzero)

The other required function we need to define for Alternative is the (<|>) operator.
This operator will return the “sum” or “combination” of its left and right values.
As with empty, the precise definition can vary depending on the specific type
we’re looking at. For lists, it simply combines the two lists:

λ [1,2,3] <|> []
[1,2,3]
λ [1,2,3] <|> [4,5,6]
[1,2,3,4,5,6]
λ [] <|> [4,5,6]
[4,5,6]
λ [] <|> []
[]

On the other hand, Maybe defines (<|>) to be the first non-Nothing value, if there
is one:

λ Just "Hello" <|> Just "World"
Just "Hello"
λ Just "Hello" <|> Nothing
Just "Hello"
λ Nothing <|> Just "World"
Just "World"
λ Nothing <|> Nothing
Nothing

The definition of (<|>) for IO is similar. It returns the value of the first IO action
that did not raise an exception:

λ putStrLn "Hello" <|> putStrLn "World"
Hello
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λ ioError (userError "exception") <|> putStrLn "World"
World
λ putStrLn "Hello" <|> ioError (userError "exception")
Hello
λ ioError (userError "exception one") <|> ioError (userError "exception two")
*** Exception: user error (exception two)

For FilePackParser we can define our own instance that’ll behave similarly to the
IO instance: we’ll return the first non-exception value we encounter. Of course,
we don’t have to worry about IO errors, only situations where our parser
returns a Left value. Like IO, we’ll consider an empty parser to be an error.

import Control.Applicative

instance Alternative FilePackParser where
empty = FilePackParser $ const (Left "empty parser")
parserA <|> parserB = FilePackParser $ \s ->

case runParser parserA s of
Right val -> Right val
Left errA -> runParser parserB s

Although our Alternative instance here isn’t much more complicated than a case
statement, we can use it to rewrite a much nicer version of both extractOptional
and parseMany.

We can rewrite extractOptional as a short one-line function:

extractOptional :: FilePackParser a -> FilePackParser (Maybe a)
extractOptional p = Just <$> p <|> pure Nothing

Or, in pointfree style:

extractOptional = (<|> pure Nothing) . fmap Just

Our new version of parseMany similarly becomes a short one-line function, but
now we have a choice to make. In the very first version of our list parsing
function, we wrote a list parser that would consume all of the input data. It
would also helpfully give us an error if our parser failed, which can be highly
desirable if we know that we’re expecting at least some value. When we
refactored that code to allow only parsing as much input as was available,
we lost the ability to also ensure that we got at least one value. So, do we
want to write a function that parses some (one or more) values, or a function
that parses as many (zero or more) values as are available?

Now that we have an Alternative instance making it easier for us to be more
expressive, we don’t have to pick. Each of these new functions can be written
as a one-liner. So, let’s write them. parseSome will parse at least one element, up
to as many as are available in the input. parseMany will parse as many as are
available, but will successfully return an empty list if nothing can be parsed.
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parseSome :: FilePackParser a -> FilePackParser [a]
parseSome p = (:) <$> p <*> parseMany p

parseMany :: FilePackParser a -> FilePackParser [a]
parseMany p = parseSome p <|> pure []

You’ll notice that these two functions are mutually recursive. parseSome parses
the head of the list, and then gets the tail of the list by calling parseMany. We
define parseMany by first trying to parse one or more elements with parseSome,
and if that fails then giving up and returning an empty list. Although we
haven’t seen this sort of mutual recursion across functions much, if you try
it out you’ll see that thanks to laziness it works exactly as we’d expect.

Let’s load these new functions into ghci and watch them in action:

λ someEvens = encode @[Word32] [2,4,6,8]
λ someNums = encode @[Word32] [1,2,3,4,6,8]

λ execParser (extractOptional parseEven) someEvens
Right (Just 2)
λ execParser (extractOptional parseEven) someNums
Right Nothing

λ execParser (parseSome parseEven) someEvens
Right [2,4,6,8]
λ execParser (parseSome parseEven) someNums
Left "1: value is odd"

λ execParser (parseMany parseEven) someEvens
Right [2,4,6,8]
λ execParser (parseMany parseEven) someNums
Right []

Our functions work great, and thanks to Alternative they were easy to write. It
turns out that we didn’t actually need to write these functions at all. Our
parseSome and parseMany functions are precisely the implementations of some
and many that the Alternative type class defines for us when we create a new
instance, and extractOptional is just our own implementation of the optional
function that’s already defined for us in Control.Applicative:

λ :t some
some :: Alternative f => f a -> f [a]
λ :t many
many :: Alternative f => f a -> f [a]
λ :t optional
optional :: Alternative f => f a -> f (Maybe a)

Using our new Alternative instance we can now write a Decode instance for lists,
getting us a step closer to our FilePack decoder:
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instance {-# OVERLAPPABLE #-} Decode a => Decode [a] where
decode = execParser (many extractValue)

Now that we’re able to decode an entire list of files, we can fully decode a
FilePack:

testDecodeValue
:: ByteString
-> Either String
( FileData String
, FileData [Text]
, FileData (Word32,String)
)

testDecodeValue = execParser $ (,,)
<$> extractValue
<*> extractValue
<*> extractValue

You can test this yourself using the testEncodedValue function you wrote in the
last chapter.

So, you can see that we’ve been able to write a complete parser thanks to
Applicative and a little help from Alternative. A lot of the time these two type
classes are all you need to write a parser. In some cases though, Applicative
doesn’t give us quite enough expressive power. In those cases, we need to
also go ahead and stay true to the “Monadic Parser” name and implement a
Monad instance as well. In the next section, we’ll add a Monad instance and
you’ll see some of the benefits that you get from monadic parsing over
applicative parsing.

Adding a Monad Instance
Before we dive into what we can do with Monad, let’s start by writing out our
instance. You might recall that the Monad type class requires that we implement
two functions: return and (>>=). When you already have an Applicative instance,
like we do, it’s usually to define return in terms of pure. So, we’ll start by defining
our new class:

instance Monad FilePackParser where
return = pure

Next we need to define (>>=). As you may recall, the general type of (>>=) is:

(>>=) :: m a -> (a -> m b) -> m b

Or, specialized to FilePackParser:

(>>=) :: FilePackParser a -> (a -> FilePackParser b) -> FilePackParser b
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We’ll start out defining a new FilePackParser and binding its input so that we
can use it inside of the parser:

valParser >>= mkParser = FilePackParser $ \input -> do
{:language="haskell"}

(>>=) takes a parse action and a function from a value to a new parse action.
We need to start by running the first parse action that we’re given so that we
can get a plain value that we can pass into our function. We can do that with
runParser just like we did when we defined (<*>):

(val, rest) <- runParser valParser input

Finally, we’ll call our function, mkParser, with the value we just parsed. We’ll
run that parser with the remainder of the input that we have left from getting
the value. The result of running this second parser will be returned directly,
since that’s the result of our new parser.

runParser (mkParser val) rest

Overall, the whole type class definition is just a few lines long:

instance Monad FilePackParser where
return = pure
valParser >>= mkParser = FilePackParser $ \input -> do

(val, rest) <- runParser valParser input
runParser (mkParser val) rest

So, what does this Monad instance buy us? As you’d expect, we can now use
do notation instead of manually using (<$>) and (>>=) to write parsers. This
improves the ergonomics of writing parsers, but it doesn’t directly give us a
lot of new things we can do. More importantly is that having a Monad instance
means that we have the ability to join parser actions. Joining values is best
described by the join function, defined in Control.Monad. Its definition is:

join :: Monad m => m (m a) -> m a
join m = m >>= id

In short, join lets us take two nested monadic actions, and combine them into
a single action. The ability to do this is one of the important differences
between Monad and Applicative. We don’t often call join directly; instead, the fact
that we’re joining values is implicit in the way we use (>>=), but the fact that
we can join values, explicitly or implicitly, also means that we can compose
monadic parsers in ways that we can’t compose applicative parsers.

One example of where we need to use (>>=) or join when parsing is dealing
with sub-parsers. As an example, let’s imagine that we want to support images
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in the Netpbm format1 in our file archive. The Netpbm file format lets us store
image data as a collection of binary or ASCII characters using a few different
encoding schemes. We’re going to support two of them: PBM and PGM. Don’t
worry if you’ve never heard of this format though; the details don’t matter too
much for our specific example.

data FilePackImage
= FilePackPBM Word32 Word32 [Word32]
| FilePackPGM Word32 Word32 Word32 [Word32]
deriving (Eq, Show)

instance Encode FilePackImage where
encode (FilePackPBM width height values) = encode $

encodeWithSize @String "pbm"
<> encodeWithSize width
<> encodeWithSize height
-- The Encode instance for list already includes size info
<> encode values

encode (FilePackPGM width height maxValue values) = encode $
encodeWithSize @String "pgm"
<> encodeWithSize width
<> encodeWithSize height
<> encodeWithSize maxValue
-- The Encode instance for list already includes size info
<> encode values

In this example, we have a sum type that lets us represent the different kinds
of Netpbm formats that we might want to store. We need a way to differentiate
between them so that we can decode them properly, so we’re prefixing the
encoded data with a string tag. Without this tag, we wouldn’t know which of
the possible formats we should decode the data into.

Using tags like this to differentiate between different constructors in a sum
type is a common pattern, and you’ll see it regularly when dealing with all
kinds of file formats, from image formats to other file archive formats, to
commonly used serialization formats like JSON and XML. With a monadic
parser we can deserialize this kind of data easily:

instance Decode FilePackImage where
decode = execParser $ do

tag <- extractValue @String
case tag of

"pbm" ->
FilePackPBM
<$> extractValue

1. http://netpbm.sourceforge.net/
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<*> extractValue
<*> many extractValue

"pgm" ->
FilePackPGM
<$> extractValue
<*> extractValue
<*> extractValue
<*> many extractValue

otherTag ->
FilePackParser $ \_ -> Left $ "unknown image type tag: " <> otherTag

You’ll notice in this example we’re still making use of our Applicative instance
to write the parsers for each of the specific constructors that we care about,
but at the top level we’re using do notation to first extract the tag and then
match on its contents to decide which of our two parsers to invoke. At first
it may be tempting to try to refactor this to use applicative style parsing as
well. At first glance, it seems like it shouldn’t be that hard to simplify the code
to consistently use the applicative parsing style, but if we look more deeply
at what the code is doing, we’ll see that it would be impossible to implement
this without a Monad instance.

To understand why, let’s break this function up into a couple of pieces. First,
we’ll extract each of our case branches into their own functions, parsePBM and
parsePGM:

parsePBM, parsePGM :: FilePackParser FilePackImage
parsePBM = FilePackPBM <$>

extractValue <*> extractValue <*> many extractValue
parsePGM = FilePackPGM <$>

extractValue <*> extractValue <*> extractValue <*> many extractValue

Next, let’s move the logic from our case expression into a function:

getNetpbmParser :: String -> FilePackParser FilePackImage
getNetpbmParser tag =

case tag of
"pbm" -> parsePBM
"pgm" -> parsePGM
otherTag ->

FilePackParser $ \_ -> Left $ "unknown image type tag: " <> otherTag

We need the tag value to pass into getNetpbmParser. This is really just going to
be a call to extractValue, but let’s make it its own function for now, just to help
illustrate what’s happening:

getNetpbmTag :: FilePackParser String
getNetpbmTag = extractValue
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Finally, we need to compose all of these pieces into our final decoding function.
Let’s write a function to do that, but before we dive into the implementation
we’ll think through its type.

First, we’ll need to pass in the tag, or at least a way to get the tag, so we know
what to parse, so our function will have the type:

parseImage :: FilePackParser String -> ???

Next, let’s pass in our getNetpbmParser function. That way we can call it with the
tag as soon as we’ve parsed it out of the input. That means our type will be:

parseImage
:: FilePackParser String
-> (String -> FilePackParser FilePackImage)
-> ???

The goal is to get a parser for a particular image, so let’s return the parser
that we get when we call getNetpbmParser directly, without any modifications.
That means the final type of our composition is:

parseImage
:: FilePackParser String
-> (String -> FilePackParser FilePackImage)
-> FilePackParser FilePackImage

Does this look familiar? We’ve just demonstrated exactly why we need a Monad
instance, because the type we need turns out to be (>>=)!

There are two lessons to take away from this example. The first is that adding
a Monad instance to a parser can offer some concrete value, especially when
you might need to use information from the input you are parsing to make
decisions about how to parse the rest of the document. The other lesson to
take away is that even when we did have access to a Monad instance and could
have used do notation, we still made use of the Applicative instance for some of
our parsing as well. This is a good example of a broader pattern you’ll see
when parsing things in Haskell: Applicative, Alternative, and Monad instances all
work together, and it’s common to fluidly switch between the features of each
when parsing things.

Adding a MonadFail Instance
Before we close out this chapter, let’s address one more ergonomic inconve-
nience that has cropped up a few times: dealing with parsers that might fail.
When we were manually building the parsing functions inside of FilePackParser
this wasn’t such a big deal, but as we’ve been able to build more and more
of our code out of smaller parsers that we are composing, having to manually
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construct a parser with a Left value starts to get inconvenient. Worse, it ties
us to a specific representation of our errors. In the future, if we wanted to
refactor our parser to not use Either, we’d need to change every single error in
our code base.

One option here would be to factor out the error handing into its own function:

parseError :: String -> FilePackParser a
parseError errMsg = FilePackParser (const $ Left errMsg)

This works well enough, but it’s specific to our particular parser. A better
option is to re-use a well-known type class for monadic values that might fail:
MonadFail. The MonadFail type class has a single definition:

class Monad m => MonadFail m where
fail :: String -> m a

Instances of MonadFail should obey the law:

fail a >>= b == fail a

In other words, calling fail should end the computation at the first failure that
we encounter. This is exactly the behavior we’ve already been using, and we
can directly re-use parseError as the implementation of fail to create our own
instance of MonadFail for FilePackParser:

instance MonadFail FilePackParser where
fail errMsg = FilePackParser (const $ Left errMsg)

Let’s use our new instance to make a small refactor to our Decode instance of
FilePackImage:

instance Decode FilePackImage where
decode = execParser $ do

tag <- extractValue @String
case tag of

"pbm" ->
FilePackPBM
<$> extractValue
<*> extractValue
<*> many extractValue

"pgm" ->
FilePackPGM
<$> extractValue
<*> extractValue
<*> extractValue
<*> many extractValue

otherTag ->
fail $ "unknown image type tag: " <> otherTag
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As you can see, having a MonadFail instance doesn’t make a huge difference to
our code, but being able to use fail when a parser fails is a small ergonomic
nicety for users of our library. Since MonadFail is common for monadic parsers,
using it will make our parser feel consistent with many of the common parsers
provided by various libraries in the Haskell ecosystem.

Summary
In this chapter, you learned how to deal with parsing data using both
applicative and monadic style parsing. Haskell’s type system and ecosystem
make it particularly well suited to building parsers, and you’ll notice the
patterns that you used throughout this chapter pop up regularly when you
are writing Haskell code. In fact, it’s not a stretch to say that Haskell program-
mers will often try to turn problems into a parsing problem in many cases,
because the techniques we’ve developed in this chapter are so handy that it’s
always a good idea to see if we can use them when we’re presented with some
new problem.

This chapter has also served as an example of how to take the work you’ve
done so far in this book, learning about many of the existing values with
Monad and Applicative instances, and extend them to your own problems, lever-
aging the power of these type classes for expressing your own unique compu-
tations.

In the next chapter, we’ll continue building on these ideas by looking at how
you can move on from defining a single Applicative or Monad instance that defines
the behavior of some type and instead start defining types through the com-
position of effects from several different Monad instances.

Exercises

A Configurable Status Line for HCat
Using what you’ve learned in this chapter, revisit the HCat application that
you built earlier. Update HCat to support a configurable status bar that will
show up at the bottom of the output. The status bar configuration should be
stored on disk in a configuration file (for example ~/.config/hcat.conf). Allow users
to specify which fields they want to see, what order they should appear in,
and the maximum width of each field.
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Command Line Argument Parsing
Several of the examples that you’ve worked on in this book have required you
to deal with command line arguments. So far, we’ve dealt with this in an ad
hoc manner. Using what you’ve learned in this chapter, try to build a library
to make it easier to work with command line arguments. Use this library to
improve the command line argument handling for your filepack parsing pro-
gram and the HCat application you built earlier.

Pretty Printing and Parsing
Reversible parsing is a technique that lets you write a parser that can also
be used to encode data. This is particularly useful when you want to impele-
ment parsing for files like JSON, XML, or our own FilePack format. A common
use for reversible parsing is to implement a “pretty printing” tool that will let
users reformat a document so that it’s more readable.

Using what you’ve learned in this chapter, try to implement a parser for a
simple plain text format, and then make the parser reversible. Your reversible
parser should reformat the original input so that it’s easier to read.
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CHAPTER 13

Building Applications with Many Effects
Throughout this book you’ve learned several different ways to build up
monadic computations that have their own particular properties, from Maybe
computations that might not return a value and Either values that could suc-
ceed or have an error, to IO actions that might have any number of externally
visible side effects like printing messages to the screen or updating an IORef.
As you saw in the last chapter, many of the programs that we want to build
involve several different types of effects that can be combined to build more
sophisticated applications. Until now, when we’ve encountered a problem
that required a novel combination of effects, we’ve built a new solution from
scratch. Building up our computations from scratch each time we want
something that uses a particular combination of effects might be instructive,
but it also burdens us with the need to frequently rewrite the same code.

Monad transformers give us a better way forward, by allowing us to compose
different types of monadic computation. In this chapter, you’ll learn how to
break a more complex application down into smaller composable building
blocks: individual monad transformers that you can combine in different
ways, allowing you to re-use your code and combine your effects. First, we’ll
revisit the problem of building a parser and look at how we can separate out
the individual effects into their own independent re-usable modules. Next,
you’ll learn about some of the challenges that you might encounter as you
start combining monad transformers, including learning how to think care-
fully about the order that you compose transformers, and build some new
modules to make it easier to combine functions that have different kinds of
effects. Finally, we’ll look at the two popular monad transformer libraries,
transformers and mtl, and you’ll how to use them together, and when you might
prefer one or the other.
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Revisiting the Parsing Problem
We’ve dealt with parsing several times in this book, most recently in the pre-
vious chapter where we focused on building a parser to extract data created
by our FilePack tool. In all of these examples, we’ve addressed the parsing
problems we were trying to solve specifically, tailoring our code to the partic-
ular application we wanted to build. Narrowly focusing on a particular problem
let us keep the size of our application small, but it also meant that we’ve re-
written similar code several times. That’s a good indication that we might
want to look at ways that we can abstract away parts of the problem to avoid
rework in the future.

Let’s start thinking about how we can abstract away parts of a parser by re-
visiting the definition of the parser we built in the previous chapter:

newtype FilePackParser a = FilePackParser
{ runParser :: BS.ByteString -> Either String (a, BS.ByteString) }

The definition of FilePackParser that we settled on in the last chapter represents
a parser computation as a function from some previous parse state to an
error message or a value and a new parse state. The first thing that we can
do to make this a bit more re-usable is to allow our user to pick their own
types for the internal state and for errors. That way, if a user decides they
want to parse Text or String data, or use a sum type to differentiate between
different errors, they can do it without needing to write a brand new parser
type:

newtype Parser e s a = Parser
{ runParser :: s -> Either e (a, s) }

type FilePackParser = Parser String BS.ByteString

Making the error and internal state type parameters is a clear benefit to the
flexibility of our parser, and as you can see in the example, it doesn’t require
that we give up a more ergonomic definition of the particular parser we might
want to build. We can use type aliases to preserve the ergonomics of working
with a very general type like Parser with some particular types applied.

Now that we’ve stripped away some details, like the specific types of the
internal state and the errors, we can start to look at the shape of a parser
and think about where we might be able to break it down into more funda-
mental abstractions. When we do this, it turns out that our Parser type is
really a combination of two other monadic computations: the Either monad
that we use for handling errors, and a monad that we haven’t seen before,
State. Before we dive into how we can combine Either and State to make a parser,
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let’s take a quick detour to learn about the State monad. Understanding how
State works independently of parsing will help us better understand how to
use it as a building block.

The State Monad
The State monad gives us a way to represent mutable state in Haskell programs.
Although State is widely used in Haskell programs, we rarely encounter it by
itself. The mtl and transformers libraries export a couple of different variations
of State, but you’re more likely to encounter it behind the scenes in a type like
Parser rather than working with it directly. In fact, you’ve worked with a varia-
tion of State quite extensively already in this book: IO is essentially a version
of State where the mutable state is a reference to the external state of the real
world.

Fundamentally, State is a function from an old state to a value and a new
state. After working with FilePackParser extensively in the last chapter, the defi-
nition of State should be familiar, so let’s look at a complete implementation
of a State module and then walk through the ways that this is different than
our earlier parsers:

module State where

newtype State s a = State {runState :: s -> (a, s)}

instance Functor (State s) where
fmap f g = State $ \lastState ->

let (val, nextState) = runState g lastState
in (f val, nextState)

instance Applicative (State s) where
pure val = State $ \s -> (val, s)
f <*> g = State $ \oldState ->

let (h, funcState) = runState f oldState
(val, valState) = runState g funcState

in (h val, valState)

instance Monad (State s) where
return = pure
f >>= g = State $ \oldState ->

let (val, valState) = runState f oldState
in runState (g val) valState

evalState :: State s a -> s -> a
evalState stateAction initialState =

fst $ runState stateAction initialState

execState :: State s a -> s -> s
execState stateAction initialState =

snd $ runState stateAction initialState
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put :: s -> State s ()
put state = State $ \_ -> ((), state)

get :: State s s
get = State $ \state -> (state, state)

The most obvious difference between State and our parser examples is that
we’re no longer handling any possibility of failure. Our Functor, Applicative, and
Monad instances are a bit simpler now that they don’t need to deal with error
handling, but otherwise they are the same as the version we wrote for File-
PackParser.

A less obvious difference is that we’ve included two functions that work with
State: get and put. When we were building our parser from scratch, we created
quite a few different parser actions that directly accessed the parse state.
Usually these functions looked something like this:

someParserAction :: State s a
someParserAction = State $ \oldState ->

let newState = transformState oldState
in (makeSomeValue oldState, newState)

In other words, most of our parser functions took advantage of the implemen-
tation details of the parser itself to get the old state and put a new state by
writing the step function manually. With get and put we won’t need to directly
call a State constructor. Instead, we can use do notation:

someParserAction :: State s a
someParserAction = do

oldState <- get
put (transformState oldState)
pure (makeSomeValue oldState)

Being able to use get and put instead of directly constructing a State value might
seem like a small thing that doesn’t have any real impact, but it turns out to
be an important part of being able to use monad transformers to compose
different monadic effects. That’s because we can combine monad transformers
in many different ways, and we frequently will want to write code that should
be re-usable no matter how we’ve brought State into the picture. As you’ll see
later in this chapter, if we’re directly accessing the State constructor we end
up severely limiting the flexibility that we can get from our transformers.

Before we move on and look at some bigger examples of how we can use State,
let’s try a small example. We’ll write a function that will let us build up some
lines of text, with each new line of text being indented more than the previous
line. We’ll keep the current level of indentation in the mutable state:

Chapter 13. Building Applications with Many Effects • 470

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


module BasicStateDemo where
import State

appendLineWithIndent :: String -> String -> State Int String
appendLineWithIndent message previousMessage = do

indentLevel <- get
let

nextIndentLevel = indentLevel + 2
indent = replicate nextIndentLevel ' '
output = previousMessage <> indent <> message <> "\n"

put nextIndentLevel
pure output

appendLineDemo :: IO ()
appendLineDemo =

putStrLn $ evalState message 0
where

message =
appendLineWithIndent "hello" ""
>>= appendLineWithIndent "world"
>>= appendLineWithIndent "love,"
>>= appendLineWithIndent "George"

If we load this up into ghci we can see that our stateful function does exactly
what we’d expect:

λ appendLineDemo
hello

world
love,

George

Stateful Parsing
Now that we’ve learned a bit about State and how it works on its own, let’s
look at how we can use State to make our lives easier when we’re writing
parsers. We’ve seen enough examples now to know that we can’t have a
parser without needing to deal with parse failures. Although we dropped
support for error handling when we defined State, we can still write a State-based
parser that works the way we want it to. Since a State computation can return
any kind of result that it likes, we can have our stateful computation output
an Either value that will tell us if we encountered an error. Let’s see if we can
use this to write a basic parser we can use to parse someone’s name:

module BasicStateDemo where
import Data.Text (Text)
import Data.Char (isSpace)
import qualified Data.Text as Text
import State

type Parser a = State Text (Either Text a)
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data FullName = FullName
{ first :: Text
, middle :: Text
, last :: Text
} deriving Show

takeUntil :: (Char -> Bool) -> Parser Text
takeUntil predicate = do

oldState <- get
let (nextVal, rest) = Text.break predicate oldState
put rest
pure (pure nextVal)

dropChar :: Parser ()
dropChar = do

parseState <- get
let newState = Text.tail parseState
put newState
pure (Right ())

word :: Parser Text
word = do

nextWord <- takeUntil isSpace
_ <- dropChar
pure nextWord

parseFullName :: Parser FullName
parseFullName = do

firstName <- word
middleName <- word
lastName <- word
pure $ do

firstName' <- firstName
middleName' <- middleName
lastName' <- lastName
pure $ FullName firstName' middleName' lastName'

It works…kind of. We’ve written a parser that technically meets our require-
ments: it’s using State for handling the internal parse state, and Either for
handling parse errors, but this has come at a pretty high usability cost. The
reason this approach ends up with code that feels so awkward to use is that
we’re accustomed to having a single unified interface for all of the effects that
happen in a computation. When we use do notation, we don’t want to think
about each separate type of effect independently. When we defined Applicative
and Monad instances from scratch, we could deal with all of the different effects
all at once. When we try to compose effects, we’re feeling the pain of having
to do this manually.

Most of the tedium that we’re experiencing with this parser comes from the
fact that we have two nested monads. Everything that we want to do needs
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to be wrapped and unwrapped twice. Once to deal with the outer State action,
and again to deal with the inner Either value. When we built out a parser from
scratch, we didn’t need to deal with that because our Functor, Applicative, and
Monad instances all managed both the mutable state and error handling at
the same time.

Just because we’re now using State and Either together doesn’t mean that we
have to give up having an interface that lets us deal with them together. One
way that we can do this is to make Parser a newtype wrapper and add our own
Functor, Applicative, and Monad instances. Unlike our earlier stand-alone parser,
this time we won’t have to deal with the details of implementing State or error
handing ourselves. Instead, we can rely on State and Either to handle their own
effects, and our instances will only need to coordinate the interaction between
the two. Let’s look at an example of how we can do this:

module FailingStatefulParser where
import Control.Monad
import Data.Char (isSpace)
import Data.Text (Text)
import qualified Data.Text as Text
import State (State)
import qualified State

newtype Parser a = Parser
{runParser :: State Text (Either String a)}

evalParser :: Parser a -> Text -> Either String a
evalParser = State.evalState . runParser

parse :: Parser a -> Text -> (Either String a, Text)
parse = State.runState . runParser

instance Functor Parser where
fmap f parser =

Parser $ (fmap . fmap) f (runParser parser)

instance Applicative Parser where
pure a = Parser $ (pure . pure) a
f <*> a = Parser $ do

f' <- runParser f
a' <- runParser a
pure $ f' <*> a'

instance Monad Parser where
return = pure
a >>= f = Parser $ do

val <- runParser a
case val of

Left err -> pure (Left err)
Right val' -> runParser (f val')
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The improved instances are only half of what we need to do if we want to
present a unified interface into both ‘State‘ and ‘Either‘. We will also need a
way to run both State and Either actions. Functions like get and put will still
return State actions, and that means we can’t use them directly, since the rest
of our code will be expecting Parser actions. There are two different approaches
we can take. The first option is to create Parser-specific implementations of
the basic operations that are supported by State and Either. We can use those
in place of functions like get and put. The second option is to create a general
purpose way of turning any State or Either value into a Parser value. This is called
lifting. You’ll see some examples of writing lifting functions later on in this
chapter, but for now let’s stick with writing a couple of helper functions to
handle the basic operations we’ll need to support in our parser:

parseError :: String -> Parser a
parseError errMsg = Parser $ pure (Left errMsg)

parseGet :: Parser Text
parseGet = Parser (Right <$> State.get)

parsePut :: Text -> Parser ()
parsePut newState = Parser $ Right <$> State.put newState

With our new type class instances and our basic operations reimplemented,
our parsing functions become much nicer to read. We don’t have to think
about the fact that we have two nested computations, we can simply treat
our Parser as a single cohesive type of computation that supports both errors
and mutable state.

takeUntil :: (Char -> Bool) -> Parser Text
takeUntil predicate = do

oldState <- parseGet
let (nextVal, rest) = Text.break predicate oldState
parsePut rest
pure nextVal

optionally :: Parser () -> Parser ()
optionally originalParser = Parser $ do

oldState <- State.get
result <- runParser originalParser
case result of

Left _err -> State.put oldState
_success -> pure ()

pure $ Right ()

word :: Parser Text
word = do

nextWord <- takeUntil isSpace
when (Text.null nextWord) $

parseError "unexpected end of input"
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optionally dropChar
pure nextWord

dropChar :: Parser ()
dropChar = do

parseState <- parseGet
case Text.uncons parseState of

Nothing -> parseError "unexpected end of input"
Just (_, rest) -> parsePut rest

parseFullName :: Parser FullName
parseFullName = FullName <$> word <*> word <*> word

You’ll notice that one tradeoff we’ve had to make with our new error-aware
parser is that our examples are a bit more complicated. We’ve had to create
a new function, optionally, to handle running parsers that might fail. In this
example, we’ve added this to account for the fact that the final word in our
name won’t necessarily have a trailing character. We’ve also added some
logic to word to account for the potentially empty input. Although these extra
error checks are necessary for accurate parsing no matter what approach
we’re using to parse text, as we build up a more sophisticated parser these
types of checks will get easier to implement.

Handling Errors in Other Computations
In the last section, we looked at how to add error handling to a parser that
we built using State, but as you’ve seen throughout this book the problem of
dealing with error handling in some sort of computation is common. Another
example where you’ve already had first-hand experience with this is in han-
dling failures inside of IO actions. We’ve previously handled errors inside of
IO actions by raising exceptions using ioError. Although we’ve managed to get
by with IO exceptions, they have a couple of problems. First, we’re risking
errors caused by unhandled exceptions. We can certainly argue that developers
should be responsible and handle exceptions appropriately but there’s nothing
to force us to catch them, and so we’re risking bugs. Second, using IO excep-
tions for errors in our application logic can confuse different sorts of errors
that should be handled in different ways.

Let’s see if we can add error handling to an IO action using the same approach
we used with our parser. We’ll start by creating a new type called EitherIO:

newtype EitherIO a = EitherIO
{runIO :: IO (Either String a)}
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Next we’ll need to define Functor, Applicative, and Monad instances for EitherIO:

instance Functor EitherIO where
fmap f exceptionalIO =

EitherIO $ (fmap . fmap) f (runIO exceptionalIO)

instance Applicative EitherIO where
pure a = EitherIO $ (pure . pure) a
f <*> a = EitherIO $ do

f' <- runIO f
a' <- runIO a
pure $ f' <*> a'

instance Monad EitherIO where
return = pure
a >>= f = EitherIO $ do

val <- runIO a
case val of

Left err -> pure (Left err)
Right val' -> runIO $ f val'

Looking at this example, you may notice something interesting: all of these
type class instances are identical to the instances we defined for Parser. You
can carefully read the examples line by line, or try copying the implementation
you created for Parser and change the name of the type. That’s because we’re
not relying on any implementation details of the computation we’re embedding
our error handling in. It also means that our approach to embedding error
handling won’t just work for State and IO, it’ll work for any type that has a
Monad instance.

As you can imagine, it would be tedious to copy and paste the same instance
definitions every time we want to add error handling to some type. Thankfully,
we don’t have to. Instead of creating a new type and defining a new way to
embed errors every time, we can create a more general type that lets us transform
a plain type into a type that can fail. Types like this that let us transform one
type of Monad into another with more capabilities are known as monad trans-
formers. Throughout this chapter, you’ll learn about several different monad
transformers, but for now we’ll limit ourselves to handling.

Exceptional Transformers
Let’s start looking at how we can build a more general approach to error
handling by creating a new module. Both the mtl and transformers libraries refer
to the monad transformer we’re building as ExceptT. We’ll stick with that name
for both the name of our module, and the name of the general error handling
transformer that we’re going to define:
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{-# LANGUAGE KindSignatures #-}
module ExceptT where
import Control.Applicative
import Data.Kind (Type)

The definition of ExceptT is similar to the definitions of Parser and EitherIO, but
instead of assuming we’ll always use a String for error handling and a State or
IO action for the underlying monad, we’ll make those additional parameters
to ExceptT:

newtype ExceptT (e :: Type) (m :: Type -> Type) (a :: Type) = ExceptT
{ runExceptT :: m (Either e a) }

In this example, we’re using KindSignatures to help make it clear that one of the
type parameters that we’ve added, m, is a higher kinded type. When you first
learned about higher kinded types on page 240 we only looked at them when
we were dealing with type classes and function types, but as you can see from
the example, higher kinded types are also useful as type parameters. In the
case of ExceptT, the higher kinded type m represents whatever monadic type
we’re adding exception handling to.

As you might expect, the Functor, Applicative, and monad instances for ExceptT are
similar to the instances we defined for EitherIO and Parser. One difference is
that, when we were writing those instances, we could freely use functions
like fmap or use do notation because the IO and State actions that we were
wrapping have Functor, Applicative, and Monad instances. Now that we’re wrapping
a generic m, we need to be explicit about adding constraints to our instances:

instance Functor m => Functor (ExceptT e m) where
fmap f a = ExceptT $ (fmap . fmap) f (runExceptT a)

instance Monad m => Applicative (ExceptT e m) where
pure a = ExceptT $ pure (pure a)
f <*> a = ExceptT $ do

f' <- runExceptT f
a' <- runExceptT a
pure $ f' <*> a'

instance Monad m => Monad (ExceptT e m) where
return = pure
a >>= f = ExceptT $ do

val <- runExceptT a
case val of

Left err -> pure $ Left err
Right val' -> runExceptT $ f val'
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Now that we’ve added our instances, we need to define the fundamental
operations of ExceptT. When we defined State, we identified two basic operations
we could use to define all our other stateful computations: get and put. With
monad transformers, we’re instead going to define the basic operations we’re
adding to some computation. In our example, we’ll add three basic operations:

1. throwError will let us raise a new exception if we encounter an error.
2. catchError will allow us to handle an exception that has been raised.
3. succeed will let us take a computation that can’t fail and embed it inside

of an ExceptT computation.

Try writing an implementation of these functions yourself. You should be able
to write them using what you’ve already learned in this chapter. Once you’ve
tried writing them yourself, take a look at the example and see how your
versions compare:

throwError :: Monad m => e -> ExceptT e m a
throwError exception = ExceptT (pure $ Left exception)

catchError :: Monad m => (e -> ExceptT e m a) -> ExceptT e m a -> ExceptT e m a
catchError handler action = ExceptT $ do

result <- runExceptT action
case result of

Left err -> runExceptT (handler err)
Right val -> pure (Right val)

succeed :: Monad m => m a -> ExceptT e m a
succeed a = ExceptT (Right <$> a)

Now that we’ve implemented ExceptT and defined some basic operations for
working with exceptions, let’s revisit a couple of our earlier examples and
take a look at how we can reimplement them using ExceptT. We’ll start by re-
visiting Parser, and then look at some examples of using ExceptT to add error
handling to IO actions.

Parsing with ExceptT
We’ll start our next parsing example by creating a new module and yet
another definition of Parser. This time, we’ll use a type alias:

module ExceptTParser where
import ExceptT
import Control.Monad
import Data.Char (isDigit, isSpace)
import Data.Text (Text)
import qualified Data.Text as Text
import State

type Parser a = ExceptT String (State Text) a
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Although using a type alias means that our Parser implementation is going to
be transparent to our users, we can still make our parser easier to use by
adding a utility function for parsing some text. This is a common pattern
when building APIs that use monad transformers, since forcing users to
manually run all of the nested computations has poor ergonomics.

runParser :: Parser a -> Text -> Either String a
runParser = evalState . runExceptT

The definition of the parsers won’t need to change drastically compared to
our earlier examples. Let’s look at a few examples for now. You’ll finish re-
implementing a complete monad transformer-based parser at the end of this
chapter as an exercise.

We’ll start by looking at parseNextCharacter:

parseNextCharacter :: Parser Char
parseNextCharacter = do

input <- succeed get
when (Text.null input) $

throwError "parseNextCharacter: unexpected end of input"
succeed . put . Text.tail $ input
pure $ Text.head input

As you can see, there are only a couple of differences between this new version
and the previous one. First, we’ve replaced failParser with our new more general
throwError function. The behavior is the same, but we’re now using a more
general purpose function that works with any ExceptT action. Second, we’re
using succeed to lift put into our exceptT action. The need to explicitly lift opera-
tions like get and put from State into our ExceptT-wrapped action is a little bit
annoying. Later on in this chapter, you’ll learn how to rewrite some basic
operations like get and put so that you don’t need to explicitly lift them as
often, but the need to occasionally lift operations like this is one of the down
sides of working with monad transformers.

Not every function implemented with ExceptT will end up looking so similar to
our earlier versions. One function that we can write differently is word. Using
ExceptT has simplified our how we can handle the expected dropChar failure at
the end of our input. You’ll define an Alternative instance for ExceptT as an
exercise at the end of this chapter to make this even easier.

word :: Parser Text
word = do

nextWord <- takeUntil isSpace
when (Text.null nextWord) $

throwError "unexpected end of input"
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ignoreException dropChar
pure nextWord
where

ignoreException =
catchError (const $ pure ())

Having seen the patterns, you should be able to continue reimplementing the
remainder of your ExceptT-based parser on your own.

State, Transformed
Error handling is just one example of how we can use monad transformers
to add capabilities to other our computations. Let’s look at another example
by revisiting the State monad that we defined earlier in this chapter. We defined
State as a function from an old state to a value and some new state:

newtype State s a = State {runState :: s -> (a, s)}

The State monad was useful because it gave us a way to write pure functions
that needed access to mutable state. It’s not hard to imagine that we might
have other computations that would benefit from the ability to deal with
mutable state. We can do that by modeling a state transformer named StateT
as a function from an input state to some monadic value that computes a
value and a new state. Since we’ve seen a few examples already, let’s take a
look at the full definition of StateT:

{-# LANGUAGE TupleSections #-}
module StateT where

newtype StateT s m a = StateT { runStateT :: s -> m (a, s) }

evalStateT :: Monad m => StateT s m a -> s -> m a
evalStateT stateAction initialState =

fst <$> runStateT stateAction initialState

execStateT :: Monad m => StateT s m a -> s -> m s
execStateT stateAction initialState =

snd <$> runStateT stateAction initialState

instance Functor m => Functor (StateT s m) where
fmap f s =

StateT $ fmap (first f) . runStateT s
where first g (a,b) = (g a, b)

instance Monad m => Applicative (StateT s m) where
pure a = StateT $ \s -> pure (a, s)
f <*> a = StateT $ \s -> do

(g,s') <- runStateT f s
(b,s'') <- runStateT a s'
pure (g b, s'')
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instance Monad m => Monad (StateT s m) where
return = pure
a >>= f = StateT $ \s -> do

(b, s') <- runStateT a s
runStateT (f b) s'

put :: Monad m => s -> StateT s m ()
put state = StateT $ \_ -> pure ((), state)

get :: Monad m => StateT s m s
get = StateT $ \state -> pure (state, state)

Once again, we can see that moving from State to StateT requires only a few
minor changes to our existing code. The general shape of our Functor, Applicative,
and Monad instances remain the same, but they now run inside of an m action.
We still have the same basic operations, get and put, and their definitions are
once again quite similar to the original definitions.

Monad Transformers and the Identity Monad
One way to look at StateT is that it’s a more flexible version of State because it
allows us to add mutable state to any sort of computation. A more pessimistic
view of the situation is to say that, like all monad transformers, StateT requires
that we have some other computation to host the new capabilities we’re
adding. This limitation is a bit of a problem, since we’ve already seen that
there are some situations, like building parsers, where we might want to use
State without any other underlying computation.

One way to handle this would be to define two separate modules. We could
define one module for the original State, and another module for StateT that we
can use if we have some other computation we’re already working with. This
approach would work in theory, but it has a couple of drawbacks. First, we’d
be writing a lot of duplicate code, and that invites bugs. Second, we can eas-
ily imagine a user of our library starting out using State and then realizing
that they have some other effects that they need to manage, and needing to
refactor their application to use StateT. Having two separate modules would
introduce a much larger refactoring burden on our users in this case, since
they’d need to update their code in many more places.

Thankfully, we have another option: the Identity monad. Identity is defined for
us in the Data.Functor.Identity module in base, but let’s look at an example
implementation so that we can understand what it does:

module Identity where

newtype Identity a = Identity { runIdentity :: a }
deriving (Eq, Show)

report erratum  •  discuss

State, Transformed • 481

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


instance Functor Identity where
fmap f a = Identity $ f (runIdentity a)

instance Applicative Identity where
pure = Identity
f <*> a = Identity $ runIdentity f $ runIdentity a

instance Monad Identity where
return = pure
a >>= f = f (runIdentity a)

As you can see, Identity doesn’t actually do much of anything by itself. All of
the instances that we’ve defined are essentially just normal function applica-
tion over regular values. At first Identity may seem useless, but it turns out to
be quite useful when combined with monad transformers, because using
Identity as the underlying monad lets us get access to the features that are
added by a monad transformer without needing to have some other computa-
tion that might have side effects we don’t want or need. This is hinted at by
the name identity.

Now we can take advantage of Identity to avoid duplication by defining our
original State monad in terms of StateT:

type State s = StateT s Identity

evalState :: State s a -> s -> a
evalState stateAction initialState =

runIdentity $ evalStateT stateAction initialState

execState :: State s a -> s -> s
execState stateAction initialState =

runIdentity $ execStateT stateAction initialState

Since State is just a type alias for StateT, all of our existing functions like get
and put work exactly as we expect. We also have the flexibility to write our
own new stateful functions that can be used with any underlying monad that
our users might need. Let’s look at a small example to help illustrate the idea.
We’ll start by creating a trivial stateful function. In the example, we’ll define
a function called duplicate that reads the mutable state and returns it twice,
in a tuple. You can pick some other simple function as you work through the
example if you like.

duplicate :: Monad m => StateT a m (a,a)
duplicate = do

val <- get
pure (val,val)

In this example, we’re not depending on any particular inner monad; that
means we are free to pick whichever type of computation we happen to need.
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For example, let’s write a function that uses duplicate as though it were a plain
State action. We’ll start with a more verbose implementation that makes it
clear what particular type we’re using for duplicate:

pureDuplicate :: Int -> (Int,Int)
pureDuplicate val = evalState getDuplicate val

where
getDuplicate :: State Int (Int,Int)
getDuplicate = duplicate

The definition of getDuplicate here isn’t necessary except to help make the types
more clear. We can also write this more simply as:

pureDuplicate :: Int -> (Int,Int)
pureDuplicate = evalState duplicate

We can also pick some other monad, like IO. Let’s start with a more verbose
version again:

printDuplicate :: Int -> IO ()
printDuplicate val = evalStateT getDuplicate val >>= print

where
getDuplicate :: StateT Int IO (Int,Int)
getDuplicate = duplicate

In this example, we’re using IO as our inner computation. That means the
result of evalStateT will be an IO action that we can easily pass to print.

Stacking Transformers Effectively
Now that we’ve seen how to combine different effects using monad transform-
ers, and defined transformers for both ExceptT and StateT, we find ourselves
with a bit of a problem: how should we nest them? Consider the parser
example we’ve been using throughout this chapter. Should we define one by
nesting a StateT inside of an ExceptT, or vice versa? Let’s take a look at the two
options to see what impact the choice we have might make.

Nesting State Inside of Except
Let’s start by continuing the pattern we’ve used so far in this chapter, using
State as the inner monad and adding ExceptT to give it the ability to handle
errors. First, we’ll create a new module, add some imports, and define a type
alias for our parser:

{-# LANGUAGE OverloadedStrings #-}

module ExceptState where

import Control.Applicative
import Control.Monad (when, void)
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import Data.Text (Text)
import qualified Data.Text as Text
import ExceptT
import StateT

type ParseError = Text
type ParseState = Text

type Parser = ExceptT ParseError (State ParseState)

runParser :: Text -> Parser a -> Either ParseError a
runParser input parser =

evalState (runExceptT parser) input

So far, everything is looking very much like the other parsers that we’ve
defined in this chapter. Let’s go ahead and add two short parsing functions
to build our example on. We’ll start with a parser that will get the next char-
acter from the parse state, and return an error if we’re at the end of our input:

parseChar :: Parser Char
parseChar = do

parseState <- succeed get
case Text.uncons parseState of

Nothing -> throwError "end of input"
Just (c, rest) -> do
succeed $ put rest
pure c

In this example, remember that we need to use succeed when we want to get
or put a value to lift the State action into ExceptT. Next, let’s add a parser that
lets us say that we expect the next character of the parse state to be some
particular character. If it is, then we’ll discard it, otherwise we’ll raise an
error:

char :: Char -> Parser ()
char expectedChar = do

actualChar <- parseChar
when (expectedChar /= actualChar) $

throwError "Invalid character"

So far, so good. We can load this parser up into ghci and see it working:

λ runParser "123" parseChar
Right '1'
λ runParser "123" (parseChar >> parseChar)
Right '2'
λ runParser "abc" (char 'a' >> parseChar)
Right 'b'
λ runParser "abc" (char '1' >> parseChar)
Left "Invalid character"
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Next, let’s say that we want to add a parser that will remove any leading
spaces from our input. One way we can do that is to repeatedly match a single
space and discard it, continuing to do so until trying to match a space fails.
You may recall that we encountered a similar problem when building the
FilePack parser on page 453. In that example, we defined an instance of the
Alternative type class to help us parse a list of values. Let’s see if we can do the
same thing now.

We’ll start by returning to our ExceptT module. We’ll add an import for Con-
trol.Applicative, then we can start defining our instance. Let’s look at the definition
first and then walk through it:

instance (Monoid e, Monad m) => Alternative (ExceptT e m) where
empty = ExceptT (pure $ Left mempty)
a <|> b = ExceptT $ do

a' <- runExceptT a
case a' of

Right val -> pure (Right val)
Left err -> do

b' <- runExceptT b
case b' of

Right val -> pure (Right val)
Left err' -> pure (Left $ err <> err')

Like all of the instances we’ve defined for ExceptT, we’re adding a constraint
that m must be a Monad. This lets us use do notation, and it gives us a way to
access values from the inner computation. We’re also adding a new constraint,
requiring that the error type be a Monoid. We’re adding this constraint so that
we can use mempty to create a new error when empty occurs. Since the error
could be any type, we need some way to create a default value, and mempty is
a reasonable choice. As an additional benefit, if both of the alternatives fail
in (<|>), we can combine the errors and show the user both of them.

The implementation of empty is straightforward. We fail and set the error to
some empty default error value. The definition of (<|>) is longer, but also
fairly mechanical. First we try to run the left-hand computation. If it succeeds,
we use that value. If not, we try to run the right-hand computation, returning
that value if it succeeds, and otherwise returning both errors.

We can use our new instance directly in ghci to try out some alternative
parsing. For example, if we try some simple examples throwing exceptions,
we can see everything acting like we’d hope:

λ runParser "hello" $ throwError "bad" <|> pure "good"
Right "good"
λ runParser "hello" $ pure "good" <|> throwError "bad"
Right "good"
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λ runParser "hello" $ pure "good" <|> pure "better"
Right "good"
λ runParser "hello" $ throwError "bad" <|> throwError "worse"
Left "badworse"

What if we try to use this with our parsing code? Let’s try an experiment: if the
first character of our input string is the letter a, we’ll discard it and return
the second character. Otherwise, we’ll return the first character:

λ runParser "abc" $ (char 'a' >> parseChar) <|> parseChar
Right 'b'

So far, so good. We discarded the first character and returned the second.
Let’s try again with different input so we can exercise the other half of our
expression:

λ runParser "123" $ (char 'a' >> parseChar) <|> parseChar
Right '2'

That doesn’t look right at all…what’s going on? We can get a hint as to the
problem if we look back at the instance we defined for FilePackParser:

instance Alternative FilePackParser where
empty = fail "empty parser"
parserA <|> parserB = FilePackParser $ \s ->

case runParser parserA s of
Right val -> Right val
Left _ -> runParser parserB s

In our FilePackParser instance, the very first line of our definition of (<|>) is:

parserA <|> parserB = FilePackParser $ \s ->

That means the rest of the body of our definition is happening inside of the
function from the previous parse state to the next one. In other words, the
exception handling for FilePackParser is embedded inside of the mutable state.
In our new transformer-based parser we’re doing things the other way around,
embedding the mutable state inside of the exception handling.

The result of this decision is that each of our two alternative parsers are going
to run inside of a single computation and share a single mutable state. When
we run the first parser, even though it fails, the side effects persist as we
move on to the second parser. In our ghci examples, even though char 'a' fails
to match a character, it still consumes a value from the parse state.

The choice of how we define our monad transformer stack can have other
implications too. Another example that we can easily demonstrate with Alter-
native is the order in which we nest our transformers is impacted by the laziness
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of the computations we’re nesting. The many function, for example, won’t ter-
minate with our current Parser definition. You can see this yourself in ghci;
remember you can press ctrl-c to stop a function that isn’t terminating:

λ runParser "abc" (many parseChar)
Interrupted.

Why does this fail to run? Because our definition of StateT is strict, we end up
accidentally trying to evaluate an infinite list of parser actions before we look
for the ones that succeeded.

Nesting Except Inside of StateT
Nesting State inside of ExceptT has clearly not worked out as well as we might
have hoped. Thankfully, we’ve got an easily available alternative. We can nest
Except inside of StateT instead. To start, let’s return to our example and add a
new type alias, Except:

import Identity

type Except e = ExceptT e Identity

runExcept :: Except e a -> Either e a
runExcept = runIdentity . runExceptT

As you can see, Except is analogous to State; it uses Identity as an inner monad.
In practice, Except is more or less identical to Either, but the new type alias lets
us keep consistency with some of our earlier examples.

Next, we’ll head over to the StateT module. Since StateT will be our outer monad
transformer, we’ll need to add an Alternative instance for it:

import Control.Applicative

instance (Monad m, Alternative m) => Alternative (StateT s m) where
empty = StateT $ const empty
a <|> b = StateT $ \s ->

runStateT a s <|> runStateT b s

Unlike the Alternative instance we defined for ExceptT, this instance requires that
our inner monad also have an Alternative instance. Thankfully, we defined one
for ExceptT in the previous example, so we don’t have any more work to do.

While we’re editing the StateT module, there’s another function that we’ll need
to add. When we were using ExceptT as our outer monad, we had to define the
succeed function as a way to lift a State action like get or put into the transformer.
Now that we’re embedding Except inside of StateT we’ll have a similar problem.
We can use get and put directly, but we need a way to lift an Except computation,
like throwError, into the StateT transformer. Let’s call the function liftStateT:
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liftStateT :: Monad m => m a -> StateT s m a
liftStateT a = StateT $ \s -> (, s) <$> a

Now that we have updated our transformer modules, let’s create a new module
for our new parser. Like before, we’ll start with a type alias for our parser,
and define functions to extract a single character, or to expect a particular
character:

{-# LANGUAGE OverloadedStrings #-}

module StateExcept where

import Control.Applicative
import Control.Monad (when, void)
import Data.Text (Text)
import qualified Data.Text as Text
import ExceptT
import StateT

type ParseError = Text
type ParseState = Text

type Parser = StateT ParseState (Except ParseError)

runParser :: Text -> Parser a -> Either ParseError a
runParser input parser =

runExcept $ evalStateT parser input

parseChar :: Parser Char
parseChar = do

parseState <- get
case Text.uncons parseState of

Nothing -> liftStateT $ throwError "end of input"
Just (c, rest) -> do
put rest
pure c

char :: Char -> Parser ()
char expectedChar = do

actualChar <- parseChar
when (expectedChar /= actualChar) $

liftStateT $ throwError "Invalid character"

Let’s give our newly refactored parser a try in ghci and see how it handles our
parsing requirements. First, we’ll re-try our alternative examples:

λ runParser "123" $ (char '1' >> parseChar) <|> parseChar
Right '2'
λ runParser "123" $ (char 'a' >> parseChar) <|> parseChar
Right '1'

Success! When the first parser succeeds in matching the character 1, we
return the next character. More importantly, when it fails we no longer keep

Chapter 13. Building Applications with Many Effects • 488

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


the side effects from the failed alternative. Instead, we compute the right-hand
side using the pristine initial state.

Let’s see how our new parser handles many:

λ runParser "123" (many parseChar)
Right "123"

Once again, refactoring our parser to embed exception handling inside of our
state actions instead of the other way around has fixed our problem.

As you can see from these examples, when you are working with monad
transformers it’s important to be considerate about the order of composition.
The particular requirements of your application, and the implementation of
the transformers, will be important as you think about how to structure your
application.

Building a File Archiver
Now that we’ve had a chance to see several different examples of how we can
use monad transformers, let’s try to put it together into a more useful example.
In this section, we’ll build a utility that will let us create archives of files.
Along the way, we’ll look for some opportunities to refine our approach to our
monad transformer definitions to improve their ergonomics.

Our application allows users to define a file archive using a small language
that we’ll parse. The language will let our users create a new archive, add
items to the archive by importing files from disk, and add items by defining
them inline. Here’s an example of an archive with three files:

archive "example.archive":

import "./example1.txt"

new-file "inline-example.txt":
this is some text
it can have newlines
but it needs to be indented

import "./example2.txt"

Two of the archive files, example1.txt and example2.txt, are imported the local
filesystem. The third file, inline-example.txt, is defined inline.

Creating an Archiver
We’ll start building our archiver by defining a new module. We’ll continue
using our existing StateT and ExceptT modules, as well as several other imports
from base. We’ll also go ahead and add two new types: Archive will be a record
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that holds our final parsed file archive, and ArchivedFile will hold the contents
and metadata about each file that has been added to our archive.

{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE OverloadedStrings #-}

module Archiver where

import Control.Applicative
import Control.Monad (void, when)
import Data.ByteString (ByteString)
import qualified Data.ByteString as ByteString
import Data.Char (isSeparator)
import Data.Text (Text)
import qualified Data.Text as Text
import qualified Data.Text.Encoding as Enc
import ExceptT
import StateT

data Archive = Archive
{ archiveName :: Text
, archivedFiles :: [ArchivedFile]
} deriving stock (Show)

data ArchivedFile = ArchivedFile
{ archivedFileName :: Text
, archivedFileContents :: ByteString
} deriving stock (Show)

Next, let’s define the type for our archiving computations. Previous examples
in this chapter have used type aliases to make the examples easier to follow,
but for most real-world applications we’ll want to create a newtype wrapper
around our monad transformer stack. This will let us add any additional type
class instances we might want to define, and will also help us differentiate
between our archival computations and other unrelated computations that
happen to also use the same underlying monad transformer stack.

We’ll call our archival computation type Archiver. While we’re at it, we’ll also
add a utility function to make it easier to run an Archiver action:

newtype Archiver a = Archiver
{unArchiver :: StateT Text (ExceptT Text IO) a}
deriving newtype (Functor, Applicative, Monad, Alternative)

runArchiver :: Text -> Archiver a -> IO (Either Text a)
runArchiver inputText archiver =

runExceptT $ evalStateT (unArchiver archiver) inputText

You’ll notice in this example that we’re now nesting three different types of
computation. Like the other parsers we have built in this chapter, we are
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composing StateT and ExceptT so that we can track a parse state and handle
failures. Now we’re also adding in IO. This will allow us to interact with the
filesystem so that we can read the contents of imported files as part of our
Archiver actions.

Like our earlier examples, let’s start off the implementation of our Archiver
parser by adding a parser to extract a character from the parse state:

parseChar :: Archiver Char
parseChar = do

parseText <- Archiver get
case Text.uncons parseText of

Nothing ->
Archiver . liftStateT . throwError $ "end of input"

Just (c, rest) -> do
Archiver (put rest)
pure c

This function should look familiar by now, it’s similar to other implementations
of the same function. The most notable difference is that all of our calls to
any of our monad transformer actions now need to go through an Archiver
constructor. In the case of throwError, we also need to lift the error into StateT
before we wrap it in an Archiver.

The need to manually lift values, and to wrap and unwrap them, is a big
ergonomic burden when using monad transformers. One option to address
this would be to add helper functions that handle the work for any particular
transformer stack, but that means we would end up rewriting the same helper
functions every time we used a particular combination of transformers. It
also means that any users of our API need to learn what helper functions
we’ve defined, and possibly define new bespoke helpers if we’ve forgotten to
add some common and useful ones.

Thankfully, there’s another approach we can take. We can define type classes
to help us manage both lifting computations into our transformers, and to
help us with wrapping and unwrapping common operations. Before we con-
tinue with our file archiver, let’s look at how we can define these type classes
and use them to improve the ergonomics of our transformer stack.

Abstracting Over Lift with MonadTrans
The first type class that we’ll build to help make working with monad trans-
formers easier is called MonadTrans, and it’s the type class that tells us some-
thing is a monad transformer. So, what is a monad transformer? We’ve already
built a couple of examples, so let’s see if we can work backwards from ExceptT
and StateT and figure out how we should define MonadTrans.
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The first common feature of our two transformers was that they both allowed
us to take any given monad and add some extra operations and effects to it.
In the case of StateT that meant adding some mutable state. With ExceptT we
added the ability to raise exceptions. In both cases though, we could add
those operations to any other monad. The second common feature was that,
in addition to whatever operations each transformer supported, they both
offered us a way to lift an operation. In ExceptT we called the lifting operation
succeed. When we defined StateT we called it liftStateT. Let’s look at their types:

succeed :: Monad m => m a -> ExceptT e m a
liftStateT :: Monad m => m a -> StateT s m a

Both of these two functions seem to take a monadic computation with the
type m a and return a monadic computation that does the same action, but
inside of the newly transformed monad. Since the type of these two functions
is so similar, let’s use that as a starting point for our type class:

module MonadTrans where

class MonadTrans t where
lift :: Monad m => m a -> t m a

Implementing this type class for StateT and ExceptT is pretty straightforward—we
just need to call, or copy the definitions of, the lift functions we already
defined. You can add these instances to your StateT and ExceptT modules
respectively:

import MonadTrans

instance MonadTrans (StateT s) where
lift m = StateT $ \state -> (,state) <$> m

import MonadTrans

instance MonadTrans (ExceptT e) where
lift m = ExceptT (Right <$> m)

At one time, we would have been done with our definition of MonadTrans at this
point. It turns out that lifting other monadic computations is the only basic
operation that is universally shared across all monad transformers, so the
version of MonadTrans that we defined in our example was quite similar to the
definition used by the transformers library. Unfortunately, it turns out that this
implementation has its own ergonomic difficulties that start to show up when
we want to write code that uses nested monad transformers. Let’s look at a
silly but illustrative example by writing a function that will evaluate some
computation twice and return the results lifted into a monad transformer:
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doSomethingTwice :: (Monad m, MonadTrans t) => m a -> t m (a,a)
doSomethingTwice something = do

first <- lift something
second <- lift something
pure (first, second)

Although it seems like this ought to compile, if we try to build this module
we’ll get an error. The compiler doesn’t like using do notation, because it
doesn’t think that our monad transformer is a monad. That’s for a good rea-
son—although we clearly intend that a monad transformer should itself have
a Monad instance, there’s nothing that forces that to be true. For example, let’s
create a bad monad transformer named Decepticon to demonstrate the problem:

newtype Decepticon m a = Decepticon { getUnit :: () }

instance MonadTrans Decepticon where
lift _ = Decepticon ()

This definition of MonadTrans for our Decepticon satisfies the compiler, but it’s
clearly not what we intended. For type classes like Applicative and Monad we use
constraints to avoid this problem. Any type with a Monad instance must have
an Applicative instance as well, and any type with an Applicative instance needs
to also have a Functor instance. Unfortunately, with MonadTrans it’s not quite as
easy to add a constraint. Let’s try it and see what happens:

class Monad t => MonadTrans t where
lift :: Monad m => m a -> t m a

If we try to load this into ghci we’ll get a somewhat confusing error:

MonadTrans.hs:4:29: error:
• Expected kind ‘* -> *’, but ‘t’ has kind ‘*’
• In the type signature: lift :: Monad m => m a -> t m a
In the class declaration for ‘MonadTrans’

|
4 | lift :: Monad m => m a -> t m a

| ^^^^^

MonadTrans.hs:4:31: error:
• Expecting one more argument to ‘m’
Expected a type, but ‘m’ has kind ‘* -> *’

• In the first argument of ‘t’, namely ‘m’
In the type signature: lift :: Monad m => m a -> t m a
In the class declaration for ‘MonadTrans’

|
4 | lift :: Monad m => m a -> t m a

| ^
Failed, no modules loaded.
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The compiler seems to be getting confused about the kind of t and m. Let’s add
an explicit kind annotation to help the compiler, and hopefully get a better
error message. A monad transformer has two type parameters: the monadic
type that is embedded into the transformer, which should have the kind
Type -> Type, and the type of value the monad transformer will compute, which
should have kind Type. That means the kind of a monad transformer should
be (Type -> Type) -> Type -> Type:

module MonadTrans where
import Data.Kind

class Monad t => MonadTrans (t :: (Type -> Type) -> Type -> Type) where
lift :: Monad m => m a -> t m a

Now the error we get is a bit more useful:

[1 of 1] Compiling MonadTrans ( MonadTrans.hs, interpreted )

MonadTrans.hs:5:13: error:
• Expecting one more argument to ‘t’
Expected kind ‘* -> *’, but ‘t’ has kind ‘(* -> *) -> * -> *’

• In the first argument of ‘Monad’, namely ‘t’
In the class declaration for ‘MonadTrans’

|
5 | class Monad t => MonadTrans (t :: (Type -> Type) -> Type -> Type) where

| ^
Failed, no modules loaded.

This error gets to the root of our problem: a monad transformer by itself
doesn’t actually have a Monad instance. We only get a Monad instance after we
apply some particular inner computation to our transformer. In other words,
m should be a Monad, and (t m) should also be a Monad, but there’s no direct
constraint on t by itself. We can reason about this using what we know about
Monad, but the kind signatures help us too. Anything with a Monad instance
needs to have the kind (Type -> Type). That excludes t by itself, but we can see
that the kind of m neatly slots into the first argument to t, giving us back a
type with the kind (Type -> Type). In pseudocode, you can imagine it like this:

-- t can't be a Monad because it doesn't have the kind (Type -> Type)
t :: (Type -> Type) -> Type -> Type

-- m has the right kind, so it can be a monad
m :: Type -> Type

-- In (t m), m "fills in" the (Type -> Type) argument
t m = ((Type -> Type) -> Type -> Type) (Type -> Type)

= Type -> Type -- The new type also has the right kind to be a Monad

Since m isn’t a parameter to our type class, we can’t ordinarily reference it in
a constraint. Thankfully, GHC offers a language extension that we can use
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for exactly this kind of scenario: QuantifiedConstraints. This extension uses uni-
versal quantification with the forall keyword inside of our type class constraints.
Let’s add this extension and rewrite our type class one more time:

{-# LANGUAGE QuantifiedConstraints #-}
module MonadTrans where

class (forall m. Monad m => Monad (t m)) => MonadTrans t where
lift :: Monad m => m a -> t m a

QuantifiedConstraints

The QuantifiedConstraints extension has been available since GHC
8.6.1. This extension isn’t enabled by default in either GHC2021 or
Haskell2010 so you’ll need to enable it manually. This is a generally
safe extension that shouldn’t cause problems with any existing code.

Using QuantifiedConstraints, we can introduce a new type variable into the con-
straint, and use that to give the compiler some additional information that
will allow it to prohibit some otherwise bad instances. For example, if we
revisit our Decepticon example now, we’ll see that we get a type error since we
can’t define a valid Monad instance for Decepticon m:

MonadTrans.hs:9:10: error:
• Could not deduce (Monad (Decepticon m))

arising from the superclasses of an instance declaration
from the context: Monad m

bound by a quantified context at MonadTrans.hs:1:1
• In the instance declaration for ‘MonadTrans Decepticon’

|
9 | instance MonadTrans Decepticon where

| ^^^^^^^^^^^^^^^^^^^^^
Failed, no modules loaded.

At the same time, our doSomethingTwice function works exactly as we would
have expected, because we’ve not told the compiler that any time we have a
type t m where t is a MonadTransformer and m is a Monad, then t m must also be a
Monad. Since t m must be a Monad then we are free to use do notation or any of
the other capabilities we get from working with monads.

Transforming Monads with Class
Now that we’ve generalized the ability to lift one computation into another
with lift, and we’ve added MonadTrans instances to ExceptT and StateT, we can
address another one of the ergonomic problems that we’ve been dealing with
as we’re using monad transformers: the need to explicitly lift functions written
for one of our inner computations. Let’s take another look at parseChar from
our Archiver example:
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parseChar :: Archiver Char
parseChar = do

parseText <- Archiver get
case Text.uncons parseText of

Nothing ->
Archiver . liftStateT . throwError $ "end of input"

Just (c, rest) -> do
Archiver (put rest)
pure c

In theory, our Archiver is supposed to represent a computation that can:

1. Have mutable state
2. Raise an exception
3. Perform IO

As soon as we use it though, we can see that it’s not allowing us to do any of
those effects directly. If we want to use mutable state, we need to use get or
put, but those return a StateT that we need to pass to our Archiver constructor.
Worse, when we want to throw an error we need to lift the ExceptT action into
the StateT with liftStateT and then pass that to the Archiver constructor. If we want
to do IO, the situation starts to get absurd. To write an Archiver action that
reads a file from disk, we need to lift our IO action three separate times: once
into ExceptT, again into StateT, and finally into Archiver. Thanks to MonadTrans we
can make this code a little bit better by using lift rather than having to
remember a different function to lift into each different transformer, but the
result is still unsatisfying:

import MonadTrans

readArchiveContents :: FilePath -> Archiver ByteString
readArchiveContents =

Archiver . lift . lift . ByteString.readFile

The problem that we have here is that the basic operations we’ve defined for
our side effects, like get and put or throwError, are each defined for a particular
type of computation. We define get specifically for StateT, and we define throwError
specifically for ExceptT. This is all well and good as long as these functions are
the basic operations we need for just those particular types, but using monad
transformers means that we can define many different types that all use those
same basic operations. Now get isn’t just a basic operation for StateT, but it’s
also a basic operation for any other monad transformer that has embedded
StateT.

One way that we can address this is to write some basic operations for each
type that we define. For example, we could write variations of get, put, throwError,
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and readFile for Archiver and use them instead of having to lift the operations
every time we need them:

archiveGet :: Archiver Text
archiveGet = Archiver get

archivePut :: Text -> Archiver ()
archivePut = Archiver . put

archiveError :: Text -> Archiver a
archiveError text = Archiver $ liftStateT (throwError text)

archiveReadFile :: FilePath -> Archiver ByteString
archiveReadFile = Archiver . lift . lift . ByteString.readFile

This is a completely viable approach, and it’s sometimes the way we want to
approach building our applications. It gives us precise control over the actions
that can happen inside of our computation, and gives us some flexibility to
refactor the implementation details of our side effects later with minimal
impact to the rest of our application. This approach also has some down
sides. Most notably, it means that each time we want to use some other StateT
or ExceptT action we’ll need to either lift it, or add a new wrapper.

Another option that we have is to decouple the particular monad transformers
from their operations using type classes. Let’s look at an example of how we
can do this with StateT by creating a new module called MonadState. We’ll begin
by importing a few modules:

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleInstances #-}

module MonadState (
MonadState (..),
module X,

) where

import ExceptT
import MonadTrans
import StateT as X hiding (get, put)
import qualified StateT as State

Next, let’s try to define a new type class called MonadState. We need to represent
any monadic computation of type m that has a mutable state of any type s:

class Monad m => MonadState s m where
get :: m s
put :: s -> m ()

We can easily create an instance of MonadState for StateT by re-using the get and
put instances that we defined in the StateT module:
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instance Monad m => MonadState s (State.StateT s m) where
put = State.put
get = State.get

We can also save our users from needing to manually lift calls to get and put
when a StateT is nested inside of some of our other monad transformers. For
example, we can preemptively add an instance of MonadState for ExceptT as long
as the monad embedded into it has a MonadState instance:

instance MonadState s m => MonadState s (ExceptT e m) where
put = lift . put
get = lift get

Now, if we want to create a transformer stack where we are embedding a StateT
inside of an ExceptT, we can call get or put directly without needing to use lift or
succeed. Let’s compare two small examples to see this in action. Imagine we
wanted to write a simple guessing game. Each round, the user will guess the
current state. The game will set the next state to whatever their guess was,
and then it will return True if they guessed the state. Without MonadState we
could write that with manual calls to lift, but we’re leaking the implementation
detail that GuessingGame is using a monad transformer, and forcing our user
to deal with that rather than working with the state we’re handling directly.

module MonadStateDemo where
import StateT
import ExceptT
import MonadTrans

type GuessingGame a = ExceptT String (StateT String IO) a

evalGame ::
String -> GuessingGame a -> IO (Either String a)

evalGame input =
flip StateT.evalStateT input . runExceptT

guessTheState :: String -> GuessingGame Bool
guessTheState guess = do

answer <- lift get
lift $ put guess
pure $ guess == answer

If we use MonadState instead, we can preserve the same application logic, but
now we don’t need to lift our function state operations. This makes the API
much nicer:

module MonadStateDemo where
import MonadState
import ExceptT

type GuessingGame a = ExceptT String (StateT String IO) a
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guessTheState :: String -> GuessingGame Bool
guessTheState guess = do

answer <- get
put guess
pure $ guess == answer

The benefits of this approach go deeper than just avoiding explicit calls to
lift. Since our basic operations like get and put now depend on the MonadState
type class rather than a particular type, we can refactor our program to make
GuessingGame newtype without having to change guessTheState at all. We can just
ask the compiler to derive an instance of MonadState for us:

{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module MonadStateDemo where
import MonadState
import ExceptT

newtype GuessingGame a =
GuessingGame { runGame :: ExceptT String (StateT String IO) a }
deriving newtype (Functor, Applicative, Monad, MonadState String)

guessTheState :: String -> GuessingGame Bool
guessTheState guess = do

answer <- get
put guess
pure $ guess == answer

This is a pretty substantial refactor given that we had to change nothing about
our implementation at all. As you can imagine, as our programs grow larger,
the overhead of changing the way we represent our types can be large, so this
approach to abstraction can save a lot of refactoring effort.

We still have a bit of a problem though. Before we dive into the details, let’s
make a quick change to our program. Imagine that users are playing our
guessing game, decide it’s too difficult, and ask us to make two changes.
First, the state should stay the same no matter how many times the game is
played. Second, instead of having to guess the exact state, a user should win
if they guess how many characters are in the state. This seems like it should
make our program much simpler, so let’s try to make the changes:

guessTheState :: Int -> GuessingGame Bool
guessTheState guess = do

answer <- length <$> get
pure $ guess == answer

It turns out that this small change results in a pretty big compiler error. If
we try to build this version of the program, we’ll get a couple of errors:
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MonadStateDemo.hs:23:13: error:
• Ambiguous type variable ‘t0’ arising from a use of ‘length’
prevents the constraint ‘(Foldable t0)’ from being solved.
Probable fix: use a type annotation to specify what ‘t0’ should be.
These potential instances exist:

instance Foldable (Either a) -- Defined in ‘Data.Foldable’
instance Foldable Maybe -- Defined in ‘Data.Foldable’
instance Foldable ((,) a) -- Defined in ‘Data.Foldable’
...plus two others
...plus 29 instances involving out-of-scope types
(use -fprint-potential-instances to see them all)

• In the first argument of ‘(<$>)’, namely ‘length’
In a stmt of a 'do' block: answer <- length <$> get
In the expression:

do answer <- length <$> get
pure $ guess == answer

|
23 | answer <- length <$> get

| ^^^^^^

MonadStateDemo.hs:23:24: error:
• Ambiguous type variables ‘t0’, ‘a0’ arising from a use of ‘get’
prevents the constraint ‘(MonadState

(t0 a0) GuessingGame)’ from being solved.
Probable fix: use a type annotation to specify what ‘t0’,

‘a0’ should be.
These potential instance exist:

instance MonadState String GuessingGame
-- Defined at MonadStateDemo.hs:19:50

• In the second argument of ‘(<$>)’, namely ‘get’
In a stmt of a 'do' block: answer <- length <$> get
In the expression:

do answer <- length <$> get
pure $ guess == answer

|
23 | answer <- length <$> get

The compiler is telling us that it can’t figure out what type of value should
be returned by get. Since it doesn’t know what kind of value get is returning,
it also doesn’t know what instance of Foldable should be used for length. If we
can solve the first problem—getting the compiler to understand what type
should be returned by get—then the second problem will solve itself.

The reason that we’re getting this error is that the MonadState type class is
defined with two parameters: the state value, s, and the monad, m. The way
we’ve defined the class, there’s no relationship between them. As the program-
mer, it’s obvious to us that the type of state for StateT String is going to be String,
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but we’re not giving the compiler enough information to figure that out. We
can use a type application to help the compiler out:

{-# LANGUAGE TypeApplications #-}

guessTheState :: Int -> GuessingGame Bool
guessTheState guess = do

answer <- length <$> get @String
pure $ guess == answer

This will get our program compiling again, but now we’re hardly better off
than when we had to call lift each time we wanted to use an operation that
acted on the state. It would be better if we could tell the compiler that when-
ever it sees a type like MonadState String (StateT String) it should be able to derive
the type of the state from the type of the computation. There are two ways
that we can solve this problem. Later on in this book on page 565 you’ll learn
about type families, an extremely flexible tool that will let you solve problems
like this. For now, we’ll focus on the approach favored by the mtl library:
functional dependencies.

A functional dependency is a way for us to tell the compiler that some types
in a multiparameter type class have a direct dependency on some other
types. For example, we can say that the type of the state in a MonadState
instance depends on the type of the monad. To do that, we’ll need to add two
new language extensions: FunctionalDependencies will allow us to create a func-
tional dependency, and UndecidableInstances will allow us to write some type class
instances that are normally prohibited, because they could cause the compil-
er’s type checker to not be able to check the type of the instances.

FunctionalDependencies

The FunctionalDependencies extension has been available since GHC
6.8.1. It isn’t enabled by default in either GHC2021 or Haskell2010 so
you’ll need to enable it manually. This extension implies the Multi-
ParamTypeClasses extension, so you won’t need to enable it explicitly
if you’ve already enabled FunctionalDependencies. Since FunctionalDepen-
dencies substantially changes the behavior of type classes, it’s typ-
ically enabled on a case-by-case basis for modules that need the
feature, rather than being enabled project wide. You only need to
enable the extension in the module where you define the a type
class with functional dependencies. It’s not needed when you only
want to create a new instance.
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UndecidableInstances

The UndecidableInstances extension has been available since GHC
6.8.1. This extension isn’t enabled by default in either GHC2021 or
Haskell2010 so you’ll need to enable it manually. Although this
extension is safe in the sense that it should not cause any previ-
ously existing code to stop working, it’s generally not a good idea
to enable this extension for an entire project. Instead, you should
enable this extension on a case-by-case basis when it’s needed in
a particular module. The UndecidableInstances extension lifts restric-
tions that ensure the type checker can actually complete type
checking type class instances. These checks are helpful more often
than not, and prevent you from writing code that might cause the
compiler to hang during type checking. You should only enable
the extension when you actually need to relax these checks.

With our new language extension added, we can update our type class to add
the functional dependency:

{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}

class Monad m => MonadState s m | m -> s where
get :: m s
put :: s -> m ()

The part of the instance declaration after the vertical pipe (|) is our functional
dependency. When we say | m -> s we’re creating a functional dependency that
tells the compiler that the type of m should uniquely determine the type of s.

With this change in place, our simple definition of guessTheState will work
without any need for a type application or annotation. Since the type of the
state depends on the type of the monad, the compiler is able to figure out
that it must be a String.

{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module EffectiveHaskell.Chapter13.MonadStateDemo.V3 where

import EffectiveHaskell.Chapter13.MonadState
import EffectiveHaskell.Chapter13.ExceptT

newtype GuessingGame a =
GuessingGame { runGame :: ExceptT String (StateT String IO) a }
deriving newtype (Functor, Applicative, Monad, MonadState String)

evalGame :: String -> GuessingGame a -> IO (Either String a)
evalGame input = flip evalStateT input . runExceptT . runGame
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guessTheState :: Int -> GuessingGame Bool
guessTheState guess = do

answer <- length <$> get
pure $ guess == answer

Before we move on, let’s celebrate our effort and refactoring with a quick look
at some of our new code running live in ghci:

λ> evalGame "four" $ guessTheState 4
Right True
λ> evalGame "four" $ guessTheState 3
Right False

MonadError
The same ideas that we used to build MonadState can be applied to any other
problem where we might have several different types that implement a partic-
ular effect. Another example of this is failure. You’ve already seen examples
of using MonadFail to handle some failures when building your parser. Although
it’s handy in some cases, MonadFail is intended to be used to handle failing
pattern matches. It’s not intended for more sophisticated error handling.

You’ve already seen how ExceptT gives us more control over how we define and
handle errors. We can take these same capabilities and define them in a type
class so that we have a general purpose way of talking about types that sup-
port exceptions and robust error handling. This type class is named MonadError
in the mtl. We can implement MonadError using the same patterns we used for
MonadState:

{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE FlexibleInstances #-}

module MonadError (
MonadError (..),
module X,

) where

import ExceptT as X hiding (catchError, throwError)
import qualified ExceptT as Except
import MonadTrans
import ReaderT
import StateT

class Monad m => MonadError e m | m -> e where
throwError :: e -> m a
catchError :: m a -> (e -> m a) -> m a

instance Monad m => MonadError e (Except.ExceptT e m) where
throwError = Except.throwError
catchError = flip Except.catchError
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instance MonadError e m => MonadError e (StateT s m) where
throwError = lift . throwError
catchError action handler =

StateT $ \s ->
let innerAction = runStateT action s

liftedHandler e = runStateT (handler e) s
in catchError innerAction liftedHandler

Tagless Final Encoding
Now that we have a general way to use functions like get and put, and the compiler
is better able to keep track of the type of the state based on the monad it’s
associated with, we have one more opportunity to add an additional level of
flexibility. Instead of picking any particular monad that our code should run
in, we can instead use constraints to tell the compiler what capabilities our
code needs. For example, our guessing game doesn’t need to raise any exceptions,
nor does it need to do any IO. We can run the guessing game inside of any
computation, so long as it has mutable state, and that state has a Foldable
instance we can use to get the length of the state. Let’s try rewriting our
original guesser to be more generic using these constraints:

genericGuesser :: (Foldable t, MonadState (t a) m) => Int -> m Bool
genericGuesser guess = do

answer <- length <$> get
pure $ guess == answer

Using constraints like this gives us even more flexibility, because now we’re
not only able to refactor the type of computation that our code runs in, we
can also use the same code with different types of computation. Let’s create
a second guessing game type that will hold a list of numbers instead of a
String:

newtype GuessingGame2 a =
GuessingGame2 { runGame2 :: ExceptT String (StateT [Int] IO) a }
deriving newtype (Functor, Applicative, Monad, MonadState [Int])

We can only use our original guessTheState function with our original GuessingGame
type, but genericGuesser can be used with either of these types of computation,
or even types that we haven’t thought of yet.

This constraint-first approach to representing applications with type classes
is called tagless final encoding. In the particular case where we’re using tagless
final encoding with monad transformers, it’s often referred to as mtl style.
That’s because mtl is the name of the popular library that provides type
classes like MonadState that work with the concrete monad transformers defined
in the transformers library. When a specific term is needed to differentiate it
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from MTL style, you’ll sometimes hear the approach to writing monad trans-
former code explicitly using lift and the transformers themselves called direct
style.

Writing programs using MTL style has a mixture of advantages and disadvan-
tages, so it’s useful to think about the requirements of your particular appli-
cation. MTL style offers clear advantages for flexibility. You can refactor your
application more easily, and you can more easily re-use code that was written
in MTL style in ways that the author might not have foreseen. MTL style is
also a useful way to handle dependency injection in Haskell applications.
Using MTL style makes it easier to write tests that select a particular compu-
tation that was designed for testing. The same flexibility that makes MTL style
useful can also be a burden at times. The biggest disadvantage is that using
MTL style means that you can’t make assumptions about the side effects that
might be executed by your code. Using a direct style that forces a particular
computation that you have written means that you have more control over
the behavior of your program. Direct style also lends itself to more clear and
concise error messages, and in larger applications it can reduce the time it
takes to compile your programs.

MonadIO
Before we revisit our Archiver tool, let’s look at one last type class that is fre-
quently used with tagless final style programs in general, and with monad
transformers in particular: MonadIO. This class is defined for us in base at Con-
trol.Monad.IO.Class, but it’s simple enough that we can recreate the entire class
in just a few lines of code:

module MonadIO where

class Monad m => MonadIO m where
liftIO :: IO a -> m a

instance MonadIO IO where
liftIO = id

Writing instances for MonadIO for monad transformers tends to be straightfor-
ward. Let’s look at the instances for StateT and ExceptT:

import EffectiveHaskell.Chapter13.MonadIO
instance MonadIO m => MonadIO (StateT s m) where

liftIO = lift . liftIO

import EffectiveHaskell.Chapter13.MonadIO
instance MonadIO m => MonadIO (ExceptT s m) where

liftIO = lift . liftIO
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As you can see, MonadIO isn’t doing much more than calling lift. The value of
MonadIO is not in having sophisticated implementations of liftIO, but in the
ability to use tagless final style functions to create IO actions that are poly-
morphic and work with IO actions or with any monad transformer that,
directory or indirectly, embeds IO. For example, imagine that we wanted to
write a function that added some basic logging that would tell us when a
function was called. Writing to the screen requires that we be able to do IO,
but with MonadIO we can make our function work for any type that embeds IO:

runWithLog :: MonadIO m => (a -> m b) -> a -> m b
runWithLog action val = do

liftIO $ putStrLn "Running the function..."
result <- action val
liftIO $ putStrLn "Finished running the function"
pure result

If we load this function into ghci we can see that it’s usable with any monad
transformer stack that embeds IO:

λ s = const (pure "hello state") :: a -> StateT String IO String
λ evalStateT (runWithLog s 100) ""
Running the function...
Finished running the function
"hello state"

λ e = const (pure "hello except") :: a -> ExceptT String IO String
λ runExceptT $ runWithLog e 100
Running the function...
Finished running the function
Right "hello except"

λ i = const (pure "hello IO") :: a -> IO String
λ runWithLog i 100
Running the function...
Finished running the function
"hello IO"

λ n = const (pure "hello nested") ::
a -> StateT String (ExceptT String (StateT String IO)) String

λ> evalStateT (runExceptT (evalStateT (runWithLog n 100) "")) ""
Running the function...
Finished running the function
Right "hello nested"

Deriving a Better Archiver
Now that we’ve added the extra type classes to make it easier to work with
monad transformer stacks, let’s revisit our Archiver application again, and
update it to work with the new type classes that we’ve just added. The first
change that we’ll make is to the definition of Archiver itself. The way that we’re
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representing the stack of monad transformers doesn’t need to change, but
we can now realize one of the biggest benefits of moving toward our type class-
based approach to working with transformers: deriving instances of all of the
relevant type classes automatically. Since we’re using a newtype wrapper to
define Archiver, we can benefit from the work we’ve done to get all of the
instances we need for free. Now that we’ve done the work, let’s take a look at
the final monad transformer-based archiver tool. You’ll notice as you review
this example that we’re able to mix basic operations like get and put with
exceptions and IO actions all inside of a single Archiver computation:

{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE OverloadedStrings #-}

module ClassyArchiver where

import Control.Applicative
import Control.Monad (void, when)
import Data.ByteString (ByteString)
import qualified Data.ByteString as ByteString
import Data.Char (isSeparator)
import Data.Text (Text)
import qualified Data.Text as Text
import qualified Data.Text.Encoding as Enc
import MonadError
import MonadIO
import MonadState

data Archive = Archive
{ archiveName :: Text
, archivedFiles :: [ArchivedFile]
}
deriving stock (Show)

data ArchivedFile = ArchivedFile
{ archivedFileName :: Text
, archivedFileContents :: ByteString
}
deriving stock (Show)

newtype Archiver a = Archiver
{unArchiver :: StateT Text (ExceptT Text IO) a}
deriving newtype

( Functor
, Applicative
, Monad
, Alternative
, MonadState Text
, MonadError Text
, MonadIO
)
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runArchiver :: Text -> Archiver a -> IO (Either Text a)
runArchiver inputText archiver =

runExceptT $ evalStateT (unArchiver archiver) inputText

parseChar :: Archiver Char
parseChar = do

parseText <- get
case Text.uncons parseText of

Nothing ->
throwError "end of input"

Just (c, rest) -> do
put rest
pure c

dropSpaces :: Archiver ()
dropSpaces = void $ many (expectChar ' ')

isNewline :: Char -> Bool
isNewline = (== '\n')

expect :: Eq a => Archiver a -> a -> Archiver ()
expect getActual expected = do

actual <- getActual
when (expected /= actual) $ do

throwError "expectation violated"

expectChar :: Char -> Archiver ()
expectChar = expect parseChar

expectText :: Text -> Archiver ()
expectText expected = do

stripped <- Text.stripPrefix expected <$> get
case stripped of

Nothing -> throwError "missing expected string"
Just rest -> put rest

takeUntil :: (Char -> Bool) -> Archiver Text
takeUntil predicate = do

(result, rest) <- Text.break predicate <$> get
put rest
pure result

word :: Archiver Text
word = do

nextWord <- takeUntil (\s -> isSeparator s || isNewline s)
void . optional $ expectChar '\n' <|> dropSpaces
when (Text.null nextWord) $

throwError "end of input"
pure nextWord

quotedString :: Archiver Text
quotedString = do

expectChar '"'
quotedText <- takeUntil (== '"')
expectChar '"'
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pure quotedText

restOfLine :: Archiver Text
restOfLine = remainderOfLine <|> remainderOfText

where
remainderOfLine = do
txt <- takeUntil isNewline
expectChar '\n'
pure txt

remainderOfText = get

dropEmptyLines :: Archiver ()
dropEmptyLines =

void $ many $ dropSpaces >> expectChar '\n'

parseIndentedLine :: Int -> Archiver Text
parseIndentedLine indentLevel = do

expectText $ Text.replicate indentLevel " "
restOfLine

runSubparser :: Archiver a -> Text -> Archiver a
runSubparser action subparserState = do

oldText <- get
put subparserState
result <- action
put oldText
pure result

parseBlock :: Archiver a -> Archiver a
parseBlock blockParser =

dropEmptyLines >> getBlock >>= runSubparser blockParser
where

getBlock = do
firstLineSpacing <- takeUntil (not . isSeparator)
let indentation = Text.length firstLineSpacing
firstLine <- restOfLine
restOfBlock <- many (dropEmptyLines >> parseIndentedLine indentation)
pure $ Text.unlines (firstLine : restOfBlock)

parseImportStatement :: Archiver ArchivedFile
parseImportStatement = do

expectText "import"
dropSpaces
path <- quotedString
dropSpaces
expectChar '\n'
contents <- liftIO $ ByteString.readFile (Text.unpack path)
pure $ ArchivedFile path contents

parseNewFileStatement :: Archiver ArchivedFile
parseNewFileStatement = do

expectText "new-file"
dropSpaces
path <- quotedString
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dropSpaces
expectText ":\n"
body <- Enc.encodeUtf8 <$> parseBlock get
pure $ ArchivedFile path body

parseArchiveStatements :: Archiver [ArchivedFile]
parseArchiveStatements =

many $ dropEmptyLines >> (parseImportStatement <|> parseNewFileStatement)

parseArchive :: Archiver Archive
parseArchive = do

expectText "archive"
dropSpaces
archiveName <- quotedString
expectText ":\n"
files <- parseBlock parseArchiveStatements
pure $ Archive archiveName files

Summary
Monad transformers are one of the most important concepts to understand
as you start to work with real-world Haskell applications. Not every production
application uses monad transformers, but they offer a well-understood solution
to solve the common problem of composing different side effects, and there
is a rich ecosystem of Haskell libraries that make use of monad transformers.
Now that you’ve worked through implementing a few of your own transformers,
and gotten to see how to use both direct style and MTL style encodings, you
will be prepared to work with many different Haskell applications.

Exercises

Building Out the Monad Transformer Library
In this chapter, we focused on two specific monad transformers: StateT and
ExceptT. The transformers library provides several other commonly used monad
transformers. One of the most common monad transformers is the ReaderT
transformer. This monad transformer lets you write computations that have
a read-only environment:

newtype ReaderT r m a = ReaderT {runReaderT :: r -> m a}

The two basic operations for a ReaderT monad are ask, which fetches the value
from the read-only environment, and local, which lets you run a ReaderT action
with a modified local read-only environment. Their types are:

ask :: Monad m => ReaderT r m r
local :: Monad m => (r -> r) -> ReaderT r m a -> ReaderT r m a
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In this exercise, write Functor, Applicative, Monad, MonadIO, and MonadTrans instances
for ReaderT, and provide a definition for both ask and local. Once you have cre-
ated a working definition of ReaderT, add a new class called MonadReader:

class Monad m => MonadReader r m | m -> r where
ask :: m r
local :: (r -> r) -> m a -> m a

Next, finish writing the following instances:

instance Monad m => MonadReader r (Reader.ReaderT r m) where
instance MonadReader r m => MonadReader r (ExceptT e m) where
instance MonadReader r m => MonadReader r (StateT s m) where

A New FilePackParser
Refactor the FilePackParser application that you wrote earlier in this book to use
the following monad:

newtype FilePackParser a = FilePackParser
{ runFilePackParser :: StateT Text (ExceptT Text IO) a }
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CHAPTER 14

Building Efficient Programs
So far in this book, we’ve spent most of our time focused on designing pro-
grams at a high level, and making use of the features Haskell gives us to build
useful abstractions. In most cases, we’ve been relying on the compiler to
generate code that’s “fast enough” while we focus on designing an application
that’s easy to write and maintain. Unfortunately, compilers aren’t perfect,
and we often have opportunities to change our implementation to get better
performance from our programs. You’ve already seen a few small examples
of writing code to be more mindful of performance requirements, like when
you learned about space leaks and bang patterns on page 386.

In this chapter, you’ll build a text processing library that can be used to
implement spellchecking on large text documents. As we work through
building this library, we’ll run across several examples of patterns we can
use for improving the performance of Haskell programs. By the end of the
chapter, you’ll have learned how to write programs with performance in mind,
profile applications to find bottlenecks, and be able to strategically deploy
some micro-optimizations to improve the performance of the most critical
parts of your applications. The exercises at the end of this chapter will give
you an opportunity to take the library you’ve built and integrate it into the
HCat application you built in chapter 8 on page 283.

Building a Naive Spellchecker
Spellchecking is an easy feature to take for granted. Spellchecking has been
available for personal computers since the 1980s, and most software we use
to write text today has spellchecking available. Surprisingly, spellchecking
continues to be both a relevant problem domain, and one that can present
some interesting challenges when we need to write efficient code. In the first
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part of this chapter, we’ll build a general purpose spellchecking library that
can be used with any dictionary.

Let’s start by creating a new cabal project. You’ll want to add a few dependen-
cies to your project so you can follow along with this chapter:

• base
• containers
• text
• vector

We’ll start our project by building a performance naive spellchecking imple-
mentation, so let’s make a module named SpellCheck.Naive and add a couple of
imports:

module SpellCheck.Naive where
import Data.Text (Text)
import qualified Data.Text as T

To implement a spellchecker, we need to write two functions. First, we need
a way to check to see how similar a misspelled word is to a correctly spelled
word. This will help us identify the potential corrections we will suggest to
the user when they have a typo. Second, we’ll need to check the words in the
document we want to spellcheck against a dictionary of correctly spelled
words, so that we can find words that need correction.

We can find out how similar two words are to one another using an edit dis-
tance metric. There are a few well-known examples of these that you can find
online. The one we’ll use is called Levenshtein distance. It will tell us how
many changes we’d need to make to turn one string into another string when
we’re allowed to

• Add a letter to the string,
• Delete a letter from the string, or
• Replace a letter in the string with a different one.

Before we move onto the implementation, let’s look at a couple of examples
to get a better idea of what’s happening. First, we’ll try looking at the edit
distance between identical strings:

λ editDistance "hello" "hello"
0

Since there are no changes to be made, the edit distance is 0. If we add some
letters to either string, we’ll see that the edit distance increases with the
number of letters that we’ve added:

Chapter 14. Building Efficient Programs • 514

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


λ editDistance "hello" "helloo"
1
λ editDistance "hello12345" "hello"
5

In these examples, we can see that for each extra letter, the edit distance
increases by one. It doesn’t matter whether we add letters to the first string
or the second string, since inserting a character and deleting a character both
have the cost of a single edit. Next, let’s replace some letters with different
letters:

λ editDistance "aaa" "aab"
1
λ editDistance "aaa" "abb"
2

Here, you can see that replacing the wrong letter with a correct letter costs
a single edit. In the examples, each time we need to replace an “a” with a “b”
it adds a single edit to the edit distance.

Finally, our algorithm should always return the smallest number of edits
necessary to make the strings match up:

λ editDistance "bababa" "ababab"
2

At first you might be surprised that the edit distance is 2. If we swapped out
every “b” for an “a”, and every “a” for a “b” we’d have a total edit distance of
6. We can accomplish the same thing in two edits by deleting the initial “b”,
which costs one edit and gives us “ababa”, and then adding a “b” back to the
end of the string, which costs us one more edit and gets our strings matching.

Surprisingly, there’s a pretty straightforward algorithm to find the edit distance
between two strings. Let’s start by looking at the implementation, and then
step through how it works:

editDistance :: Text -> Text -> Int
editDistance stringA stringB

| T.null stringA = T.length stringB
| T.null stringB = T.length stringA
| T.head stringA == T.head stringB = editDistance restOfA restOfB
| otherwise = 1 + minimum [insertCost, deleteCost, swapCost]
where

restOfA = T.tail stringA
restOfB = T.tail stringB
deleteCost = editDistance restOfA stringB
insertCost = editDistance stringA restOfB
swapCost = editDistance restOfA restOfB
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Our implementation is made up of three basic rules:

First, if either string is empty, then the edit distance is equal to the length of
the other string. We’re implementing this rule with the first two guard clauses
in our function:

editDistance :: Text -> Text -> Int
editDistance stringA stringB

| T.null stringA = T.length stringB
| T.null stringB = T.length stringA
-- ...

This rule is the base case of our recursive function, and it’s how we deal with
situations where one string is longer than another. The rule works because,
if the first string is empty, we need to add all of the letters from the second
string. On the other hand, if the second string is empty, we need to remove
all of the letters from the first string. In either case, that’s one edit per letter
in the non-empty string.

Second, if the first letter of two strings are the same, then the edit distance
is the distance between the remainder of the two strings:

editDistance :: Text -> Text -> Int
editDistance stringA stringB

-- ...
| T.head stringA == T.head stringB = editDistance restOfA restOfB
-- ...
where

restOfA = T.tail stringA
restOfB = T.tail stringB

In our implementation, we’re taking the tail of the two strings and calculating
the distance between them recursively. This lets us step through the string
and, as long as our values match, we never add any unnecessary edits.

The final rule says that if the first letters of our strings don’t match, we need
to add one to the overall edit distance between the strings. Unlike our previous
examples though, the recursive case isn’t quite so straightforward. Since we
want to always return the minimum number of edits, we need to use the least
expensive of our three options: inserting, deleting, or replacing a character.

editDistance :: Text -> Text -> Int
editDistance stringA stringB

-- ...
| otherwise = 1 + minimum [insertCost, deleteCost, swapCost]
where

restOfA = T.tail stringA
restOfB = T.tail stringB
deleteCost = editDistance restOfA stringB
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insertCost = editDistance stringA restOfB
swapCost = editDistance restOfA restOfB

We can figure out the costs of each approach by calculating the edit distance
recursively. To find out the edit distance if we delete a character, we can drop
the current character and recalculate the distance. Similarly, we can find the
cost of inserting a character by removing a character from the target string,
or the cost of replacing a character by dropping a character from both strings.

To help understand what’s going on, let’s step through a small example:

editDistance "aaa" "abab"
| T.head "aaa" == T.head "abab" =

editDistance "aa" "bab"
| otherwise = 1 + minimum [deleteCost, insertCost, swapCost]

= 1 + minimum [2, 1, 1]
= 1 + 1
= 2

where
deleteCost = editDistance "a" "bab"

| otherwise = 1 + minimum [deleteCost, insertCost, swapCost]
= 1 + minimum [3,1,2]
= 1 + 1
= 2

where
deleteCost = editDistance "" "bab"

| T.null "" = T.length "bab" = 3
insertCost = editDistance "a" "ab"

| T.head "a" == T.head "ab" =
editDistance "a" "b"
| otherwise = 1 + minimum [deleteCost, insertCost, swapCost]

= 1 + minimum [1, 1, 0]
= 1 + 0
= 1

where
deleteCost = editDistance "" "b"

| T.null "" = T.length "b" = 1
insertCost = editDistance "a" ""

| T.null "" = T.length "a" = 1
swapCost = editDistance "" ""

| T.null "" = T.length "" = 0
swapCost = editDistance "" "ab"

| T.null "" = T.length "ab" = 2
insertCost = editDistance "aa" "ab"

| T.head "aa" == T.head "ab" = editDistance "a" "b"
| otherwise = 1 + minimum [deleteCost, insertCost, swapCost]

= 1 + minimum [1, 1, 0]
= 1 + 0
= 1
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where
deleteCost = editDistance "" "b"
| T.null "" = T.length "b" = 1

insertCost = editDistance "a" ""
| T.null "" = T.length "a" = 1

swapCost = editDistance "" ""
| T.null "" = T.length "" = 0

swapCost = editDistance "a" "ab"
| T.head "a" == T.head "ab" = editDistance "" "b"
| T.null "" = T.length "b" = 1

The first thing we do in this example is strip off the leading “a” from both
strings. Since they match, we know the distance between “aaa” and “abab”
is going to be the same as the difference between “aa” and “bab”. Next, we
have a mismatch between “a” and “b” so we need to decide whether the
cheapest way forward is to

• Delete “a” and add the distance from “a” to “bab”,
• Insert the missing “b” and add the distance from “aa” to “ab”, or
• Replace the “a” with “b” and add the distance from “a” to “ab”.

In the first branch, we try deleting the first “a”, but that puts us back into
the same situation we just found ourselves in, with the remaining “a” not
matching the initial “b” from “bab”. Once again we need to choose the smallest
number of edits out of our three choices:

• Delete the “a” and compare the empty string (“”) to “bab”.
• Insert the missing “b“ and compare “a” to “ab”.
• Replace the “a” with a “b” and compare the empty strings that are left.

This time, two of our branches, deletion and replacement, have empty strings
and so they each end their recursion and give us back a value. We’ll need to
take another trip through the code for this branch to find the difference
between “a” and “ab”.

The recursion continues on for a while even with these relatively short strings.
Before we move on with building our spellchecker, you should spend some
more time with the example, and even walk through a few of your own
examples. It will be helpful to have a good understanding of the mechanics
of how the code works when we start to optimize it later in the chapter.

Spellchecking a Document
Now that we have a way to find the distance between two words, we can move
on to spellchecking. The first thing we need to do is to decide on how we want
to report a particular spelling suggestion back to the user. Let’s head over to

Chapter 14. Building Efficient Programs • 518

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


the Types module in our library and create a new SuggestedMatch record to hold
a suggestion. While we’re at it, let’s add a utility function called showSuggested-
Match that will format the suggestions nicely:

{-# LANGUAGE RecordWildCards #-}
module Types where
import SpellCheck.Naive
import Data.Text (Text)
import Text.Printf

data SuggestedMatch = SuggestedMatch
{ matchWord :: Text
, matchSearchedWord :: Text
, matchDistance :: Int
} deriving (Show, Eq)

showSuggestedMatch :: SuggestedMatch -> String
showSuggestedMatch SuggestedMatch{..} =

printf "%s -> %s: %d" matchWord matchSearchedWord matchDistance

Next, let’s head over to our top level SpellCheck and write a function that will
spellcheck single words against a dictionary of words. We can start with a
straightforward implementation:

module SpellCheck where
import SpellCheck.Types
import SpellCheck.Naive
import Data.Text (Text)

spellcheckWord :: [Text] -> Text -> [SuggestedMatch]
spellcheckWord dictionary word =

[ SuggestedMatch dictWord word (editDistance dictWord word)
| dictWord <- dictionary
]

Running this version of our spellchecker in ghci will show us that we are in
fact getting some recommendations for misspelled words:

λ dictionary = ["yellow", "mellow", "hello", "goodbye"]
λ printMatches = putStrLn . showSuggestedMatch
λ checkWord word = mapM_ printMatches $ spellcheckWord dictionary word

λ checkWord "yello"
yellow -> yello: 1
mellow -> yello: 2
hello -> yello: 1
goodbye -> yello: 7

λ checkWord "mello"
yellow -> mello: 2
mellow -> mello: 1
hello -> mello: 1
goodbye -> mello: 7
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λ checkWord "hello"
yellow -> hello: 2
mellow -> hello: 2
hello -> hello: 0
goodbye -> hello: 7

There are a couple of problems that we have right now. First, we’re showing
suggestions for words that are many edits away. If someone typed “mello” it’s
not very likely the word that they wanted was “goodbye”. We can fix this by
adding a threshold so we can only show users words that are a close match.
Second, we’re showing results for words that are correctly spelled. For our
purposes, we only want to show suggestions for misspelled words, so if a
word has an exact match in the dictionary we should avoid returning any
suggestions for it.

Let’s refactor our spellchecker to take an extra parameter to configure how
many edits are allowed for suggestions. While we’re at it, we’ll avoid returning
any suggestions for correctly spelled words:

spellcheckWord :: [Text] -> Int -> Text -> [SuggestedMatch]
spellcheckWord dictionary threshold word =

getSuggestions dictionary []
where

getSuggestions [] suggestions = suggestions
getSuggestions (dictWord:dict) suggestions
| distance == 0 = []
| distance > threshold = getSuggestions dict suggestions
| otherwise = getSuggestions dict (suggestion : suggestions)
where

distance = editDistance dictWord word
suggestion = SuggestedMatch dictWord word distance

Let’s re-run this version of spellcheckWord with our same dictionary and test
examples. We’ll use a threshold of 3. Most spellcheckers use a threshold of
either 2 or 3. For all of the examples in this chapter, we’re going to use a
threshold of 3. This will give us more results for each search, which in turn
will give us more opportunities to identify and address performance problems
in our code.

λ dictionary = ["yellow", "mellow", "hello", "goodbye"]
λ printMatches = putStrLn . showSuggestedMatch
λ checkWord word = mapM_ printMatches $ spellcheckWord dictionary 3 word

λ checkWord "yello"
hello -> yello: 1
mellow -> yello: 2
yellow -> yello: 1
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λ checkWord "mello"
hello -> mello: 1
mellow -> mello: 1
yellow -> mello: 2
λ checkWord "hello"

That looks much better! We’re only getting reasonable suggestions for our
misspellings, and none at all for words that were spelled correctly.

The last feature we need to add to our SpellCheck.Naive module is a function to
let us spellcheck an entire document. For most practical purposes, users will
want to spellcheck an entire document for errors, rather than checking a
word at a time. We’ll add a spellcheck function to let them do just that:

spellcheck :: [Text] -> Int -> [Text] -> [SuggestedMatch]
spellcheck dictionary threshold =

concatMap (spellcheckWord dictionary threshold)

Now that you’ve implemented the spellchecking module, you should update
your project so that you can pass in some options and run the spellchecker
from the command line. It will be important to build an executable that you
can call outside of ghci since we’ll want to compile our program with optimiza-
tions and profile it to understand how to improve the performance.

For the examples in the rest of this chapter, we’ll assume a version of the
application that takes four arguments: a dictionary of correctly spelled words,
a document to spellcheck, an optional verbosity flag, and the name of the
algorithm that we’re testing. You can customize the interface to your applica-
tion however you like, but at a minimum you’ll likely find it helpful to add an
argument to choose between different implementations of the spellchecker
so that you can profile different approaches without having to recompile your
program.

Profiling the Spellchecker
Now that we’ve built our application, let’s run it and see what kind of results
we can get. A good place to start will be to take the test cases we were using
manually in ghci and put those into files so that we can see how well our
program runs.

Let’s create two files. First, we’ll create a dictionary of the words with correct
spellings. In the examples we’ll call this small-dictionary.txt:

yellow
mellow
hello
goodbye
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Next, let’s create a list of words we want to check. We’ll call this small-test-list.txt:

yello
mello
hello

Finally, let’s build the application and run it. We can use the time command
to get a sense of how fast our program is running. Depending on your operat-
ing system, the output of time may look slightly different:

user@host$ time cabal exec spellcheck -- \
./small-dictionary.txt ./small-test-list.txt verbose spellcheck-naive

hello -> yello: 1
mellow -> yello: 2
yellow -> yello: 1
hello -> mello: 1
mellow -> mello: 1
yellow -> mello: 2

real 0m0.035s
user 0m0.020s
sys 0m0.007s

It looks like our application is running well enough that it’s hard to imagine
what could be left to optimize. Unfortunately, these results are a bit mislead-
ing. We’re testing with a very small dictionary of words. If we want to imple-
ment a more complete spellchecking program, we’ll need to use a more com-
plete dictionary.

There are several different free dictionaries available, and you may already
have one installed on your operating system. The rest of the examples in this
chapter will use the words.txt file from the Spell Checker Oriented Word List
(SCOWL)1.

Preparing the Word List

If you download the SCOWL word list, there’s some preparation
work you should do before using the data in your programs. First,
you’ll need to re-encode the wordlist to utf8. The word list shipped
with SCOWL uses the ISO-8859 (extended Latin) encoding. You
can convert the file to utf8 using the iconv tool.

On Linux and WSL, you can convert the file by running iconv -t utf8
-o words.utf8 -f iso-8859-3 words.txt. The -o flag isn’t available on macOS,
so instead you can redirect the output to a file: iconv -t utf8 -f iso-8859-
3 words.txt > words.utf8

1. https://github.com/en-wl/wordlist
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Preparing the Word List

Once you’ve converted the file to utf8, you should shuffle the
contents of the file so they are no longer in alphabetical order.
This will help us get more accurate data during our test. On all
platforms, you can do this by typing sort -R words.utf8 > words.txt.

Now that we have a complete dictionary, let’s create a new file named helllo.txt
that holds a single typo, the word “helllo”:

helllo

After all of the setup, let’s test out our spellchecker on a larger list of words:

user@host$ time cabal exec spellcheck -- .\
/words.txt ./helllo.txt quiet spellcheck-naive

found 173 suggested matches

real 2m46.115s
user 2m46.032s
sys 0m0.076s

We found 173 suggestions, which is obviously quite a lot of options for a
single typo. In a full-fledged spellchecking program we would apply some
heuristics to limit the number of potential matches, but for the moment the
larger number of results is less of a problem than the fact that our program
took nearly three minutes to find suggestions for a single word! This is pretty
unusable for a single word, let alone spellchecking a real document. We’ll
need to do better.

If we want to improve the performance of our program, the first thing that
we’ll need to do is start collecting data about where we’re spending our time.
We can get that data by enabling profiling. We can enable profiling in our
application by adding a cabal project file named cabal.project.local. Cabal project
files give us a way to configure projects made up of one or more separate
packages, and to configure them all together. They also offer a number of
configuration options for tuning options like profiling for our packages. Let’s
create a project file that will enable profiling for our application and library,
and let’s pass in RTS options so we can collect profiling data when we run
our program:

profiling: True
library-profiling: True
optimization: 2

package *
ghc-options: -rtsopts -fprof-auto
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The first part of our project file sets some global options:

• profiling controls whether or not profiling is enabled for our executable. We
need to enable this to collect profiling data when we run the program.

• library-profiling enables us to collect profiling information from the library
part of our project. Nearly all of our code lives in our library, so we need
to turn this on to get useful data.

• optimization sets the -O flag. We want our program to run fast, so we’re setting
the optimization level to 2.

After setting our global options, we can also add some package-specific stanzas
to our project file. You can have several of these stanzas that configure indi-
vidual packages, several specific packages, or use a wildcard as we’ve done
here. In this example, we’re setting passing a couple of flags to ghc:

• -rtsopts will let us pass options to the runtime system, including options
to configure profiling.

• -fprof-auto will ask the compiler to automatically collect profile data from
each function we define in our program. This is the most expensive profil-
ing option, but also gives us the most detailed results.

Now that we’ve configured some profiling options, let’s recompile our program
and then run it again:

user@host$ time cabal exec spellcheck -- \
./words.txt ./helllo.txt quiet spellcheck-naive

found 173 suggested matches

real 10m59.992s
user 10m59.765s
sys 0m0.166s

Even though we haven’t actually turned on profiling for this particular run
of our application, building our program with profiling enabled has caused a
substantial impact on the performance of our application. Not all of the pro-
grams we run with profiling enabled will be slowed down so much, but collect-
ing profiling data has exacerbated some of the inefficiencies that were already
in our application. To get a look at what those are, let’s run our program
again, and this time we’ll collect profiling data:

user@host$ time cabal exec spellcheck -- \
./words.txt ./helllo.txt quiet spellcheck-naive +RTS -s -p

found 173 suggested matches
2,448,464,651,528 bytes allocated in the heap

10,243,120 bytes copied during GC

Chapter 14. Building Efficient Programs • 524

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


12,391,304 bytes maximum residency (12 sample(s))
786,984 bytes maximum slop

37 MiB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 592385 colls, 0 par 1.784s 1.864s 0.0000s 0.0001s
Gen 1 12 colls, 0 par 0.021s 0.021s 0.0017s 0.0038s

INIT time 0.000s ( 0.000s elapsed)
MUT time 652.690s (652.671s elapsed)
GC time 1.805s ( 1.885s elapsed)
RP time 0.000s ( 0.000s elapsed)
PROF time 0.000s ( 0.000s elapsed)
EXIT time 0.000s ( 0.000s elapsed)
Total time 654.495s (654.556s elapsed)
%GC time 0.0% (0.0% elapsed)
Alloc rate 3,751,342,896 bytes per MUT second
Productivity 99.7% of total user, 99.7% of total elapsed

real 10m54.616s
user 10m53.895s
sys 0m0.653s

Thanks to the -s flag that we passed to the RTS, our program will print sum-
mary statistics about memory usage when it’s done running. You’ve already
seen one example of using summary statistics when you learned about IORefs
on page 365. In that chapter, we focused on the total memory usage of our
application. In this case, the total memory usage might be a little high, but
the overall number of bytes allocated and garbage collected is more interesting.

During the ten minutes our program was running, we allocated nearly 2.5
terabytes of memory. Haskell programs do tend to allocate a lot of memory,
but that still seems unusually high. Summary statistics like these can
sometimes help us identify unexpected space leaks, but in this case it doesn’t
seem like we have enough information to entirely narrow down what’s hap-
pening, so let’s look at the actual profiling data that was generated.

When you run your program with the -p flag, your program will write profiling
data to a file named <your-program-name>.prof. In this case, the file will be named
spellcheck.prof.

Profiler Output Formatting

The actual output generated by the profiler is too large to fit com-
fortably in this book. Instead, we will look at the format more
generally and highlight particular sections of the profiler output.
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At the top of the profiling data, you’ll see a header that includes the time the
program was run, what arguments were passed to it, and the total amount
of time and memory that it used:

Tue May 31 01:41 2022 Time and Allocation Profiling Report (Final)

spellcheck +RTS -s -p -RTS ./words.txt ./helllo.txt quiet spellcheck-naive

total time = 681.24 secs (681243 ticks @ 1000 us, 1 processor)
total alloc = 1,536,053,166,248 bytes (excludes profiling overheads)

This gives you a high-level overview of the run of your application. It’s not
particularly useful for diagnosing a performance problem, but as you are
working on different implementations of some code, you’ll frequently accumu-
late many different profiling files that you want to compare. Having a header
to quickly glance at to see what version of the program you ran, and how well
it performed, can make it much easier to sort through several profiling files.

The next section of the profiling output shows you the most expensive parts
of your program. There are five columns:

• COST CENTER: Cost centers are names assigned to a particular part of the
code that we want to measure when we’re profiling. Since we used -fprof-
auto, the compiler automatically created a cost center for all of our func-
tions. You’ll notice that for things like deleteCost and insertCost, which are
where bindings inside of editDistance, the cost center includes the top-level
function as well as the name of the particular binding.

• MODULE: This is the module where the code is defined.

• SRC: This is the source file where the code is defined.

• %time: This field tells us what percent of the overall program runtime was
spent inside of this particular cost center. For example, we can see that
we spent 54 percent of our time in editDistance.

• %alloc: Similar to %time, this field tells us what percentage of memory
allocations were done inside of a particular cost center. We can see here
that while we only spent about half of our time in editDistance it was
responsible for nearly 80 percent of the memory our program allocated.

In our example, the five most expensive cost centers are:

% alloc%timecost center

78.254.2editDistance

5.316.1editDistance.deleteCost

5.314.9editDistance.swapCost

Chapter 14. Building Efficient Programs • 526

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


% alloc%timecost center

0.010.1editDistance.insertCost

11.14.5editDistance.restOfA

The most expensive of these cost centers is editDistance, which takes up about
half of the time and about 80 percent of the allocations in our program. The
rest of the cost centers are all where bindings that were defined inside of
editDistance. When we enabled -fprof-auto to ask the compiler to insert cost centers
for us, it added them to all of the let and where bindings in our program, so
we can narrow down the costs to particular parts of a larger function.

Overall, the top cost centers are exactly what we’d expect from our application;
almost all of the time and memory is being spent in the function that is doing
almost all of the work. We still don’t have a good explanation for why our
program is so slow. Let’s move a bit further down the file and look at the
detailed profiling output.

The detailed output has a lot of the same information that was in our high
level summary. We have the name of each cost center, along with the source
file and module it’s in, and a numeric identifier. We also now have two different
pairs of time and allocation fields. The first pair of fields, labeled individual, tells
us about the time and allocations in that particular cost center. The second
pair of fields, labeled inherited, tell us how much time and memory were used
by that function and all of its children in the call tree. The inherited cost can
be a good way to spot functions that call several functions that don’t individ-
ually cost very much, but cumulatively end up having a big performance
impact.

Finally, the entries field is the field that will be most interesting to us right now.
This field tells us how many times a particular cost center was entered—in
other words, how many times a particular function was called, or a value was
evaluated. Let’s look at the profiling data, starting with the call to spellcheckWord
in our profiler output, and see what it can tell us. The output here has been
reformatted to make it easier to follow:

spellcheckWord
entries: 1
(individual) %time: 0.0, %alloc: 0.0
(inherited) %time: 100.0, %alloc: 100.0

spellcheckWord.getSuggestions
entries: 123383
(individual) %time: 0.0, %alloc: 0.0
(inherited) %time: 100.0, %alloc: 100.0
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spellcheckWord.getSuggestions.distance
entries: 123382
(individual) %time: 0.0 %alloc: 0.0
(inherited) %time: 100.0 %alloc: 100.0

editDistance
entries: 15590594654
(individual) %time: 54.2, %alloc: 78.2
(inherited) %time: 100.0 %alloc: 100.0

editDistance.restOfA
entries: 5337541962
(individual): %time: 4.6 %alloc: 11.1
(inherited): %time: 4.6 %alloc: 11.1

editDistance.restOfB
entries: 5337541962
(individual): %time: 0.1 %alloc: 0.0
(inherited): %time: 0.1 %alloc: 0.0

editDistance.deleteCost
entries: 5126464655
(individual): %time: 15.9 %alloc: 5.3
(inherited): %time: 15.9 %alloc: 5.3

editDistance.insertCost
entries: 5126464655
(individual): %time: 10.1 %alloc: 0.0
(inherited): %time: 10.1 %alloc: 0.0

editDistance.swapCost
entries: 5126464655
(individual): %time: 15.1 %alloc: 5.3
(inherited): %time: 15.1 %alloc: 5.3

We can see from the profiling data that spellcheckWord is called just once. This is
what we’d expect since our input file only contains a single word we want to
spellcheck. Next, spellcheckWord.getSuggestions is called 123383 times. This matches
the number of words in the SCOWL words corpus, so we can see it’s also being
called once for each of the dictionary words we’re checking our single input
word against. Similarly, spellcheckWord.getSuggestions.distance is also called 123383
times—again once per word in our dictionary. So far so good, but editDistance is
being called an astounding 15590594654 times. That works out to almost 126359
calls per dictionary word! We might have expected our naive algorithm to do a
bit of re-work, but the profiler is telling us the inefficiency of our algorithm is
much worse than we might have expected. Let’s go back to the algorithmic
drawing board and see if we can improve our performance.

Over the next few sections, we’ll look at several alternate ways we can avoid
doing extra work and incrementally improve the performance of our algorithm.
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Memoizing editDistance
We’ve narrowed down our immediate performance problem to recalculating
the same edit distances many times. The question now is, what can we do
about that? One option is to simply avoid recalculating distances that we’ve
already calculated once. If we replace our editDistance function with a version
that remembers arguments it’s been called with, and the results that were
returned, then we can use the cached values rather than recomputing the
distance whenever we encounter a familiar pair of strings. This is a technique
called memoization, and it’s common in many different languages and styles
of programming.

When we want to memoize a function, Haskell offers us both some benefits
and some challenges. The most immediate benefit is that, being a pure lan-
guage, most Haskell code lends itself to being memoized without having to
do any extra work. The same purity that makes our functions good candidates
for memoization also makes the memoization itself a bit more challenging,
since we need to be thoughtful about how we do the memoization. In this
section, we’ll look at two different approaches that you can use for memoiza-
tion: first through automatic memoization using thunks, and second by using
internal mutability to manually cache values.

Memoization (Almost) for Free
The first approach to memoization that we’ll look at takes advantage of laziness
to create a list of edit distances between all of the different points in our two
strings. When we first create this list, all of the elements will be unevaluated
thunks, so we don’t need to pay the cost of actually computing the distance
up front. Once we’ve created a list of unevaluated thunks, we can replace the
recursive calls inside of our edit function with a lookup into our list of values.
Any time we come upon an unevaluated thunk, it will call our edit function
again, completing the recursive call we would have made directly. If we find
an evaluated thunk, then nothing needs to be evaluated, and we can simply
return the distance that we’ve already calculated.

The only thing we need to do for this approach to work is to turn the argu-
ments of our editDistance function into something that lends itself to being used
to look up elements in the list of cached results. This isn’t always possible;
thankfully, in this case we have an obvious solution: rather than iterating
over each character in our input strings, we can iterate over a numeric index
into the strings. Before we move on to memoization, let’s take an intermediate
step and refactor our function to use indexes in our strings, rather than using
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the characters directly. Since we’ll be working on a new implementation that
you might want to compare to the original naive version, let’s put this imple-
mentation in our SpellCheck.ListMemo module:

module SpellCheck.ListMemo where
import Data.Text (Text)
import qualified Data.Text as T
import Types

editDistance :: Text -> Text -> Int
editDistance stringA stringB =

getEditDistance 0 0
where

aLen = T.length stringA
bLen = T.length stringB
getEditDistance idxA idxB
| idxA == aLen = bLen - idxB
| idxB == bLen = aLen - idxA
| stringA `T.index` idxA == stringB `T.index` idxB =

getEditDistance (idxA + 1) (idxB + 1)
| otherwise =

let
deleteCost = getEditDistance (idxA + 1) idxB
insertCost = getEditDistance idxA (idxB + 1)
swapCost = getEditDistance (idxA + 1) (idxB + 1)

in 1 + minimum [deleteCost, insertCost, swapCost]

As you can see, we haven’t had to change much in our editDistance implemen-
tation. You’ll notice that we’re using the T.index function now rather than T.head.
This function lets us access a character at a particular offset inside of a Text
value. It’s a partial function, but we’re testing the index to make sure it’s not
out of bounds in an earlier guard clause, so we’re safe to use it here. The only
other notable difference is that our original editDistance code has been moved
into a where clause. This will come in handy when we add memoization.

Before we move on, you can add another entry to your list of benchmarks
and profile this index-based implementation of our naive algorithm. You
should notice from the profiling results that our new index-based implemen-
tation is slightly faster and uses somewhat less memory. We’re saving a little
bit of work by avoiding creating copies of each substring that we’re evaluating,
but we haven’t yet addressed the amount of duplicate work we’re doing. Until
we avoid recomputing the distance for the same strings, we’re going to be
severely limited in the performance we can get out of our program. So, let’s
update our function to start memoizing results.
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The first thing we need to do is add a cache of values. Our edit distance
function takes two arguments—the length of each string. We need to map
that to a single cache. We’ll do that by storing our cache as a list of lists. For
each index in our first string, we’ll store a list of cached distances to every
point in our second string:

distances =
map (\idxA -> map (getEditDistance idxA) [0..bLen]) [0..aLen]

Remember, when we first define distances it’s a list of unevaluated thunks.
When we evaluate a particular element of the list, it will return another list
of unevaluated thunks. Each of those thunks will call getEditDistance the first
time we need to get their value.

Now that we have a cache of values, we need a way to look up a particular
value. Let’s add a function to help make this easier:

lookupEditDistance idxA idxB =
distances !! idxA !! idxB

The last thing we need to do is replace the recursive calls to getEditDistance with
calls to lookupEditDistance. The final version of our memoized function looks
like this:

editDistance :: Text -> Text -> Int
editDistance stringA stringB =

lookupEditDistance 0 0
where

distances =
map (\idxA -> map (getEditDistance idxA) [0..bLen]) [0..aLen]

lookupEditDistance idxA idxB =
distances !! idxA !! idxB

aLen = T.length stringA
bLen = T.length stringB
getEditDistance idxA idxB
| idxA == aLen = bLen - idxB
| idxB == bLen = aLen - idxA
| stringA `T.index` idxA == stringB `T.index` idxB =

lookupEditDistance (idxA + 1) (idxB + 1)
| otherwise =

let
deleteCost = lookupEditDistance (idxA + 1) idxB
insertCost = lookupEditDistance idxA (idxB + 1)
swapCost = lookupEditDistance (idxA + 1) (idxB + 1)

in 1 + minimum [deleteCost, insertCost, swapCost]
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As with the move to an index-based function, the overall impact to our code
by adding a memoization cache is pretty small. We added a couple of new
bindings and replaced calls to getEditDistance with calls to lookupEditDistance. Let’s
profile this version and see what kind of performance improvement we’ve
gotten by putting our potentially repeated work behind a thunk:

user@host$ time cabal exec spellcheck -- \
./words.txt ./helllo.txt quiet spellcheck-list-memo +RTS -s -p

found 173 suggested matches
3,716,439,504 bytes allocated in the heap

21,632 bytes copied during GC
12,084,472 bytes maximum residency (4 sample(s))

781,064 bytes maximum slop
27 MiB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 897 colls, 0 par 0.012s 0.012s 0.0000s 0.0001s
Gen 1 4 colls, 0 par 0.007s 0.007s 0.0018s 0.0048s
INIT time 0.000s ( 0.000s elapsed)
MUT time 1.573s ( 1.573s elapsed)
GC time 0.019s ( 0.019s elapsed)
RP time 0.000s ( 0.000s elapsed)
PROF time 0.000s ( 0.000s elapsed)
EXIT time 0.000s ( 0.000s elapsed)
Total time 1.593s ( 1.593s elapsed)
%GC time 0.0% (0.0% elapsed)
Alloc rate 2,361,897,083 bytes per MUT second
Productivity 98.8% of total user, 98.8% of total elapsed

real 0m1.656s
user 0m1.623s
sys 0m0.027s

Amazingly, these few small changes have saved us around an order of magni-
tude in runtime! If we look at the profiling output, we can verify that we’ve
also substantially reduced the number of calls to editDistance from 15590594654
calls in our original un-memoized version down to 8066319 calls in our new
version. By taking advantage of laziness and the fact that each thunk is only
evaluated ones, we were able to reduce the number of calls to editDistance by
over 99%!

Using a list or other data structure to cache the results of thunks as a way
of memoizing function calls is an extremely effective low-effort technique for
improving performance in your Haskell code, but there are a couple of things
to watch out for. One decision to be mindful of is the data structure you are
using to hold the cached values. Using the wrong data structure, or using a
data structure in a less-than-optimal way, can have a big impact on how
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much memoization improves your program’s performance. For example, we
stored the results of our function calls in a list, and it worked well enough
because we are dealing with short strings, so the cost of traversing our list
of cached values wasn’t very high. Our cache is also fairly dense, meaning
we didn’t have very many elements of our list that we never evaluated. If we
were spending more time traversing our list, or had a lot of elements we never
looked at, the performance improvement wouldn’t have been as impressive.
For example, let’s add 100 empty unevaluated thunks to the beginning of
each of our cached lists:

where
offset = 100
distances =

map
(\idxA -> map

(\idxB -> getEditDistance (idxA - offset) (idxB - offset)
) [0..bLen + offset])

[0..aLen + offset]
lookupEditDistance idxA idxB =

distances !! (idxA + offset) !! (idxB + offset)

When we run this, we can see this version of the application increases both
the total amount of allocated memory and the runtime by 10x.

You should also keep in mind that holding references to memoization caches
longer than necessary can inflate the memory usage of your application. This
happens most often if you create the cache as a top-level binding. Top-level
bindings won’t be garbage collected, so accumulating a large collection of
cached values in a long-running program can cause a space leak. Even
without creating top-level bindings, you can inadvertently hold onto a reference
to a cache from an unevaluated thunk. This is similar to the behavior you
saw when you learned about IORefs on page 365 earlier in this book.

One edge case that can come up when memoizing functions is caused by a
compiler optimization called let floating. This is an optimization that GHC will
sometimes perform that “lifts” a value outside of a function where it’s defined
so that it can be re-used. When a large cache is floated out, it won’t get garbage
collected between function calls and you can end up accumulating a lot of
used memory. You can typically identify this by profiling your application and
noticing that your cache is responsible for a larger percentage of allocations
than you would have expected.

When you encounter this problem, one way to solve it is to disable let floating
in the current module. You can do that on a per-module basis with the
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OPTIONS_GHC pragma, which lets you set compiler options on a per-module
basis, and passing it the -fno-full-laziness argument, which disables let floating:

{-# OPTIONS_GHC -fno-full-laziness #-}

Let-floating-induced space leaks aren’t common, and you shouldn’t necessar-
ily avoid memoization or proactively disable let floating to avoid problems.
Unfortunately, the infrequency of the problem also means it can be hard to
remember to look for this as a cause if you find that your program is unex-
pectedly using too much memory.

Internal Mutability with ST
In the last section, you learned how to use a data structure to cache results
from an expensive function call. That approach works extremely well for certain
types of problems, but it lacks the flexibility we sometimes need when trying
to optimize our programs. In some cases, we need a more general type of
mutability.

Earlier in this book, you learned about IORefs on page 365 as a way to get
mutability. IORefs do give us access to mutability, but at the steep cost of
needing to move our entire function into an IO action. In general, we’d rather
avoid putting otherwise pure functions into IO, and from the perspective of
an outside caller, a function like editDistance should remain pure even if it
happens to use some mutable state internally.

The idea that we might have a function that is referentially transparent and
acts like a pure function from the outside, but uses mutable data as part of
its implementation, is called internal mutability. We can get internal mutabil-
ity in Haskell with ST actions. In this section, we’ll refactor our spellchecker
again to use internal mutability, and look at some of the new things we can
do when we’re using a more flexible approach to caching. First though, let’s
take a look at the ST type and how to use ST actions.

An Introduction to ST
In the first chapter of this book, you were introduced to the idea of referential
transparency. This is the idea that, thanks to Haskell being a pure functional
language, any time we have some expression that evaluates to a value, we
can replace the expression with the value, and the behavior of our program
shouldn’t change. One of the reasons that IO allows us to write pure functional
programs that have side effects is that they replace an expression that might
not have referential transparency, for example, a function that uses a value
inside of an IORef, with a referentially transparent function that returns an
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opaque IO action. We have to do this for IO because the real world is subject
to external factors that we can’t control in our program. We might read from
a file that was changed by another process, or access a mutable variable that
we changed in another thread.

The problem with IO is that, once something gets embedded in an IO action,
there’s no way to get it back into the world of pure Haskell values. We can’t
simply write a function to turn an IO a into an a, because that would break
referential transparency.

unsafePerformIO

There is a family of functions that will let us turn IO actions back
into ordinary Haskell values. For example, the unsafePerformIO
function from System.IO.Unsafe has the type unsafePerformIO :: IO a -> a.
These functions have some legitimate uses, but as their name
implies, they are unsafe and can be be quite tricky to use correctly.
In almost all cases, you should prefer ST over unsafePerformIO and
friends when writing programs that need internal mutability.

What if we could though? Let’s imagine a type called SafeIO that lets us make
SafeIO actions and evaluate them in a referentially transparent way. We’ll also
create a SafeRef type that is similar to an IORef but can be used with SafeIO. For
the moment we’ll skip actually implementing any of these examples and fall
back on undefined to help us sketch out the idea for our theoretical library
without worrying about how to build it.

data SafeIO a = SafeIO a
data SafeRef a = SafeRef a

instance Functor SafeIO where
fmap = undefined

instance Applicative SafeIO where
pure = undefined
(<*>) = undefined

instance Monad SafeIO where
(>>=) = undefined

runSafeIO :: SafeIO a -> a
runSafeIO (SafeIO a) = a

What could we do with a function like this, and what limitations would we
have to put on it?

First, SafeIO shouldn’t be able to access the outside world. That is to say, we
can’t do things like read or write files. Why not?
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appendToFile :: FilePath -> String -> SafeIO ()
appendToFile = undefined

readFile :: FilePath -> SafeIO String
readFile = undefined

unsafeAction :: String -> SafeIO String
unsafeAction contents =

appendToFile "example.txt" contents >> readFile "example.txt"

notValid :: String
notValid =

runSafeIO (unsafeAction "foo") <> runSafeIO (unsafeAction "foo")

In this example, the expression runSafeIO (unsafeAction "foo") isn’t referentially
transparent. If we assume that example.txt starts as an empty file, the first time
we evaluate the expression, we’ll get back foo, and the second time we evaluate,
it we’ll get back foofoo. Any example we can think of where our SafeIO actions
are allowed to access the world outside of our program are at risk of the same
problem. If we want to make SafeIO actions actually safe, we’ll need to restrict
them from accessing anything outside of our program.

That doesn’t make SafeIO useless though. We can still allocate and free mem-
ory and have access to mutable references. Let’s imagine that we wanted to
use a SafeIO equivalent to an IORef for some program:

newSafeRef :: a -> SafeIO (SafeRef a)
newSafeRef = undefined

modifySafeRef :: SafeRef a -> (a -> a) -> SafeIO ()
modifySafeRef = undefined

readSafeRef :: SafeRef a -> SafeIO a
readSafeRef = undefined

safeAction :: String -> SafeIO Int
safeAction message = do

safeRef <- newSafeRef 0
traverse_ (\_ -> modifySafeRef safeRef (+1)) message
readSafeRef safeRef

valid :: Int
valid =

runSafeIO (safeAction "hello") + runSafeIO (safeAction "hello")

In this example, runSafeIO (safeAction "hello") is referentially transparent. Even
though it has side effects and modifies a reference, from the outside it behaves
like a pure function. So, perhaps our SafeIO can have mutable references and
remain safe? Let’s try another example:
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updateRefWithCount :: SafeRef Int -> String -> SafeIO Int
updateRefWithCount safeRef message =

modifySafeRef safeRef (+ length message) >> readSafeRef safeRef

stillSafe :: String -> SafeIO Int
stillSafe message = do

ref <- newSafeRef 0
len1 <- updateRefWithCount ref message
len2 <- updateRefWithCount ref message
pure $ len1 + len2

stillValid :: Int
stillValid =

runSafeIO (safeAction "hello") + runSafeIO (safeAction "hello")

In this example, we’re passing shared state from stillSafe to updateRefWithCount,
but all access to our safe reference is still held inside of a single SafeIO action
that’s being evaluated. There’s never any shared state between different SafeIO
actions, so they can’t interfere with one another. That means stillValid is still
a safe function.

Unfortunately, a small change here could still break our code. If we call update-
RefWithCount directly with a SafeRef then we’ll still break referential transparency:

notSoSafe :: Int
notSoSafe =

let someRef = runSafeIO (newSafeRef 0)
in runSafeIO (updateRefWithCount someRef "hello") +

runSafeIO (updateRefWithCount someRef "hello")

In this example, the first time we evaluate runSafeIO (updateRefWithCount someRef
"hello"), the value in our reference will start at 0 and the function will return
5, but the second time we evaluate the expression, the reference will start out
at 5 and the expression will return 10.

These examples help to demonstrate another restriction we’ll need to put on
SafeIO if we want to be safe—we need to prevent any mutable data from being
shared between different SafeIO actions. The question then is, how can we
allow the safe example where we can compose SafeIO actions and evaluate
them when they don’t share resources, but still prohibit the second case
where resources would cross the boundaries between different SafeIO actions?

It turns out that there’s a clever way that we can use the type system to do
this. Let’s take a look at the implementation and then untangle why it works.

We’ll start by updating the types of SafeIO and SafeRef to add an extra type
parameter that we’ll call ‘s‘. This is a phantom type parameter; we won’t use it
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in the value of either of our types. Instead, this parameter will act as a sort
of type level identifier of which SafeIO action generated a particular value.

data SafeIO s a = SafeIO a
data SafeRef s a = SafeRef a

We’ll also need to update the types of the functions that work with SafeIO
actions. In particular, let’s look at the new type of runSafeIO and newSafeRef:

runSafeIO :: SafeIO s a -> a
runSafeIO (SafeIO a) = a

newSafeRef :: a -> SafeIO s (SafeRef s a)
newSafeRef = undefined

You can update the rest of your examples. You should notice that right now
everything will continue to compile. Our identifier doesn’t seem to be helping
us at all yet. The problem is that we’re ensuring that the identifier of a SafeIO
and a SafeRef are the same, but we’re not ensuring that they are unique. The
compiler can give the same identifier to every single SafeIO action and every
single SafeRef and that will make our code typecheck, but it isn’t what we want.

Luckily there’s a trick we can use to help ensure we can get unique identifiers
when we run a particular SafeIO action. We just need to change the type of
runSafeIO a bit. If we wanted to be a bit verbose, we could rewrite the current
type of our function with an explicit forall quantifier as:

runSafeIO :: forall s a. SafeIO s a -> a

The forall here says that, essentially, the function should work for any types
s and a, and we as the caller of the function can decide what values of s and
a should be used. When we call runSafeIO we’re not providing any particular
value, so the compiler picks one that satisfies the requirements for us and
builds the application. Thankfully, there is a feature of the type system we
can use to prevent the compiler from being so “helpful”: higher ranked types.
In newer versions of GHC, this feature is enabled by default, but in older
versions of the compiler you’ll need to enable the RankNTypes extension. When
enabled, this extension lets us “nest” layers of polymorphism, passing one
polymorphic function into another. It’s not obvious how this differs from the
functions we have been working with throughout this book, so let’s dive into
a hands-on example. With RankNTypes enabled, we can rewrite runSafeIO with a
higher ranked type:

runSafeIO :: forall a. (forall s. SafeIO s a) -> a

Or, less verbosely:

runSafeIO :: (forall s. SafeIO s a) -> a
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RankNTypes

The RankNTypes extension has been available since GHC 6.8.1. This
extension is enabled by default in GHC2021 but you’ll need to enable
it manually if you are using Haskell2010. This extension is generally
safe, and shouldn’t break any existing code. This extension also
implies the ExplicitForAll extension. If you’ve enabled RankNTypes you
don’t need to explicitly enable ExplicitForAll.

This function uses “rank 2” polymorphism. That means we’ve got a polymor-
phic function called runIO that needs to be able to work with any type a. We’re
passing it in a value with the type (forall s. SafeIO s a). The forall here is inside of
an argument that’s being passed to the function. That means runSafeIO doesn’t
have to be polymorphic over any type s; instead, the function it’s being passed
needs to be polymorphic and able to work with any s that runSafeIO chooses.
In other words, neither we nor the compiler have the option of selecting a
convenient value of s because it’s not decided by the caller of runSafeIO. Instead,
we need to provide a SafeIO action that will itself work for any arbitrary state
identifier. In practice, that means we can’t make any assumptions about what
the type is, so each time we evaluate runSafeIO it will be with a new unique
identifier. If you try to compile this version of the program you’ll see that we’re
getting an error:

SafeIO.hs:67:28-39: error: …
• Couldn't match type ‘a’ with ‘SafeRef s Integer’
Expected: SafeIO s a

Actual: SafeIO s (SafeRef s Integer)
‘a’ is a rigid type variable bound by

the inferred type of someRef :: a
at /home/user/EffectiveHaskell/Chapter14/st/SafeIO.hs:67:7-40

• In the first argument of ‘runSafeIO’, namely ‘(newSafeRef 0)’
In the expression: runSafeIO (newSafeRef 0)
In an equation for ‘someRef’: someRef = runSafeIO (newSafeRef 0)

• Relevant bindings include
someRef :: a

(bound at /home/user/EffectiveHaskell/Chapter14/st/SafeIO.hs:67:7)
|

Compilation failed.

The type error here is a little hard to untangle if you aren’t accustomed to
this kind of error, but we can see what’s happening if we step through the
code. In the expression runSafeIO (newSafeRef 0) we’re taking a value with the type
SafeIO s (SafeRef s Int) and passing it to a function with type (forall s. SafeIO s a) -> a.
If we expand the type variables out, we’ll get:

forall a. (forall s. SafeIO s (SafeRef s a)) -> SafeRef s a
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The problem is, this can’t typecheck, because the type of our identifier would
escape the scope where it’s defined. This turns out to be exactly what we need
to ensure that none of our mutable resources leak outside of a particular
SafeIO action. As long as any mutable resource carries around the state iden-
tifier for the SafeIO action that created it, we can prevent it from escaping.

As you might have expected, it turns out that what we’ve been calling SafeIO
is actually a type that already exists in base. It’s called ST, and it’s defined in
Control.Monad.ST:

data ST s a

runST :: (forall s. ST s a) -> a

The Data.STRef module from base gives us access to STRefs:

data STRef s a

newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()
modifySTRef :: STRef s a -> (a -> a) -> ST s ()

Edit Distance with ST
Now that we have a way to use mutable references in a pure function with
ST, let’s revisit our edit distance function and look at how we can make use
of this to write a more composable optimized version of our function. We’ll
start by creating a newtype wrapper to hold a reference to a cache, and write
some utility functions to make it easier to read and write from the cache.
We’re going to go back to caching the text values rather than numeric offsets
in this example:

{-# LANGUAGE OverloadedStrings #-}
module SpellCheck.STMemo where
import Data.Foldable
import Control.Monad
import Data.Map.Strict (Map)
import qualified Data.Map.Strict as Map
import Data.STRef
import Control.Monad.ST
import Data.Text (Text)
import qualified Data.Text as T
import Types

newtype MemoCache s = MemoCache (STRef s (Map (Text,Text) Int))

readCache :: MemoCache s -> Text -> Text -> ST s (Maybe Int)
readCache (MemoCache ref) stringA stringB =

Map.lookup (stringA, stringB) <$> readSTRef ref
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updateCache :: MemoCache s -> Text -> Text -> Int -> ST s ()
updateCache (MemoCache ref) stringA stringB distance =

modifySTRef ref $ Map.insert (stringA, stringB) distance

newCache :: ST s (MemoCache s)
newCache = MemoCache <$> newSTRef Map.empty

Next, let’s update our editDistance function. In the last implementation of editDis-
tance that we created, the memoization step was entirely self-contained inside
of the editDistance function. That was by necessity—we needed to be able to
map the arguments of our function to indexes in a list, and we could only do
that for any two pairs of strings. Now that we have more flexibility in the type
of cache that we’re using, and how we access it, we can use the same cache
across all of the calls to editDistance. This will save us some time if we encounter
duplicate words, or even just duplicate suffixes, in the document we’re
spellchecking.

editDistance :: MemoCache s -> Text -> Text -> ST s Int
editDistance cache a b =

memoizedEditDistance a b
where

memoizedEditDistance stringA stringB = do
result <- readCache cache stringA stringB
case result of

Just distance ->
pure distance

Nothing -> do
newDistance <- findDistance stringA stringB
updateCache cache stringA stringB newDistance
pure newDistance

findDistance stringA stringB
| T.null stringA = pure $ T.length stringB
| T.null stringB = pure $ T.length stringA
| T.head stringA == T.head stringB =

memoizedEditDistance restOfA restOfB
| otherwise = do

deleteCost <- memoizedEditDistance restOfA stringB
insertCost <- memoizedEditDistance stringA restOfB
swapCost <- memoizedEditDistance restOfA restOfB
pure $ 1 + minimum [swapCost, deleteCost, insertCost]

where
restOfA = T.tail stringA
restOfB = T.tail stringB

As you can see, the pattern of our function remains quite similar to the earlier
memoized version. We’re using do notation now, since we’re running inside
of ST actions, but otherwise we’re accessing our code in the same way.
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Before we move on to calling editDistance let’s take advantage of the composabil-
ity of ST actions to add some heuristics to help make our spellchecking even
faster:

Imagine that we wanted to have our spellchecker detect common variations
of words and suggest the stem of the word. For example, if we found the word
“eating” we would suggest “eat,” and if we found the word “jumps” we would
suggest “jump.” One way that we can do that is to insert the corrections into
our cache before we ever start running through our algorithm:

cacheSuffixDistances :: MemoCache s -> Text -> [Text] -> ST s ()
cacheSuffixDistances cache dictWord suffixes =

traverse_ cacheSuffix suffixes
where

cacheSuffix suffix =
updateCache cache dictWord (dictWord <> suffix) (T.length suffix)

Now, when we want to spellcheck a word, we can add some suffixes:

spellcheckWord :: MemoCache s -> [Text] -> Int -> Text -> ST s [SuggestedMatch]
spellcheckWord cache dictionary threshold word =

foldM getSuggestions [] dictionary
where

getSuggestions suggestions dictWord = do
cacheSuffixDistances cache dictWord ["s","es","'s","ed","ing"]
distance <- editDistance cache dictWord word
let

suggestion = SuggestedMatch dictWord word distance
if distance > 0 && distance <= threshold

then pure (suggestion : suggestions)
else pure suggestions

The last thing we need to do is add our spellchecking function. Up until now
we’ve been creating ST actions, but thanks to runST we can make spellcheck a
pure function, just like it is in our other implementations:

spellcheck :: [Text] -> Int -> [Text] -> [SuggestedMatch]
spellcheck dictionary threshold words = runST $ do

cache <- newCache
concat <$> traverse (spellcheckWord cache dictionary threshold) words

Unfortunately, if you build and profile this version of our application, you’ll
find that our new, more flexible version of spellchecking comes at a bit of a
cost in both memory footprint and processing time. It’s not surprising that
we’d have a large memory footprint now that we’re storing a single cache for
all of our matches, but if we look at the profiling output we can see that we’re
spending a substantial amount of time in both updateCache and readCache, with
updateCache additionally taking up over half of our memory allocations. It seems
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that as convenient as our choice of data structure was for representing the
cache, we’re paying a high cost for using a Map.

In the next section, we’ll look at how we can improve the performance of our
programs using more efficient data structures, with a particular look at effi-
cient vectors from the vectors package.

Optimizing Memory Layout with Vectors
Memoization has gotten us quite far along the path of building a sufficiently
fast spellchecker, but we’re still not fast enough. In this section, we’ll look at
another factor that can impact the performance of our programs: the shape of
our data structures and the way we store and access memory in our programs.

You saw in the last section that when we started using ST to memoize a map
of results, we ended up taking a significant performance penalty. It turns out
that when we’re trying to get the best performance out of our applications,
there are a few factors we need to think about beyond algorithmic complexity:

• Avoiding indirection by having too many thunks that need to be evaluated
for any particular value

• Avoiding using mutable references to immutable data structures, creating
a lot of unexpected copying when we update the value in the reference

• Being mindful of the cost of traversing our data structure to access par-
ticular elements

In this section, we’ll look at the vectors library, and some of the efficient data
structures that it provides for writing more high performance code.

What is a Vector?
Throughout this book, we’ve made heavy use of lists whenever we needed a
simple flat collection of data. Lists are a popular choice in Haskell because
they have a lot of library support, there’s special syntax that makes working
with them convenient, and in most cases code written with lists is fast enough
we don’t have to worry about performance. As we look to writing more com-
pute-bound and data-intensive applications, lists start to show some weak-
nesses. Before we dive into the weaknesses of lists, and the ways other data
structures can improve on lists, let’s review a simplified definition of a list:

data List a = EmptyList | Cons a (List a)

In other words, each list is either an empty list, or it’s a value and a reference
to the tail of the list. When we want to write efficient programs, this data

report erratum  •  discuss

Optimizing Memory Layout with Vectors • 543

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


structure can cause a couple of problems. First, to get to any element in the
list, we have to traverse the entire list. If you want to get to the 1000th element
of a list, your only option is to start at the beginning and walk one element at
a time until you get to the 1000th element. The second problem is that each
time you move from the head of a list to its tail, you might end up moving
into a completely different part of memory. In an average Haskell program,
we might not care very much about the cost of traversing a few elements in
a list, or even a few hundred, and we certainly won’t concern ourselves with
things like the physical layout of memory, but these factors can end up
dominating the performance profile of certain applications.

When we care about efficiently storing and accessing memory, instead of
linked lists we’re better off to use a contiguous slab of memory. If we know
how much memory every item in the array will take, then we can get to any
particular element directly without having to walk through all of the other
elements. If we’re dealing with several elements of the array, we can fetch
them all at once, and let the CPU cache them so that we don’t have to wait
for the data at each index to be fetched.

There are several different ways to create and work with arrays in Haskell.
The GHC.Arr module in base provides a fairly basic interface to dealing with
arrays of values, and the primitives core library offers another low-level interface
to arrays. Both of these modules offer basic array functionality, but most
applications use the vectors library, which offers a rich and well-optimized
interface on top of arrays that allows you to write more idiomatic code while
still getting good performance.

A Quick Intro to Working with Vectors
The vector library is fairly large because it supports many different kinds of vectors
for different use-cases. We’ll look at a couple of different kinds of vectors in the
upcoming sections, but in most cases you can start with basic vectors by
importing Data.Vector. This module exports a number of functions that conflict
with list functions from Prelude, so it’s common to use qualified imports for vector
modules:

module VectorDemo where
import qualified Data.Vector as Vec

In most cases, this is all that you’ll need to do. You can create a vector from
a list using toList, or create a vector an element at a time using Vec.cons:

vectorOfNumbers :: Vec.Vector Int
vectorOfNumbers = Vec.fromList [1..10]
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vectorRange :: Int -> Int -> Vec.Vector Int
vectorRange a b

| a == b = Vec.empty
| otherwise = Vec.cons a $ vectorRange (a + 1) b

In general, the functions to work with vectors are similar enough to the
functions that you’ve already seen for working with lists that we won’t spend
much time on the specifics. You can review the vector documentation on
Hackage2 for a complete overview.

Spellchecking with Vectors
Now that you know a little bit about the vectors library, let’s jump into the
implementation:

module SpellCheck.STVec where
import Data.Text (Text)
import qualified Data.Text as T
import Prelude hiding (length, read, words)
import Data.Foldable (for_)
import Control.Monad.ST
import qualified Data.Vector.Mutable as MVec

editDistance :: Text -> Text -> Int
editDistance stringA stringB = runST $ do

let
aLen = T.length stringA
bLen = T.length stringB
as = zip [1..] (T.unpack stringA)
bs = zip [1..] (T.unpack stringB)
lookupIndex x y = (y * (aLen + 1)) + x

cache <- MVec.new $ (aLen + 1) * (bLen + 1)
for_ [0..aLen] $ \idx -> MVec.write cache (lookupIndex idx 0) idx
for_ [0..bLen] $ \idx -> MVec.write cache (lookupIndex 0 idx) idx
for_ as $ \(idxA, charA) -> do

for_ bs $ \(idxB, charB) -> do
let

cost = if charA == charB then 0 else 1
insertCost <- (1 +) <$>

MVec.read cache (lookupIndex (idxA - 1) idxB)
deleteCost <- (1 +) <$>

MVec.read cache (lookupIndex idxA (idxB - 1))
swapCost <- (cost +) <$>

MVec.read cache (lookupIndex (idxA - 1) (idxB - 1))
MVec.write cache (lookupIndex idxA idxB) $

minimum [swapCost, insertCost, deleteCost]
MVec.read cache $ lookupIndex aLen bLen

2. https://hackage.haskell.org/package/vector
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You’ll notice this version of our algorithm looks different on the surface than
the previous versions we’ve looked at. Instead of using recursion, we’ve switched
to an iterative implementation that steps through the strings character by
character and calculates the cost of the current edit. We’re also initializing some
elements in our vector before we start looking at the edit distance. The initializa-
tion of the vectors is equivalent to the part of our recursive algorithm where, if
one of our input strings is empty, we return the length of the remaining string.
Instead of handling that in our inner loop, we precalculate those costs for each
point in our two strings, and set them in the vector ahead of time.

The remainder of our algorithm isn’t all that different from the previous versions
we’ve implemented, but the order we access the elements will be slightly different.
In part, this approach illustrates how we can apply more traditional procedural
algorithms with mutable data when writing pure Haskell functions. An additional
benefit to being mindful about how we access data inside of vectors is locality.
When we’re running code, it’s better to work with data that’s already cached by
the CPU, since it’ll take longer to fetch it from memory than to access the local
cache. Modern CPUs are pretty good at prefetching data from memory and
caching it, but it works best when the data we’re accessing is physically close
together in memory. When we’re working with data structures like lists and
maps, we’re storing references to pieces of memory that may be further away.
Unlike those structures, a Vector is stored in a contiguous block of memory. That
means we can sometimes see some extra benefits from CPU caching if we’re
careful about how we access the elements of a vector.

Minor algorithmic differences aside, the major change from our previous map-
based cache implementation is that we’re no longer working with an STRef to
an immutable data structure. Instead, we’re able to take advantage of muta-
bility directly in our vector. Rather than making a copy of the cache for each
change, we can directly modify memory in our vector as we calculate the edit
distances between different parts of our string. Hopefully this will help us
reclaim some of the performance that we lost when we originally switched to
ST, but let’s compile and profile our application to find out:

found 173 suggested matches
1,567,828,368 bytes allocated in the heap

9,104 bytes copied during GC
12,167,208 bytes maximum residency (4 sample(s))

780,248 bytes maximum slop
28 MiB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 375 colls, 0 par 0.007s 0.007s 0.0000s 0.0001s
Gen 1 4 colls, 0 par 0.006s 0.006s 0.0016s 0.0041s
INIT time 0.000s ( 0.000s elapsed)
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MUT time 0.695s ( 0.695s elapsed)
GC time 0.013s ( 0.013s elapsed)
RP time 0.000s ( 0.000s elapsed)
PROF time 0.000s ( 0.000s elapsed)
EXIT time 0.000s ( 0.000s elapsed)
Total time 0.708s ( 0.708s elapsed)
%GC time 0.0% (0.0% elapsed)
Alloc rate 2,256,217,778 bytes per MUT second
Productivity 98.1% of total user, 98.1% of total elapsed

real 0m0.775s
user 0m0.740s
sys 0m0.028s

That’s much better! Compared to our fast list-based memoized implementation,
our new ST-based function uses the same amount of total memory, but does
half the total number of memory allocations, and runs almost twice as fast!
We’re still at over half a second per word that we want to spellcheck, so we’re
not quite fast enough, but the switch to a vector type we can update directly
has had some clear benefits to the overall performance of our application.

The Fastest Edit Distance
So far in this chapter we’ve improved the implementation of our code by
making changes to the algorithms and underlying data structures that we’re
using. Algorithms and data structures are always a good place to start when
we need to make our programs more efficient, but once we’ve addressed those
opportunities we can often still realize significant performance improvements
by making use of micro-optimizations. These are optimizations that tend to
have a small individual impact, but can add up collectively. In this section,
we’ll look at a version of the editDistance function that has had several different
micro-optimizations applied. Before we look at the code though, let’s take a
moment to review the progress that we’ve made in optimizing our application,
and see what we have to look forward to with this version:

AllocationsRuntimeVersion

1500 GB680.0sNaive

2.6 GB1.3sList Memo

1.0 GB0.5sVector Memo

0.1 GB0.05sMicro-Optimized

As you can see, the most substantial improvement by far came from using a
better algorithm, but we have still gotten nearly an order of magnitude
improvement in performance by adding the micro-optimizations we’ll be
looking at in this section. So, let’s take a look at the implementation:
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{-# LANGUAGE BangPatterns #-}
module SpellCheck.LowLevelUnboxed where
import Data.Text (Text)
import qualified Data.Text as T
import qualified Data.Text.Unsafe as TU
import Types
import Prelude hiding (length, read, words)
import Data.Foldable (for_)
import Control.Monad.ST
import qualified Data.Vector.Unboxed.Mutable as MVec

{-# INLINE editDistance #-}
editDistance :: Text -> Text -> Int
editDistance stringA stringB = runST $ do

let
aLen = T.length stringA
bLen = T.length stringB
{-# INLINE lookupIndex #-}
lookupIndex x y = (y * (aLen + 1)) + x

cache <- MVec.new $ (aLen + 1) * (bLen + 1)
for_ [0..aLen] $ \idx -> MVec.write cache (lookupIndex idx 0) idx
for_ [0..bLen] $ \idx -> MVec.write cache (lookupIndex 0 idx) idx
let

columnCost !idxA !textIdxA
| idxA > aLen = pure ()
| otherwise = do

let
(TU.Iter !a' !textIdxA') = TU.iter stringA textIdxA
{-# INLINE rowCost #-}
rowCost !idxB !textIdxB
| idxB > bLen = pure ()
| otherwise = do

let
(TU.Iter !b' !textIdxB') = TU.iter stringB textIdxB
cost = if a' == b' then 0 else 1

insertCost <- (1 +) <$>
MVec.read cache (lookupIndex (idxA - 1) idxB)

deleteCost <- (1 +) <$>
MVec.read cache (lookupIndex idxA (idxB - 1))

swapCost <- (cost +) <$>
MVec.read cache (lookupIndex (idxA - 1) (idxB - 1))

let
{-# INLINE newCost #-}
newCost = min swapCost $ min insertCost deleteCost

MVec.write cache (lookupIndex idxA idxB) newCost
rowCost (idxB + 1) (textIdxB + textIdxB')

rowCost 1 0
columnCost (idxA + 1) (textIdxA + textIdxA')

columnCost 1 0
MVec.read cache (lookupIndex aLen bLen)
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Inlining (0.60s Saved)
The first major change you might notice in this version of our code is the
judicious use of inlining. If you aren’t familiar with it, inlining is a common
technique used by compilers, including GHC, to transform code that calls a
function with code that directly implements the body of that function. For
example, say we have a pair of functions, addTwo and addFour:

addTwo a b = a + b
addFour a b c d = addTwo a b + addTwo c d

If we chose to inline addTwo, the compiler would replace calls with the actual
function body, giving us:

addFour a b c d = a + b + c + d

The choice to inline a particular piece of code or not is ultimately made by
GHC, but when necessary we can make strong suggestions to the compiler
about code that it might want to consider inlining (or not inlining). As you
may have noticed in our example code, we can use the INLINE pragma to suggest
to the compiler that it should consider trying to inline a particular piece of
code if it can.

Suggesting and Allowing Inlining

When optimizations are enabled, GHC will try to make good
choices about when to inline code within a single module. The
INLINE pragma is a strong suggestion to the compiler that it should
try to inline a particular function, both within the current module
and when it’s called from other modules. The INLINABLE pragma is
similar, but a bit weaker. It tells the compiler to provide all the
necessary information so that a function can be inlined outside
of the module where it was defined, but it doesn’t encourage the
compiler to make any particular choice about whether to inline
or not.

Inlining by itself isn’t actually an optimization. Inlining can make your pro-
grams take longer to compile, and sometimes it can even make them less
efficient. If the compiler has made a poor decision and tried to inline something
it shouldn’t have, you can persuade it of that by using the NOINLINE pragma.

Inlining can be quite helpful at getting the compiler to generate more efficient
code for us. That’s not because inlining is directly improving the code, but
the process of inlining code can help the compiler uncover opportunities to
apply other optimizations.
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In our highly optimized edit distance function, we’re inlining four functions.
First, we’re inlining editDistance itself. Second, we’re inlining lookupIndex, which
helps us find the offsets into the vector that we want to use when looking up
cached edit distances, or setting the edit distance for our current part of the
loop. Third, we’re inlining the rowCost function, which is the innermost part of
our edit distance loop. Finally, we’re inlining the newCost binding that is used
to find the actual minimum edit cost for the particular point in our string.

Why these particular examples and not some others? In general, the choice
to inline some code or not lends itself better to profiling than thinking through
the code and trying to make an informed decision, but in our case there are
a couple of factors that make inlining worth the attempt. First, when we have
tight inner loops we may find that inlining can help the compiler generate
more efficient code by reducing the overhead of making a function call. In
most cases, the overhead of calling a function is small enough to be irrelevant,
but it can add up in very performance critical code. Second, when we’re
dealing with data-structure-heavy code, for example the lists and vectors that
are at the core of our edit distance implementation, we want to give the
compiler the opportunity to perform fusion. Fusion is an optimization tech-
nique where the compiler can remove intermediate stages of a series of
transformations on a data structure. The most well-known example of this
is calling map on lists. Imagine you have some inefficient code like this:

inefficient = map a . map b . map c $ someList

Without fusion, each call to map would allocate a new list and walk the entire
list applying the function. With fusion, the compiler can rewrite the expression to:

inefficient = map (a . b. c) someList

In spite of the name, this version is much more efficient because it doesn’t
need to allocate any intermediate lists, and only needs to walk the length of
the list a single time.

There are many other optimizations that GHC can do, and exhaustively listing
them is outside of scope of this book, but many of them can be enabled in
some cases through inlining.

Bang Patterns (0.05s Saved)
The second small optimization that we’ve done is enable the BangPatterns lan-
guage extension and use it to make many of the parameters in our inner loop
strict. You’ve already seen some examples earlier in this book of how we can
improve performance and memory usage by forcing certain values to be
evaluated strictly.
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Avoiding Allocations with Unsafe Text (0.30s Saved)
The third notable change to this edit distance implementation is that we’ve
moved away from unpacking or indexing into our strings. Instead, we’re using
the ominously named Data.Text.Unsafe module from the text package to directly
iterate through the underlying text representation. As with most other
examples of highly optimized code, this example trades off some amount of
safety and ease of use for raw performance by using a library that does away
with many of the conveniences of higher-level access to Text data. By directly
iterating through the Text values, we’ve avoided having to traverse the string
an extra time to unpack it, and we’ve avoided the overhead of allocating an
additional data structure to keep track of the character data.

Unboxed Values (0.25s Saved)
Most Haskell values are boxed values. That is to say, a Haskell value is a
thunk that, when evaluated, will reference some particular value in memory.
Boxed values in Haskell can be lazily evaluated, and they can be undefined. For
all of their convenience, they also come with the overhead of having to allocate
extra memory to hold the reference to the underlying value, as well as the
computational cost of following an extra layer of indirection when we want to
access the value being referenced. When we’re dealing with performance
critical code, it’s often beneficial to work with raw machine values instead of
references to values. In that case, we can benefit from unboxed values.

Unboxed values are raw machine values, like words, ints, and doubles. GHC
provides us with a low-level interface to working with unboxed values through
the GHC.Exts module in base, but working with unboxed values this way can be
quite challenging. Thankfully, unboxed vectors provide us with a fast and
efficient way to deal with unboxed values with relatively low overhead, espe-
cially when we’re dealing with collections of unboxed values.

The last major performance improvement we’ve added to our edit distance
application is to change our import of Data.Vector.Mutable to Data.Vector.Unboxed.Muta-
ble. You’ll notice that nothing else in our implementation needed to change,
and you can freely swap between the boxed and unboxed versions locally if
you want to look at the performance characteristics of each approach.

Summary
In this chapter, you worked through several iterative improvements of an edit
distance calculator for spellchecking, and in the process learned some common
techniques for improving the performance of your applications. Optimization
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in Haskell is a large topic, and there are many techniques that we haven’t
touched on in this chapter. Importantly though, the examples in this chapter
have introduced you to some of the major concerns that you should keep in
mind when looking at improving the performance of your Haskell applications:

1. Use the profiler early and often to identify expensive parts of your program.

2. Address algorithmic inefficiencies before data structures and micro-opti-
mizations.

3. Look at opportunities to avoid doing too many memory allocations, and
try to avoid too much indirection.

4. Use tools like ST to write imperative algorithms when they offer well-known
efficient solutions to common problems.

Exercises

Handling Correctly Spelled Words
Throughout this chapter, you’ve focused on building a spellchecker with the
assumption most words would need to be compared against the entire dictio-
nary to find misspellings. In reality, most words in most documents are spelled
correctly, and we could avoid doing a lot of work if we identify correctly spelled
words before calculating the edit distance to potential candidate corrections.

Use what you’ve learned in this chapter to update your spellchecker to skip
looking for corrections for words that are already spelled correctly.

Hint: Consider using the hashable library to generate a unique identifier for
each string in your dictionary.

Remembering Common Typos
When a user is typing a long document, it’s common that they will make
certain mistakes many times. For example, a user might habitually omit
particular double letters, or be prone to transposing certain letter sequences
(for example typing “teh” instead of “the”). Update your spellchecker to
remember misspellings and their corrections, rather than doing a complete
search each time the misspelling is encountered.

Spellchecking in HCat
Use what you’ve learned in this chapter to add interactive spellchecking to the
HCat application you built earlier, when learning about IO on page 283.
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CHAPTER 15

Programming with Types
As you come to the last chapter in this book, you’ve learned how to write
useful Haskell applications using many features of the type system that help
you write programs that are both safe and expressive. In nearly all the
examples you’ve built throughout this book, we’ve approached Haskell’s type
system as a tool that lets us write some constraints in our source code that
limit what our code can do. This top-down approach is typical of most Haskell
programs, but sometimes we want to encode some rules about our programs
that aren’t so easy to express with simple static types. In those cases, we can
turn to type level programming.

In this chapter, you’ll learn what type level programming is, and how to use
it effectively in your programs, by building a series of small independent
examples that show different features of type level programming. Finally, we’ll
work through a capstone example where you can put all of these concepts
together, along with the things you’ve learned throughout the rest of the book,
to build an application that makes use of type level programming.

What Is Type Level Programming?
Nearly every example that we’ve worked through in this book has made use
of the type system in one way or another, and many of the examples have
focused on ways to use the type system to write better programs. Even though
we’ve leaned heavily on the type system as we were programming, the types
have been something that we decided on ahead of time, or left to the compiler
to infer. Our programs have been well typed, but the computations that our
programs carried out have all been runtime values.

Type level programming lets us expand beyond computing only with runtime
values. With type level programming we can also write computations that
work on types. This lets us create more sophisticated interfaces to our
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applications since we can write APIs that are, in a way, their own small pro-
grams. Since our type level code is run at compile time, the results are types
that are still applied when the rest of our application is compiled, so we can
write somewhat more dynamic code without giving up type safety. The trade-
off for being able to retain type safety is that we’re limited in the programs
that we can write at the type level. You’ll get to see examples of the limitations
we’ll run into as you’re working through this chapter.

Terms and Types
Using type level programming means that we can write computations over
types. This presents a bit of vocabulary problem, because we now have two
different sorts of computation that will live side by side in our code, but are
executed separately and work on different values. To help keep things clear,
when we’re dealing with type level programming, we’ll use the word term to
refer to expressions and values that are going to be evaluated at runtime, and
we will continue to use type to refer to any type values or expressions that
evaluate to types at compile time. Similarly, we’ll use phrases like term level
to differentiate ordinary Haskell code that will be evaluated at runtime from
type level code that will be evaluated at compile time.

Types and Kinds
Before we can start building out large type level programming examples, we
need to spent some time looking at two of the most basic building blocks of
type level code: types and kinds. In type level code, the types are the values
that we are computing with, and the kinds of those types give us “type” safety
in the same way types provide safety to our term level code. Although you’ve
worked extensively with types in this book, and you’ve encountered kinds
occasionally, the way that we work with them in type level code is frequently
different from how we’d work with them in term level code. In this section,
we’ll look at how to work with types and kinds for type level code, and see
some examples of types and kinds that you wouldn’t encounter when writing
term level code.

The Type Kind
So far in this book, every time we’ve needed to work with kinds it’s been so
that we can work with higher kinded types that we’ll use in our term level
code. Since all of the types we were working with were intended to eventually
represent some term level values, the only kinds that we’ve worked with so
far are Type, and kinds that accept Type parameters. Let’s look at a couple of
examples. In these examples, we’ll turn on the NoStarIsType extension. As you
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may recall from some earlier examples, we imported Data.Kind to allow us to
write Type instead of * when using kind signatures. NoStarIsType goes the other
direction, telling GHC to use the word Type instead of * in both error messages
and ghci output.

NoStarIsType

Technically speaking, NoStarIsType isn’t actually a language exten-
sion. The StarIsType extension has been available since GHC 8.6.1.
StarIsType is enabled by default in Haskell2010 and GHC2021. The No-
StarIsType “extension” disables StarIsType. The StarIsType extension can
introduce conflicts with the TypeOperators extension, and it generally
breaks consistency with other kinds Nat and Symbol using proper
names. There are proposals to make NoStarIsType the default in a
future version of GHC.

λ :set -XNoStarIsType
λ import Control.Monad.State.Strict
λ :kind Int
Int :: Type
λ :kind Maybe
Maybe :: Type -> Type
λ :kind StateT
StateT :: Type -> (Type -> Type) -> Type -> Type

By now you’ve worked with higher kinded types enough that you have a rea-
sonable intuition for how to read these kinds. The kind Type in all of these
examples represents some type that we might want to pass in, like Int or Maybe
String. One of the first things we need to do in order to start writing type level
code is to move past the intuition here and get a better understanding of what
Type is, and start to look at other kinds.

The Type kind appears so often in our earlier examples because it’s the kind
of all types of term level values. Whatever the type, if we can have a value of
it, its kind must be Type. Although we can’t have values of higher kinded types
like Maybe or StateT, the type parameters that we pass to these higher kinded
types are also going to be types that will represent runtime values, so even
our higher kinded type examples so far have necessarily revolved around the
Type kind.

As we start to write code at the type level, types themselves become the values
we want to compute with and we’re no longer restricted to working only with
types of actual runtime values. This means that in type level code, we’ll start
to work with a wide variety of different kinds, including kinds we define our-
selves, and even polymorphic kinds.
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Type Level Natural Numbers

Nat and Natural

In earlier versions of GHC, type level natural numbers had the
kind Nat. In more recent versions Natural is used instead, and Nat is
an alias. We’re using Natural in these examples, so if you are follow-
ing along using an older version of GHC you can either rename
Natural to Nat or define your own alias by adding type Natural = Nat.

Type level literals give us a way of writing values like numbers and strings
and using those as values at the type level. Type level literals are also a great
first example of types with a kind other than Type. Let’s open up ghci and take
a look at a few examples.

We’ll start by importing the GHC.TypeLits module from base. This module defines
the kinds we’ll be working with, and a number of utility functions to help us
integrate our type level code with term level code.

λ import GHC.TypeLits

Next, let’s explore some of the type level literals that you’ll be working with
frequently in this chapter. We’ll start by looking at an example of how we can
work with numbers when we’re doing type level programming, using type
level naturals:

λ :kind 0
0 :: Natural

λ :kind 1
1 :: Natural

λ :kind 2
2 :: Natural

As you can see, we write type level naturals the same way we’d write numeric
literals at the term level. Since we’re dealing with natural numbers, we can’t
make negative type level naturals. Aside from this restriction, many of the
basic mathematical operations that you can do at the term level are also
available at the type level. Let’s try to add a couple of numbers at the type
level and see what happens:

λ :kind 1 + 2
1 + 2 :: Natural

As it turns out, using :kind to evaluate a type level expression will give us the
kind of the expression, but it doesn’t evaluate the expression like we had
expected. This can be useful in some circumstances, for example, if you want
to find the kind of an expression that is computationally expensive to evaluate,

Chapter 15. Programming with Types • 556

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


but in most cases we’d like to see the actual result of our type level expression
computed. We can ask ghci to evaluate the type level expression using :kind!
(note the extra ! at the end). Let’s see a few examples:

λ :kind! (+) 1 1
(+) 1 1 :: Natural
= 2

λ :kind! 1 + 2 + 3 + 4
1 + 2 + 3 + 4 :: Natural
= 10

λ :kind! 2 + 3 * 4
2 + 3 * 4 :: Natural
= 14

λ :kind! (2 + 3) * 4
(2 + 3) * 4 :: Natural
= 20

λ :kind! 5 <=? 10
5 <=? 10 :: Bool
= 'True

There are a few different things that we can see in these examples. First, you
can see how using :kind! shows you both the kind of the entire expression you
enter, as well as the simplified type that you get after evaluating the expres-
sion. You can also see that these type level expressions are evaluated similarly
to term level expressions, including things like order of operations and
parentheses. Finally, you’ll notice in the last of these examples that we’ve
used a type level expression with two naturals that returns a kind of Bool and
a type of True. You’ll learn more about type level booleans later on in this
section, but for now this serves as a good example that, just like at the term
level, we can have type level expressions that compute a value with a different
kind than the values in the expression.

Type Level Strings
In addition to natural numbers, GHC.TypeLits also gives us an easy way to deal
with type level strings, which have the kind Symbol. It’s common for them to
be referred to as symbols or type level strings interchangeably. You can write
type level string literals the same way you write term level string literals:

λ :kind! "Hello"
"Hello" :: Symbol
= "Hello"

There are only a few operations defined for us in symbols. We can combine
them using AppendSymbol:
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λ :kind! AppendSymbol "Hello, " "World"
AppendSymbol "Hello, " "World" :: Symbol
= "Hello, World"

λ :kind! "Hello, " `AppendSymbol` "World"
"Hello, " `AppendSymbol` "World" :: Symbol
= "Hello, World"

λ :kind! "a" `AppendSymbol` "b" `AppendSymbol` "c"
"a" `AppendSymbol` "b" `AppendSymbol` "c" :: Symbol
= "abc"

You’ll notice in this example that we’re using AppendSymbol as an infix function,
just like we would do with a term level function. One key difference between
type and term level code is that type level functions like AppendSymbol still start
with a capital letter.

In addition to symbols, newer versions of GHC also have a Char kind that we
can use to add and remove characters from a type level string:

λ :kind! 'a' `ConsSymbol` "bc"
'a' `ConsSymbol` "bc" :: Symbol
= "abc"

λ :kind! UnconsSymbol "abc"
UnconsSymbol "abc" :: Maybe (Char, Symbol)
= 'Just '('a', "bc")

λ :kind! UnconsSymbol ""
UnconsSymbol "" :: Maybe (Char, Symbol)
= 'Nothing

As you can see from all of the examples so far, type level expressions share
a lot of similarities with the term level code you’re already familiar with from
working through this book. Some of the types you’re used to, like Bool, Maybe,
and tuples also have equivalents at the type level. It turns out that it’s no
accident that so many types that you’re accustomed to from term level code
make an appearance as kinds in type level code. In many cases we can
automatically promote types to kinds using the DataKinds extension.

Data Kinds
The DataKinds extension lets us use the same types we’ve been writing at the
term level as kinds when we’re working at the type level. With this extension
enabled, every type we’ve defined is also a kind, and the constructors for that
type are its inhabitants. Let’s look at an example by creating a new module
and defining a simple sum type to represent some colors:
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DataKinds

The DataKinds extension has been available since GHC 7.4.1. This
extension isn’t enabled by default in either GHC2021 or Haskell2010
so you’ll need to enable it manually. This extension is generally
safe, however it may change the way certain errors are displayed.

module ColorDemo where

data Color = Red | Green | Blue

If we load this into ghci we can look at the type of Red, Green, and Blue if we treat
them as term level constructors, but if we try to treat them as types and look
at their kind we’ll get an error:

λ :type Red
Red :: Color

λ :kind Red

<interactive>:1:1: error:
Not in scope: type constructor or class ‘Red’
Suggested fixes:
• Perhaps you intended to use DataKinds

to refer to the data constructor of that name?

Helpfully, the compiler is telling us that we need to add the DataKinds extension
if we want to do this. Let’s take the compiler’s advice and try again with the
extension enabled:

λ :set -XDataKinds

λ :type Red
Red :: Color
λ :kind Red
Red :: Color

λ :type Blue
Blue :: Color
λ :kind Blue
Blue :: Color

λ :type Green
Green :: Color
λ :kind Green
Green :: Color

In this example, you can see that with DataKinds enabled, each of our construc-
tors is now both a value with the type Color as well as a type with the kind
Color. This ends up being a fairly common source of confusion when working
with type level code. Since the type and term level code share the same names,
and are implemented with the same code, it’s easy to get mixed up and start
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conflating type and term level meanings of things. The typical manifestation
of this in your code is that you’ll start seeing errors that the compiler
expected the kind Type but instead got a kind like Color. For example, if we try
to create a value Red with the type Red, we’ll get an error:

λ r = Red :: Red
<interactive>:37:12-14: error:

• Expected a type, but ‘Red’ has kind ‘Color’
• In an expression type signature: Red
In the expression: Red :: Red
In an equation for ‘r’: r = Red :: Red

One way to differentiate between the term level constructor and the type level
value is to use a single quote (') to refer to the promoted type:

λ :kind 'Red
'Red :: Color

λ :kind 'Green
'Green :: Color

λ :kind 'Blue
'Blue :: Color

There are some circumstances where the quote is required to remove ambigu-
ity, like when there is both a type and constructor with the same name. For
example, imagine that we have a type with a single constructor whose name
shadows the name of the type:

data Foo = Foo

If we try to look at the kind of Foo, the compiler will tell us that its kind is Type:

λ :kind Foo
Foo :: Type

This happens because the type name takes precedence over the promoted
constructor when the compiler is trying to figure out the kind of a type. In
this case, if we want to refer to the promoted constructor, we need to add a
single quote:

λ :kind 'Foo
'Foo :: Foo

This situation will happen any time there’s a constructor and a type in scope
with the same name. To avoid this problem, it used to be a common recommen-
dation to always explicitly use a quote to identify promoted constructors, and
prior to GHC 9.4 the compiler will generate a warning if you enable -Wall and fail
to use the quote. GHC 9.4 plans to remove this warning from -Wall and there is
a bit less consensus on style these days. The examples in this chapter will only
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add the quote if it’s required or greatly enhances the clarity of a particular
example.

Although basic sum types like Color are a good introduction to defining your
own kinds, there is a lot more that we can do. You’ve already seen an example
of using tuples and Maybe at the type level when we called UnconsSymbol. Let’s
look at another example: building lists at the type level.

Let’s start by revisiting the list implementation on page 138 you created much
earlier in this book:

module TypeLevelList where

data List a = Empty | Cons a (List a)

With the DataKinds extension enabled, we can use this same list definition to
create lists at the type level. Let’s try it out in ghci:

λ :kind! Cons Int (Cons String (Cons Bool Empty))
Cons Int (Cons String (Cons Bool Empty)) :: List Type
= 'Cons Int ('Cons [Char] ('Cons Bool 'Empty))

λ data Color = Cyan | Magenta | Yellow | Black
λ :kind! Cons Cyan

(Cons Magenta
(Cons Yellow
(Cons Black Empty)))

Cons Cyan
(Cons Magenta

(Cons Yellow
(Cons Black Empty))) :: List Color

= 'Cons 'Cyan
('Cons 'Magenta
('Cons 'Yellow

('Cons 'Black 'Empty)))

Although it’s nice we can create type level lists, it’s annoying that we have to
type out Cons every time we want to add an item to the list. It would be much
nicer if we could have an operator similar to (:) that we use at the term level. If
we enable the TypeOperators extension, we can define our own operators to use at
the type level. One way that we can add type operators is to use a type alias to
define the operator. For example, let’s define a new right-associative operator
named (:+) as an alias for Cons. You’ll notice in the example that we write the
fixity declaration for a type operator exactly the same way that we would write
it for a term level operator. One key benefit of this is that operators that are
lifted with DataKinds will use the same fixity at both the type and term levels.
We’ll also need need to enable the PolyKinds extension to opt into GHC’s more
powerful kind system.
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PolyKinds

The PolyKinds extension has been available since GHC 7.4, although
we’ll be using newer features of the type system and versions prior
to GHC 8.10 have not been tested with this chapter. The PolyKinds
extension is enabled by default in GHC2021, but you’ll need to enable
it manually if you are using Haskell2010. This extension enables
syntax and modifies type inference to support the more advanced
features of GHC’s kind system. This extension should be safe to
enable in most existing code, although it changes type inference
which may rarely break some existing code, or cause changes to
error messages.

TypeOperators

The TypeOperators extension has been available since GHC 6.8.1.
This extension is enabled by default in GHC2021 but you’ll need to
enable it manually if you are using Haskell2010. This is a safe
extension that shouldn’t introduce problems with any exist-
ing code.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE PolyKinds #-}
module TypeLevelList where

infixr 6 :+
type (:+) = Cons
data List a = Empty | Cons a (List a)

With our type operator enabled, we can create type level lists that are much
easier to both read and write:

λ :kind! 0 :+ 1 :+ 2 :+ Empty
0 :+ 1 :+ 2 :+ Empty :: List GHC.Num.Natural.Natural
= 'Cons 0 ('Cons 1 ('Cons 2 'Empty))

Since we’re using an alias, the evaluated version of our expression still uses
the name Cons. If you don’t want this behavior, then you can define your
operator as a constructor and it’ll be lifted like any other constructor when
you use DataKinds. As an example, let’s rewrite our list and replace Cons with
(:+) directly:

infixr 6 :+
data List a = Empty | (:+) a (List a)

Now when we evaluate your list expression, we’ll get back the more readable
operator-based version:
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λ :kind! 0 :+ 1 :+ 2 :+ Empty
0 :+ 1 :+ 2 :+ Empty :: List GHC.Num.Natural.Natural
= 0 ':+ (1 ':+ (2 ':+ 'Empty))

As you can see in these examples, we can construct type level lists the same
way that we were able to create lists at the term level, using a recursively
defined kind, with a kind parameter. In the first example, we created a type
level list of types with the kind Type, and in the second example we created a
list of Color types. Just like we can only have term level lists of a single type,
we’re also restricted to type level lists of a single kind. If we try to create a list
with Int and Cyan for example, we’ll get an error because we’re trying to mix
two different kinds:

λ :kind! Int :+ Cyan :+ Empty
<interactive>:1:8-20: error:

• Couldn't match kind ‘Color’ with ‘Type’
Expected kind ‘List Type’,

but ‘Cyan :+ Empty’ has kind ‘List Color’
• In the second argument of ‘(:+)’, namely ‘Cyan :+ Empty’
In the type ‘Int :+ Cyan :+ Empty’

As you might have come to expect by now, although we can define our own
type level lists, we don’t actually need to. The normal list type that we use at
the term level is also available to us at the type level. We can create literal type
level lists the same way we’d create term level lists:

λ :kind! [1,2,3]
[1,2,3] :: [Natural]
= '[1, 2, 3]

λ :kind! ["Hello", "World"]
["Hello", "World"] :: [Symbol]
= '["Hello", "World"]

λ :kind! [String, Bool, Int -> (Int, Int)]
[String, Bool, Int -> (Int, Int)] :: [Type]
= '[[Char], Bool, Int -> (Int, Int)]

We can also cons new values onto type level lists, just like we’d do with term
level lists, but we need to explicitly lift our list up to the type level. Otherwise,
the compiler will tend to get confused and give us surprising error messages.
Let’s look at an example:

λ :kind! 1 : []
<interactive>:1:5-6: error:

• Expecting one more argument to ‘[]’
Expected kind ‘[Natural]’, but ‘[]’ has kind ‘Type -> Type’

• In the second argument of ‘(:)’, namely ‘[]’
In the type ‘1 : []’
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λ :kind! 1 : [2]
<interactive>:1:5-7: error:

• Expected kind ‘[Natural]’, but ‘[2]’ has kind ‘Type’
• In the second argument of ‘(:)’, namely ‘[2]’
In the type ‘1 : [2]’

<interactive>:1:6: error:
• Expected a type, but ‘2’ has kind ‘Natural’
• In the second argument of ‘(:)’, namely ‘[2]’
In the type ‘1 : [2]’

λ :kind! 1 : [2,3]
1 : [2,3] :: [Natural]
= '[1, 2, 3]

In the first two examples here, we get an error because the compiler can’t
determine that [] should represent an empty type level list of Natural. Instead, the
compiler is treating [] as though it’s the term level list type with the kind Type ->
Type. In the second example, the compiler is making the same assumption about
the term level use of [], but it thinks we’ve now applied the type 2. In other words,
it’s treating [2] as a type of kind Type. In the final example, the list we’re using
has two elements. Since the term level [] only accepts a single parameter, the
compiler is able to recognize we must be using the type level version of the list.

Using explicitly lifted lists will help us move past the errors in our first two
examples. Although it’s not necessary when we’re consing onto a list of two or
more elements, we can include the explicit lift for consistency and avoid
introducing bugs if we change the code later to remove some elements. Let’s
take another look at the examples:

λ :kind! 1 : '[]
1 : '[] :: [Natural]
= '[1]

λ :kind! 1 : '[2]
1 : '[2] :: [Natural]
= '[1, 2]

λ :kind! 1 : '[2,3]
1 : '[2,3] :: [Natural]
= '[1, 2, 3]

We run into a similar situation using type level tuples. If we try to create a
type level tuple without explicitly promoting it, the compiler will assume we’re
trying to create a term level tuple and give us an error:

λ :kind! (1, Cyan)
<interactive>:1:2: error:

• Expected a type, but ‘1’ has kind ‘Natural’
• In the type ‘(1, Cyan)’
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<interactive>:1:5-8: error:
• Expected a type, but ‘Cyan’ has kind ‘Color’
• In the type ‘(1, Cyan)’

Explicitly promoting the tuple will work just as we’d hope:

λ :kind! '(1, Cyan)
'(1, Cyan) :: (Natural, Color)
= '(1, 'Cyan)

As you can see, the DataKinds extension gives us a great deal of power to create
data structures that exist at the type level. In many cases, we can even re-use
code we defined at the term level without any changes. All this expressive power
doesn’t do us much good without being able to write computations on this
data. In the next section you’ll learn how to write type level functions to build
computations on the type level data structures you’ve learned how to define.

Functions from Types to Types
In the last section, you learned how to work with a wide variety of type level
data, including natural numbers, strings, and data structures like lists and
tuples. Having all of this data available at the type level is of limited use
without being able to write computations to transform the data. In Haskell,
we can build type level functions using a feature called Type Families.

Type families are conceptually straightforward. A type family is a function that
accepts some types and returns a type, just like a term level function accepts
some term level values and returns a value. Unlike term level functions, there
are different “varieties” of type family we’ll look at. Although each of these
sorts of type family ultimately acts as a type level function, the way we write
them and the reasons we use them vary. In this section, we’ll start by looking
at the most commonly used sort of type family: associated type families, which
let us associate a type family with a particular type class, and give an alterna-
tive to functional dependencies that’re often easier to use. Next, we’ll look at
open type families. These are similar to associated type families, but can be
used outside of a type class. Finally, we’ll look at closed type families. Closed
type families are more limited than associated and open type families, since
users can’t add new instances in their own code. This limitation also makes
closed type families more useful for type level programming, since we’re able
to use them more easily for writing general purpose computations.

Associated Type Families
Associated type families are the most common way that type families are
used. Before we dive into understanding exactly what they are and how they
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work, let’s look at a short example. Imagine that we’re writing a library for
working with shell commands where we would like to represent each supported
shell command as its own type. For example, imagine that we have two types,
ListDirectory and Grep, to represent the ls and grep commands:

newtype ListDirectory =
ListDirectory { listDirectoryName :: FilePath }

data Grep =
Grep { grepMatch :: String, grepFiles :: [String]}

One way we might want to approach building this library is to define a type
class, ShellCommand, for types that can be run at the command line. This will
let us encapsulate both the way we generate command line arguments from
a particular command, as well as how we handle the output generated by the
shell. How should we define it? We might start with something like this:

class ShellCommand cmd where
runCmd ::

Monad m => cmd -> (String -> [String] -> m String) -> m String

In this example, our class defines a single function runCmd that will take a
command, and a function from an executable path and list of arguments to
some output, and we will return the output. Unfortunately, this isn’t a very
good abstraction since we’re essentially returning whatever output the shell
generates unmodified. It would be better if we could return something that
better represented the particular output of each command, but then we’re
faced with a different problem: what type should we return?

Using what you’ve learned in this book so far, there are a couple of solutions
you might see. One option would be to create a sum type, ShellCommandOutput,
and add a constructor for each type of output that we wanted to parse. This
would work as long as we only wanted to support a finite number of shell
commands, but it’s not extensible. Any time we wanted to add a new com-
mand, we’d need to add a new constructor to ShellCommandOutput.

A second option would be to use a multi-parameter type class. Since the type
of output that’s generated depends on the command that’s run, we can use
functional dependencies to define the relationship. Let’s take a look at a
complete example using functional dependencies as a starting point.

System.Process

Remember that the System.Process module comes from the process
library that you used earlier in the Local System chapter.
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{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE FlexibleInstances #-}

module ShellCommandFunDeps where
import System.Process (readProcess)

class ShellCommand cmd cmdOutput | cmd -> cmdOutput where
runCmd ::

Monad m =>
cmd ->
(String -> [String] -> m String) ->
m cmdOutput

newtype ListDirectory =
ListDirectory { listDirectoryName :: FilePath }

instance ShellCommand ListDirectory [FilePath] where
runCmd (ListDirectory dir) run =

lines <$> run "ls" ["-1", dir]

data Grep =
Grep { grepMatch :: String , grepFiles :: [String]}

data GrepMatch = GrepMatch
{ grepMatchingFileName :: FilePath
, grepMatchingLineNumber :: Int
, grepMatchingLineContents :: String
} deriving (Eq, Show)

parseGrepResponse :: [String] -> [GrepMatch]
parseGrepResponse = map parseLine

where
parseLine responseLine =

let
(fileName, rest) = span (/= ':') responseLine
(matchNumber, rest') = span (/= ':') $ tail rest
contents = tail rest'

in GrepMatch fileName (read matchNumber) contents

instance ShellCommand Grep [GrepMatch] where
runCmd (Grep match grepFiles) run =

parseGrepResponse . fixResponses . lines <$>
run "grep" ("-n" : match : grepFiles)

where
fixResponses :: [String] -> [String]
fixResponses responseLines =

case grepFiles of
[fname] -> (\l -> fname <> ":" <> l) <$> responseLines
_ -> responseLines

data Pipe a r b r' = Pipe a (r -> b)
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instance (ShellCommand a r, ShellCommand b r') =>
ShellCommand (Pipe a r b r') r' where
runCmd (Pipe a mkB) run = do

result <- runCmd a run
runCmd (mkB result) run

grepFilesInDirectory ::
String ->
FilePath ->
Pipe ListDirectory [FilePath] Grep [GrepMatch]

grepFilesInDirectory match dir =
Pipe (ListDirectory dir) $

Grep match . map (\fname -> dir <> "/" <> fname)

runShellCommand :: ShellCommand cmd r => cmd -> IO r
runShellCommand cmd =

runCmd cmd (\cmdName args -> readProcess cmdName args "")

As you can see in this example, using functional dependencies works well
enough for individual commands like ListDirectory and Grep, but it starts to show
some rough edges when we begin to compose our commands with Pipe. The
extra type parameters add noise and reduce the ergonomics, but a bigger
problem is that writing a function like grepFilesInDirectory requires that we write
out the specific output type of our intermediate commands. That means we’ll
need to change the type signature if we decide to refactor our commands to
change the types they use internally. Worse, refactoring our library might
require the users to change their code because of an implementation detail
in how we represent some of our commands.

TypeFamilies

The TypeFamilies extension has been available since GHC 6.8.1. This
extension isn’t enabled by default in GHC2021 or Haskell2010 so you’ll
need to enable it manually. This is a safe extension that shouldn’t
cause problems with any existing code.

Associated type families are a useful alternative to multi-param type classes
with functional dependencies in circumstances like this, because they allow
us to write a function from our input type to the output type as a type level
function that is embedded directly into our type class. To use associated type
families we’ll need to enable the TypeFamilies extension. With this extension
enabled, we can add an associated type family to our type class with the type
keyword. Let’s look at an example of a type family in our ShellCommand class:
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{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE RecordWildCards #-}

module ShellCommand where
import Data.Kind
import System.Process (readProcess)

class ShellCommand cmd where
type ShellOutput cmd :: Type
runCmd ::

Monad m =>
cmd ->
(String -> [String] -> m String) ->
m (ShellOutput cmd)

In this example, ShellOutput is an associated type family that we use to map a
particular instance of ShellCommand to the type of output that will be generated
by running the command. In this example, ShellOutput takes a single argument,
cmd, but it’s possible for type families to have several arguments and you’ll
see some examples of that later on in this chapter. The kind signature, :: Type,
specifies what the kind of the returned value should be. In this case, the
return kind should be a normal type. Let’s write an instance of ShellCommand
so that we can see how to use our type family, and get a chance to try using
it in ghci. We’ll start by writing an instance for ListDirectory:

instance ShellCommand ListDirectory where
type ShellOutput ListDirectory = [FilePath]
runCmd (ListDirectory dir) run =

lines <$> run "ls" ["-1", dir]

This tells the compiler that the ShellOutput type family, when when called with
the type ListDirectory, returns a type of the value [FilePath]. If we load our module
into ghci you can see that the kind of ShellOutput looks like a function from a
Type to a Type:

λ :kind! ShellOutput
ShellOutput :: Type -> Type
= ShellOutput

When we apply a Type, in thise case ListDirectory, we get back a type, [FilePath].
We can validate that in ghci too:

λ :kind! ListDirectory
ListDirectory :: Type
= ListDirectory

λ :kind! ShellOutput ListDirectory
ShellOutput ListDirectory :: Type
= [[Char]]
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Remember that FilePath is an alias for String, which is itself an alias for [Char],
so you can see that ShellOutput ListDirectory is returning exactly what we told it
to return.

You can see how we can call a type family in the definition of runCmd, where
we’re using the type family to find the return type of runCmd:

runCmd ::
Monad m =>
cmd ->
(String -> [String] -> m String) ->
m (ShellOutput cmd)

In this type annotation, cmd is a type variable, and we’re going to call ShellOutput
with whatever value we happen to have in that variable. This lets us get the
proper output type for any input type we call runCmd with. Let’s look at
another example and see how we can write an instance for Grep using type
families:

instance ShellCommand Grep where
type ShellOutput Grep = [GrepMatch]
runCmd (Grep match grepFiles) run =

parseGrepResponse . fixResponses . lines <$> run "grep" grepArgs
where
grepArgs = "-n" : match : grepFiles
fixResponses :: [String] -> [String]
fixResponses responseLines =

case grepFiles of
[fname] ->
(\l -> fname <> ":" <> l) <$> responseLines

_ ->
responseLines

Just like with ListDirectory, we can define an instance for Grep with minimal
changes to our code. Instead of a second parameter telling us that the result
of a Grep should be a list of matches, we’re using a type family. As you would
expect, we can load this up into ghci and see that we get the correct output
from ShellOutput when called with Grep instead of ListDirectory:

λ :kind! ShellOutput Grep
ShellOutput Grep :: Type
= [GrepMatch]

Most developers these days prefer the syntax of type families over functional
dependencies, but the two instances we’ve looked at so far haven’t shown
much clear benefit to type families other than a bit of a nicer syntax. We can
see a more obvious benefit when we define Pipe. By eliminating the second
parameter to our type classes, composing them becomes much easier. With
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type families, we can redefine Pipe to need only two type parameters, one for
each command on either end of the pipe:

-- data Pipe a r b r' = Pipe a (r -> b)
data Pipe a b = Pipe a (ShellOutput a -> b)

This new definition is more readable thanks to being able to remove two of
our type parameters. It also carries a much more precise definition. Our old
definition of Pipe didn’t enforce any particular relationship between all of its
parameters. We might have known that r was supposed to be the output type
of a and that r' was supposed to be the output type of b, but there was nothing
that required that to be the case. Using type families, we can be more
explicit that the output type of the command a must be used to generate the
command b.

The definition of ShellCommand for Pipe is also a little bit simpler thanks to the
removed parameters:

instance (ShellCommand a, ShellCommand b) =>
ShellCommand (Pipe a b)
where
type ShellOutput (Pipe a b) = ShellOutput b
runCmd (Pipe a mkB) run = do

result <- runCmd a run
runCmd (mkB result) run

This example also highlights another important property of working with type
families. The definition of ShellOutput (Pipe a b) refers to ShellOutput b. The ability
to recursively solve for type families is what lets us write more complex com-
putations at the type level than we could do before.

We still have one more opportunity to benefit from refactoring our code to
use type families: we’re now able to define grepFilesInDirectory without needing
to refer to the output types of either ListDirectory or Grep:

grepFilesInDirectory ::
String ->
FilePath ->
Pipe ListDirectory Grep

grepFilesInDirectory match dir =
Pipe (ListDirectory dir) $

Grep match . map (\fname -> dir <> "/" <> fname)

Thanks to our new definition of Pipe, we’re able to join commands without
having to explicitly refer to the output type, meaning that our users will be
free to compose commands with less risk of breaking changes in the future.
Unfortunately, even though we’re not explicitly naming the output type of
ListDirectory we’re still relying on the implementation detail that it’s defined as
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[FilePath]. We’re able to do this because type families work similarly to type
aliases. Any time we use ShellOutput ListDirectory it’s essentially a synonym for
[FilePath]. Like with type aliases, this can have the down side that it may allow
us to accidentally write code that depends on what should have been an
implementation detail.

Associated Data Families
One way to avoid this problem is to use data families. A data family works
like a type family, except that every data family instance defines a brand new
type, rather than creating an alias for some existing type. Data families oth-
erwise work like type families, except we use the data keyword instead of type.
Let’s take one more pass at refactoring our shell library to use data families
instead of type families. We’ll start by refactoring our type class definition:

class ShellCommand cmd where
data ShellOutput cmd :: Type
runCmd ::

Monad m =>
cmd ->
(String -> [String] -> m String) ->
m (ShellOutput cmd)

You’ll notice that the only change to the definition of our type class is that
we’re now using the keyword data instead of type. The changes to our instances
will be a little bit more invasive, but not much. Let’s look at our ListDirectory
instance next.

In this example, rather than directly translating our earlier type family, we’ll
revisit what we return. One of the requirements we ran into was that we
needed a way to add the parent directory to the name of the files in the
directory listing. We can make that easier for ourselves by keeping the path
to the directory alongside the directory listing. We can do that by defining a
new record with our data family:

instance ShellCommand ListDirectory where
data ShellOutput ListDirectory =

DirectoryListing { containingDirectory :: FilePath
, filenamesInListing :: [FilePath]
} deriving (Show, Eq)

runCmd (ListDirectory dir) run =
DirectoryListing dir . lines <$> run "ls" ["-1", dir]

As you can see, creating a new data family instance follows the same pattern
that you used to create type family instances, but now we’re defining a brand
new constructor called DirectoryListing and adding fields to it. The constructor
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we’re creating works just like any other constructor. You can see in this
example that we’re deriving Show and Eq instances.

Before we move on to writing an instance for Grep using data families, let’s
take advantage of this extra information we’re now storing to write a utility
function to handle getting a list of files in a directory listing including the
name of their parent directory.

directoryListingWithParent :: ShellOutput ListDirectory -> [FilePath]
directoryListingWithParent DirectoryListing{..} =

map fixPath filenamesInListing
where

fixPath fname =
containingDirectory <> "/" <> fname

You’ll notice in this example that we’re referring to the type of our record by
the data family name, ShellOutput ListDirectory. Although the constructor and
record field selectors are all visible like normal, our new record’s type is only
accessible by applying our data family. Let’s take a quick look at ghci to get a
feel for the types we have in scope so far:

λ :t DirectoryListing
DirectoryListing

:: FilePath -> [FilePath] -> ShellOutput ListDirectory
λ :kind ShellOutput ListDirectory
ShellOutput ListDirectory :: Type
λ :t containingDirectory
containingDirectory :: ShellOutput ListDirectory -> FilePath
λ :t filenamesInListing
filenamesInListing :: ShellOutput ListDirectory -> [FilePath]

In addition to defining brand new data types, we can also use newtype with
data families to get the extra type safety benefits of a data family without any
additional runtime overhead. Let’s create an instance of ShellCommand for Grep
using a newtype wrapper instead of a brand new record type:

instance ShellCommand Grep where
newtype ShellOutput Grep =

ListOfGrepMatches { getListOfGrepMatches :: [GrepMatch] }

runCmd (Grep match grepFiles) run =
ListOfGrepMatches . parseGrepResponse . fixResponses . lines <$>
run "grep" grepArgs
where
grepArgs = "-n" : match : grepFiles
fixResponses :: [String] -> [String]
fixResponses responseLines =

case grepFiles of
[fname] -> (\l -> fname <> ":" <> l) <$> responseLines
_ -> responseLines
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In this example, you can see when we want to use a newtype with a data family,
we replace the data keyword with newtype. The instance of the data family is
defined like any other newtype, and the constructor and our field selector are
available just like they were when we defined our DirectoryListing record:

λ :t ListOfGrepMatches
ListOfGrepMatches :: [GrepMatch] -> ShellOutput Grep

λ :t getListOfGrepMatches
getListOfGrepMatches :: ShellOutput Grep -> [GrepMatch]

As you can imagine, refactoring Pipe follows the same pattern that we’ve used
for ListDirectory and Grep. If you’d like, you can jump ahead to the first exercise
at the end of this chapter and complete refactoring this module to use data
families.

Open Data and Type Families
After learning about associated data and type families, you might find yourself
in a situation where you want to create a new type class just for the sake of
having a data or type family. For example, imagine that you wanted to write
some code that would let you generate type level string representations of
some types. We can do that with associated types, but it ends up being pretty
verbose:

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE UndecidableInstances #-}

module EffectiveHaskell.Chapter15.OpenDataFamiliesDemo where
import GHC.TypeLits

class HasNamedType t where
type NamedType t :: Symbol

instance HasNamedType Int where
type NamedType Int = "Int"

instance HasNamedType Char where
type NamedType Char = "Char"

instance HasNamedType String where
type NamedType String = "String"

instance (HasNamedType a, HasNamedType b) =>
HasNamedType (a -> b) where
type NamedType (a -> b) =

NamedType a `AppendSymbol` " -> " `AppendSymbol` NamedType b

Chapter 15. Programming with Types • 574

report erratum  •  discuss

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


Open type families give us the same functionality without the need to explic-
itly define a type class. We call them open type families because, like type
classes and associated type families, they are open to extension. In other
words, we, or the user, can always add more instances later on without having
to change the definition of the open type family. We can define an open type
family at the top level of our module with the type family keywords, and create
instances of the family with type instance. Let’s take a look at an open type
family based version of NamedType:

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE TypeOperators #-}

module OpenDataFamilyDemo where
import GHC.TypeLits
import Data.Kind

type family NamedType (a :: Type) :: Symbol
type instance NamedType Int = "Int"
type instance NamedType Char = "Char"
type instance NamedType String = "String"
type instance NamedType (a -> b) =

NamedType a `AppendSymbol` " -> " `AppendSymbol` NamedType b

In this example, you can see the open type family looks similar to the associated
type family implementation, but it does away with some of the extra syntax we
needed for defining the HasNamedType class. In fact, you can really think of asso-
ciated type families as a special case of a more general open type family, where
the type family has to be defined for every instance of a particular type class.
This requirement lets us use the type family in the types of the functions defined
inside of the class. If you don’t need to use the type family as part of the type
of any functions in the class, then an open type family is essentially the same
as an associated type family. We’ve also added a kind signature to the parameter
of NamedType. In theory, we could have omitted the kind signature here, but
adding kind signatures can help make our type level code safer and easier to
read. Of course, we could have also added kind signatures to the parameters
of our associated type family, but it’s more common to see the kind signatures
omitted for the parameters of associated type familes since it will often be
included in the definition of the type class.

Let’s open up ghci and try running a few commands to experiment with our
new NamedType family. If we call our type family for any of the types we’ve
defined instances for, we get back the string we’d expect:
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λ :kind! NamedType Int
NamedType Int :: Symbol
= "Int"

λ :kind! NamedType String
NamedType String :: Symbol
= "String"

λ :kind! NamedType (String -> Int)
NamedType (String -> Int) :: Symbol
= "String -> Int"

We can even call our type family with a function that takes more than one
argument, since currying will turn it into a single argument function for us:

λ :kind! NamedType (String -> Char -> Int -> Char)
NamedType (String -> Char -> Int -> Char) :: Symbol
= "String -> String -> Int -> Char"

If we try to call our type family with a type that we haven’t defined an instance
for, you might expect that we’ll get an error. Instead, something unexpcted
happens. The command will succeed, but the result will be an unevaluated
type family expression:

λ :kind! NamedType (Bool -> Bool)
NamedType (Bool -> Bool) :: Symbol
= AppendSymbol

(AppendSymbol (NamedType Bool) " -> ") (NamedType Bool)

The problem here is that :kind! is telling ghci to do its best to run type checking
and reduce our type level expression, but it’s not able to do so far enough to
actually know that we have an error. Instead, it throws up its hands and gives
us back the unevaluated expression. This can end up being a particular
problem when you are using :kind! to type check your code, but not looking
closely at the output. Since the result isn’t an error, it’s easy to look past the
fact that the result is partially unevaluated and realize that this means you
may have a type family that isn’t actually defined.

One way that we can get a more through test of our type level code is to use
it to generate an actual term level value, but our type family is generating a
purely type level string. How can we turn that into something at the term
level that we can run, and use to test our type family instances?

We’ll start by using one of the useful functions that is provided to use in
GHC.TypeLits, the symbolVal function. It has the type:

symbolVal :: KnownSymbol n => proxy n -> String
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The KnownSymbol constraint is a type class constraint that’s defined for all
Symbol types. This means we know that n must be some kind of type level
string. Knowing we have a type level string is good, since we want to get a
term level string that matches the type level string, but it presents a problem.
We need to pass something into symbolVal so that it can keep track of the type
information it needs to return a string value, but we can’t actually create any
term level values with a symbol type. This is a common problem when we’re
dealing with type level code, but there’s a straightforward solution: phantom
types. We don’t need a value whose type is a symbol, we just need a value
whose type carries the symbol information along with it. We typically call
values like this proxies.

The Data.Proxy module from base gives us a useful default definition for a proxy
that looks like this:

data Proxy a = Proxy

In other words, a Proxy is a type that only has a single inhabitant, Proxy, but
it can carry around any type information that we want. If you’re reading
carefully though, you’ll notice that symbolVal’s proxy is a type parameter, with
a lowercase p. Since we’ll never use the value of a proxy type, there’s no reason
to restrict it to being an actual Proxy, even if that’s what you’ll use as a proxy
value most of the time.

You can use a proxy value with either a visible type application or a type
annotation. Let’s look at a couple of examples in ghci:

λ symbolVal (Proxy :: Proxy "Hello")
"Hello"

λ symbolVal $ Proxy @"World"
"World"

As you can see, Proxy let’s us carry around the type information for a symbol
and pass it into symbolVal so that we can get back a runtime string representa-
tion of the type literal string that we passed in. If we use the ScopedTypeVariables
extension, we can also create a proxy value to carry around the information
about a polymorphic type. Let’s put this all together and write a new function,
showTypeName that will take a type with a NamedType instance and generate a
term level string representation. We’ll need to start by enabling the FlexibleCon-
texts extension.
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FlexibleContexts

The FlexibleContexts extension has been available since GHC 6.8.1.
It’s enabled by default in GHC2021 but if you’re using Haskell2010
you’ll need to enable it manually. This is generally a safe extension
that shouldn’t cause problems with any existing code.

{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeApplications #-}

showTypeName :: forall t. (KnownSymbol (NamedType t)) => String
showTypeName = symbolVal $ Proxy @(NamedType t)

In this example, our function’s type says the return type of NamedType must
be a known symbol. With FlexibleContexts, we’re allowed to call the NamedType
family directly inside of the KnownSymbol constraint. Without this extension,
we can only have constraints on type names.

Whatever that type happens to be, we’ll create a proxy value that holds that
type information, and passes it into symbolVal so that we can get a runtime
string. Let’s try it out in ghci:

λ showTypeName @Int
"Int"

λ showTypeName @Char
"Char"

λ showTypeName @(Int -> Int -> String)
"Int -> Int -> String"

In these examples, we’re sticking to types that have NamedType instances, and
as we’d expect we’re getting back term level strings. We can use these strings
like any other string:

λ typeName :: String = showTypeName @(String -> Int)

λ putStrLn $
"The type '" <> typeName <> "' is " <> show (length typeName) <> " chars"

The type 'String -> Int' is 13 chars

Unlike our examples using :kind!, if we try to pass a type that doesn’t have a
NamedType instance to showTypeName we’ll get an error:

λ showTypeName @Bool
<interactive>:907:1-12: error:

• No instance for (KnownSymbol (NamedType Bool))
arising from a use of ‘showTypeName’

• In the expression: showTypeName @Bool
In an equation for ‘it’: it = showTypeName @Bool
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Why does this function successfully give us an error when looking at the kind
didn’t? It’s because in this function we’re forced to actually pick a particular
instance of the KnownSymbol type class so that we get a string out of it, and at
that point we’re forced to deal with the fact that there’s no instance defined
for NamedType Bool. As you’ll see later in this chapter, type classes are an
important part of writing type level code, because they give us a way to map
the computed types back to term level values.

Now that we have a way to more easily test our type family, and we can get
useful errors out of it, let’s make a few quality of life improvements by adding
a some additional compound types. Let’s start by adding an instance for
tuples:

type instance NamedType (a,b) =
"(" `AppendSymbol` NamedType a `AppendSymbol` ","
`AppendSymbol` NamedType b `AppendSymbol` ")"

This is starting to get a bit unreadable thanks to the repeated use of infix
AppendSymbol calls. Thankfully, we can create type operator aliases for type
families the same way we could for lifted data types. Let’s try to add a new
operator and then refactor our NamedType instance to use it:

type (:++:) = AppendSymbol

type instance NamedType (a,b) =
"(" :++: NamedType a :++: "," :++: NamedType b :++: ")"

Unfortunately, when we try to compile this refactored example, we get a new
error:

src/OpenDataFamilyDemo.hs:15:1-26: error: ...
• The type family ‘AppendSymbol’ should have 2 arguments,

but has been given none
• In the type synonym declaration for ‘:++:’
|

Compilation failed.

This error illustrates one of the biggest limitations that we have with type
families compared to term level functions. We’re not allowed to use partially
applied type families. Although we’re free to reference constructors without
passing in all of their arguments, like we did when we created a type operator
for Cons earlier, a type family must always have all of its arguments applied.
This restriction can be particularly troublesome if you want to write higher
order functions like map or fold at the type level. You’ll learn how to handle
this situation later on in the chapter. Thankfully, in this case we can work
around that restriction without too much trouble by adding type parameters
to both sides of our operator:
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type (:++:) a b = AppendSymbol a b

type instance NamedType (a,b) =
"(" :++: NamedType a :++: "," :++: NamedType b :++: ")"

With our new type family instance in place, we can now get nicely formatted
versions of types that include tuples:

λ showTypeName @(Char -> String, String -> Int)
"(Char -> String,String -> Int)"

λ showTypeName @(String -> (Int, Char))
"String -> (Int,Char)"

Now that we’ve covered tuples, let’s try to add an instance that will let us
format list types. We’ll follow the same pattern we used for tuples:

type instance NamedType [a] = "[" :++: NamedType a :++: "]"

Once again, if we compile this we’re faced with an error. This time the compiler
is letting us know that we have conflicting instances:

src/OpenDataFamilyDemo.hs:19:15-23: error: …
Conflicting family instance declarations:
NamedType String = "String"

-- Defined at /examples/OpenDataFamilyDemo.hs:19:15
NamedType [a] = ("[" :++: NamedType a) :++: "]"

-- Defined at /examples/OpenDataFamilyDemo.hs:23:15
|

Compilation failed.

The problem we’re running into now is String is an alias for the type [Char], but
our new instance defined for [a] will match any list type, including [Char]. Open
type families are very particular about overapping instances. We’re only
allowed to have to instances that overlap if all of the overlapping instances
would return exactly the same value in the overlapping cases. We can see
that this is the case if we hardcode both our String and [a] instances to always
return "":

type instance NamedType String = ""
type instance NamedType [a] = ""

In this case, since the overlapping instances always return the same type the
compiler accepts the overlap. Relying on this exception can be tricky though,
since the types that each of the overlapping instances return needs to be
structurally equal. For example, imagine that we hadn’t yet defined an instance
for String, but we had a list instance defined like this:

type instance NamedType [a] = "[" :++: NamedType a :++: "]"
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Now, let’s call NamedType String and see what we get back:

λ :kind! NamedType String
NamedType String :: Symbol
= "[Char]"

Next, let’s add our String instance back, but this time we’ll hard-code the return
type of "[Char]". That seems like it should work, since it’s exactly what we got
when we evaluated the type family in ghci:

type instance NamedType String = "[Char]"

The compiler seems to have a different idea of equality than we do. If we try
to compile this we’ll still get an error:

src/OpenDataFamilyDemo.hs:20:15-23: error: …
Conflicting family instance declarations:
NamedType String = "[Char]"

-- Defined at /examples/OpenDataFamilyDemo.hs:20:15
NamedType [a] = ("[" :++: NamedType a) :++: "]"

-- Defined at /examples/OpenDataFamilyDemo.hs:24:15
|

Compilation failed.

Even though it seems like these two expressions ought to be the same, the
compiler still won’t accept this, since our literal symbol is structurally different
from the computed symbol we’re generating in our list instance. Let’s give
this another try. This time we’ll be a bit more explicit about replicating the
same structure by using (:++:) to combine the different parts of our symbol:

type instance NamedType String = "[" :++: "Char" :++: "]"

Unfortunately that still doesn’t seem to be sufficient. If you try to compile this
version you’ll see that you’re getting a similar error: the compiler still doesn’t
consider these two types equal. We have one more option. Let’s replace the
symbol literal "Char" with a call to NamedType:

type instance NamedType String = "[" :++: NamedType Char :++: "]"

If you try to compile this version of the code you’ll see that we’ve finally found
an instance that can successfully overlap. In order to do that, we needed to
make sure that we were returning exactly the same type that we would have
returned in our list instance, without any additional normalization.

Closed Data and Type Families
Open and associated type families are certainly useful, but the fact that they
can be arbitrarily extended by users of our library also puts some limitations
on the computations that we can reasonably do with them. Closed data and
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type families give us another way to write type level functions that give up
extensibility, and in exchange there are different sorts of computations that
we can build with them. This is thanks to the fact that we’ll know every
instance of a closed type family that will exist at the time it’s defined. That
lets us handle our cases exhaustively. In this section, we’ll look at two different
examples of how we can used closed type families to write type level compu-
tations. First, we’ll look at how we can use type families to implement some
basic arithmetic on peano numbers to get a feel for the syntax and basics of
using type familes. Next, we’ll work through some examples of working with
type level lists using open and closed type families together to give us even
more flexiblity.

You first learned about peano numbers much earlier in this book, when you
first learned about creating your own types on page 136. Although GHC already
gives us convenient access to type level literals, peano numbers are still
useful because they are a great example of how to work with closed type
families. Let’s revisit our peano numbers, but this time we’ll use them at the
type level.

The first thing we’ll want to do is create a new module and add in our definition
of peano numbers:

{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}

module ClosedTypeFamilyDemo where
import GHC.TypeLits

data Peano = Zero | Succ Peano

The first problem that we’ll run into working with peano numbers, whether
it’s at the type or term level, is that it’s annoying to type out the numbers
when we have to manually nest the constructors. Since we know that GHC
already provides us with a nice way of writing type level Natural values using
numeric literals, let’s create a new type family to convert a Natural to a Peano.

The algorithm we want to implement for this is straightforward:

• If the Natural number is 0, then return Zero.
• If it’s anything larger than zero, return the successor of converting the

next smallest natural number to a Peano.

If we try to implement this using an open type family though, we’ll run into
a problem: the most natural way of expressing this algorithm runs into the
dreaded overlapping instances problem. Let’s try it and see for ourselves:
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type family ToPeano (n :: Natural) :: Peano
type instance ToPeano 0 = Zero
type instance ToPeano a = Succ (ToPeano (a - 1))

If you try to compile this you’ll quickly see the problem: a can match anything,
including 0, so it will overlap the instance that should be acting as the base
case of our recursion.

Thankfully, we have another option. We can write ToPeano using a closed type
family. Overlap is allowed in closed type families. Like guard clauses and case
expressions, overlap in a closed type family is resolved top-to-bottom. Let’s
rewrite ToPeano as a closed type family and see how it works:

type family ToPeano (n :: Natural) :: Peano where
ToPeano 0 = Zero
ToPeano a = Succ (ToPeano (a - 1))

The first thing to notice is that the closed type family version of our code
works as expected. If we load it up into ghci we can successfully convert natu-
rals into peano numbers:

λ :kind! ToPeano 3
ToPeano 3 :: Peano
= 'Succ ('Succ ('Succ 'Zero))

λ :kind! ToPeano 5
ToPeano 5 :: Peano
= 'Succ ('Succ ('Succ ('Succ ('Succ 'Zero))))

You’ll notice that the syntax for creating a closed type family is similar to that
of an open type family, but now we include all of the instances inside of a
where clause rather than creating instances using type instance. Before we move
on, let’s write a FromPeano instance as well, so that we can easily convert back
and forth between Natural and Peano representations of numbers:

type family FromPeano (a :: Peano) :: Natural where
FromPeano Zero = 0
FromPeano (Succ a) = 1 + FromPeano a

Now we can round trip between Peano and Natural representations of numbers:

λ :kind! FromPeano (ToPeano 10)
FromPeano (ToPeano 10) :: Natural
= 10

λ :kind! ToPeano (FromPeano (Succ (Succ (Succ Zero))))
ToPeano (FromPeano (Succ (Succ (Succ Zero)))) :: Peano
= 'Succ ('Succ ('Succ 'Zero))

Being able to convert back and forth between different representations of a
number will be useful as we’re working through some more examples, but
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it’s not particularly interesting on its own. Let’s make our Peano numbers more
useful by adding some basic arithmetic operations for them. We’ll start with
addition and multiplication. Unlike our earlier type family examples, these
will need to take two parameters. Luckily, adding extra parameters to a type
family is straightforward:

type family Add (a :: Peano) (b :: Peano) :: Peano where
Add a Zero = a
Add a (Succ b) = Add (Succ a) b

type family Multiply (a :: Peano) (b :: Peano) :: Peano where
Multiply a Zero = Zero
Multiply a (Succ Zero) = a
Multiply a (Succ b) = Add a (Multiply a b)

One thing to notice about all the examples we’ve looked at so far is we’re defining
total functions. We can add or multiply any two peano numbers and get a
number back out. Not all operations we might want to support are this flexible
though. If we want to support subtraction, we’ll quickly run into a problem: we
can’t represent negative numbers with Peano, but there’s nothing stopping our
users from trying to subtract a bigger number from a smaller one.

If we try to naively define Subtract it will work for cases where the numbers are
subtractable, but if a user tries to do an invalid operation, we’ll run into the
same situation we encountered with NamedType—we’ll get an unnormalized
type instead of a useful error. Let’s try it out and see:

type family Subtract (a :: Peano) (b :: Peano) :: Peano where
Subtract a Zero = a
Subtract (Succ a) (Succ b) = Subtract a b

If we load this into ghci we’ll get reasonable values for valid operations:

λ :kind! FromPeano (Subtract (ToPeano 10) (ToPeano 2))
FromPeano (Subtract (ToPeano 10) (ToPeano 2)) :: Natural
= 8

Now let’s try to subtract 10 from 2 and see what we get:

FromPeano (Subtract (ToPeano 2) (ToPeano 10)) :: Natural
= FromPeano

(Subtract
'Zero
('Succ

('Succ ('Succ ('Succ ('Succ ('Succ ('Succ ('Succ 'Zero)))))))))

Just like when we were working with symbols, we have the option of trying
to get a runtime value out of our invalid subtraction so that we can force an
error. Let’s use the natValue function from GHC.TypeLits:
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λ :type natVal
natVal :: KnownNat n => proxy n -> Integer
λ natVal $ Proxy @(FromPeano (Subtract (ToPeano 10) (ToPeano 2)))
8
λ natVal $ Proxy @(FromPeano (Subtract (ToPeano 2) (ToPeano 10)))
<interactive>:2228:1-6: error:

• No instance for
(KnownNat

(FromPeano
(Subtract

'Zero
('Succ

('Succ
('Succ
('Succ
('Succ

('Succ
('Succ

('Succ 'Zero)))))))))))
arising from a use of ‘natVal’

• In the first argument of ‘($)’, namely ‘natVal’
In the expression:
natVal $

Proxy @(FromPeano (Subtract (ToPeano 2) (ToPeano 10)))
In an equation for ‘it’:

it
= natVal $

Proxy @(FromPeano (Subtract (ToPeano 2) (ToPeano 10)))

Even though we can get a runtime error with natValue there are two problems.
First, it would be preferable if we could get the type error at the type level,
rather than requiring that we try to get a term level value. Second, and more
notably, the error message that we’re getting here is unreadable and larger
numbers result in even less readable and more deeply nested error messages.
Type level programming can easily lead to cases where you can end up with
impossibly complex error messages.

Thankfully, we can address both the problem of unreadable errors and the
lack of errors when working at the type level in ghci with a single change:
creating a user-defined type error. We can create a user-defined type error
using TypeError and Text from GHC.TypeLits. Let’s add a type error to Subtract:

type family Subtract (a :: Peano) (b :: Peano) :: Peano where
Subtract a Zero = a
Subtract Zero b =

TypeError (Text "Subtract: Cannot result in a negative number")
Subtract (Succ a) (Succ b) = Subtract a b
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In this example, TypeError is a type family that can be used to generate a compile
time type error. We call it with an error message that we can generate with
Text. Now if we try to evaluate an invalid subtraction in ghci we’ll see that the
result would be a type error, and if we try to get a runtime value we’ll see that
our error message is much easier to read:

λ :kind! Subtract (ToPeano 5) (ToPeano 10)
Subtract (ToPeano 5) (ToPeano 10) :: Peano
= (TypeError ...)

λ natVal $ Proxy @(FromPeano (Subtract (ToPeano 5) (ToPeano 10)))
<interactive>:2271:1-6: error:

• Subtract: Cannot result in a negative number
• In the first argument of ‘($)’, namely ‘natVal’

In the expression:
natVal $ Proxy @(FromPeano (Subtract (ToPeano 5) (ToPeano 10)))

In an equation for ‘it’:
it

= natVal $
Proxy @(FromPeano (Subtract (ToPeano 5) (ToPeano 10)))

You can also get a bit more creative with your error messages to make them
even more useful. For example, ShowType lets you print the value of a type in
the error message. You can also combine error messages onto the same line
with (:<>:), or create multiple lines of error message output with (:$$:). Let’s
look at one more example of a more nicely formatted error message:

type family Subtract (a :: Peano) (b :: Peano) :: Peano where
Subtract a Zero = a
Subtract Zero b = TypeError (

Text "Subtract: Cannot result in a negative number" :$$:
Text "The result would be -" :<>: ShowType (FromPeano b))

Subtract (Succ a) (Succ b) = Subtract a b

This version of our error will not only explain that we can’t have a negative
peano number, it will even tell the user what negative value they would have
gotten if negative numbers were allowed:

λ natVal $ Proxy @(FromPeano (Subtract (ToPeano 5) (ToPeano 10)))
<interactive>:2274:1-6: error:

• Subtract: Cannot result in a negative number
The result would be -5

• In the first argument of ‘($)’, namely ‘natVal’
In the expression:
natVal $

Proxy @(FromPeano (Subtract (ToPeano 5) (ToPeano 10)))
In an equation for ‘it’:

it
= natVal $

Proxy @(FromPeano (Subtract (ToPeano 5) (ToPeano 10)))
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User-defined type errors are common in closed type families. Since a closed
type family should be exhaustive and supports overlap, it’s often straightfor-
ward to have a “catch-all” error case to give the user information about
unsupported calls to the type family. You can also use type errors with open
and associated type families, and as you’ll see later in this chapter, with type
classes.

Now that you’ve learned the basics about type families using peano numbers,
let’s move on to some more advanced examples of the sort of computations
that you can do with type level families.

Type Level List Operations with Type Families
Earlier in this chapter, you learned about type level lists, but so far we’ve
been limited to using them in fairly simple ways. None of the common func-
tions you’ve come to expect for term level lists are defined for us at the type
level, so we’ll need to write them ourselves if we want to get more use out of
lists for type level computation. In this section, we’ll build a few list functions
to help make working with lists easier at the type level.

As usual, let’s start by creating a new module and adding some language
extensions:

{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}

module TypeFamilyListFuncs where
import GHC.TypeLits
import Data.Kind

Now that we have the necessary boilerplate in place, let’s start by adding a
new closed type family that will let us search to see if a particular value is
inside of a type level list:

type family Member (needle :: a) (haystack :: [a]) :: Bool where
Member a '[] = False
Member a (a : as) = True
Member a (b : as) = Member a as

If you look at this example closely, you’ll notice one of the big differences
between pattern matching in type families compared to term level code like
case expressions. Let’s look at the line in more detail:

Member a (a : as) = True
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In this line of code we’re testing to see if the element we’re searching for
matches the head of the list, and we do it by using the same variable, a. In
term level code this would fail and the compiler would warn us that we were
trying to bind the same name to two different expressions, but at the type
level using the same variable in a pattern means that the pattern will only
match if the value of the variable is equal in both places.

Unfortunately, this feature also invites a bug that we wouldn’t have to worry
about in the term level. Consider the very next line of our type family:

Member a (b : as) = Member a as

In this example, b is a distinct type variable, so a and b do not need to be
equal, but the expression also does not prohibit them from being equal. In
other words, our two type family instances will overlap in the case that the
head of the list is the element we’re searching for. If we reverse the order of
these two lines of code, the behavior would change and we would never report
that we’d successfully found a match. With -Wall enabled you’ll get a warning
about this, but otherwise it can be a confusing source of bugs.

Thankfully, we’ve done our overlap in the correct order, so we can load our
code up into ghci and see it in action:

λ :kind! Member 1 '[]
Member 1 '[] :: Bool
= 'False

λ :kind! Member 1 '[1,2,3]
Member 1 '[1,2,3] :: Bool
= 'True

λ :kind! Member 1 '[2,3,4]
Member 1 '[2,3,4] :: Bool
= 'False

Knowing when a type level list contains a particular element is quite useful,
and you’ll see some examples of how we can apply this later on in the chapter,
but it’s a bit limited. It would be nice if we could find all of the elements that
satisfied some particular predicate, like being even. Writing a function like
this at the term level would be easy enough:

findElems :: (a -> Bool) -> [a] -> [a]
findElems _ [] = []
findElems p (x:xs) =

if p x then x : findElems p xs else findElems p xs

At the type level, writing a function like this is challenging because we’re
dealing with a higher order function, and that means we need a way to pass
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a type level function into a type family. As you learned earlier in this chapter,
we can’t use partially applied type families, so we’ll need to use some new
techniques to work around the limitation.

Let’s start by writing a version of FindElems that works the way we’d like it to
work, imagining some features that we’d like to have along the way. Then
we’ll try to either build the features we’ve imagined, or refactor FindElems until
we get to some code that actually works.

type family FindElems (p :: a -> Bool) (elems :: [a]) :: [a] where
FindElems _ '[] = '[]
FindElems p (a:as) =

If p a Then (a : FindElems p as) Else (FindElems p as)

The imaginary implementation of FindElems in this example is relying on two
major features that are missing from our knowledge so far. First, we’re
assuming the user can pass in a type family that hasn’t been fully applied.
Second, we’re trying to use an if expression, even though there’s nothing like
that defined for us at the type level.

Before we tackle the harder problem of dealing with higher order type level
functions, let’s address the lack of conditionals at the type level. The lack of
conditional expressions at the type level might seem like a major oversight,
but it turns out that it’s very easy for us to write our own as long as we’re
willing to compromise on the precise syntax. Instead of using If, Then, and Else
as individual keywords, we can write a type family that takes three parameters
and will handle branching for us. We’ll call it IfThenElse:

type family IfThenElse (p :: Bool) (t :: a) (f :: a) :: a where
IfThenElse True t _ = t
IfThenElse False _ f = f

This type family will take a predicate value, and values for each branch. If the
predicate is true, we return the true branch, and otherwise we will return
the false branch. Let’s refactor FindElems to use this new type family:

type family FindElems (p :: a -> Bool) (elems :: [a]) :: [a] where
FindElems _ '[] = '[]
FindElems p (a:as) =

IfThenElse (p a) (a : FindElems p as) (FindElems p as)

Now that we’ve dealt with branching, we need to revisit the fact that FindElems
needs to take a function. We can’t pass a type family in, because we’re not
allowed to use type families that haven’t had all of their arguments applied,
but type families aren’t the only way we can represent something like (a ->
Bool) at the type level. Type constructors take arguments, and we are allowed
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to pass those into a type family without having applied all of their arguments.
We need to figure out a way to represent a type level function as data.

Thankfully for us, there’s a well-established technique for removing higher
order functions and replacing them with data. It’s called defunctionalization,
and we can do it using things we’ve already learned about working with type
families and data kinds.

The first step to defunctionalizing FindElems is to create a type constructor that
will represent the computation we want to pass into FindElems. If we wanted
to pass in a function that would select even numbers, we might start with
something like this:

data Even (n :: Natural)

In this example we’re creating a new type, Even. We don’t need to define any
constructors, since we’ll only ever use this at the type level. You might have
noticed the problem that we have here already, but if not, let’s take a look at
the kind of Even in ghci:

λ :kind Even
Even :: Natural -> Type

Even has the kind Type, but we originally wanted something that will return a
type of kind Bool. Using defunctionalization means we’re going to have to
compromise on the exact kind of the value we pass into FindElems though. Any
type that we create, once we’ve applied all of our arguments, will end up
having the kind Type. That doesn’t mean we can’t capture the return type of
the computation the data type represents though—we just need to add it as
an extra parameter. Let’s do another round of refactoring:

data Even (n :: Natural) (r :: Bool)
type family

FindElems (p :: a -> Bool -> Type) (elems :: [a]) :: [a]
where
FindElems _ '[] = '[]
FindElems p (a:as) =

IfThenElse (p a) (a : FindElems p as) (FindElems p as)

Now if we look at the kind of Even in ghci we’ll see that it matches up exactly
with what we want to pass into FindElems:

λ> :kind Even
Even :: Natural -> Bool -> Type

Although our kinds line up, it’s a little bit awkward to read. There are a couple
of small quality of life refactors we can make so that our code will be easier
to read. First, we can replace (Bool -> Type) with a type alias that will abstract
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away the implementation detail that our defunctionalized types have to have
the kind Type. Second, we can use a kind signature rather than named
parameters when we define Even so that it matches up with the argument to
FindElems. Let’s make one more refactoring pass:

type ReturnValue r = r -> Type
data Even :: Natural -> ReturnValue Bool
type family

FindElems (p :: a -> ReturnValue Bool) (elems :: [a]) :: [a]
where
FindElems _ '[] = '[]
FindElems p (a:as) =

IfThenElse (p a) (a : FindElems p as) (FindElems p as)

We’re getting closer to a working type family, but we’ve still got some work
left to do. The most obvious problem we have right now is that we’ve created
a new type that represents the function we want to pass in, but we haven’t
actually defined any sort of computation that we can do with it. In other
words, we’ve turned our function into a type so that we can pass it into the
type family, but now we need to turn it back into a function.

So, we have an input value that is a type with the kind a -> ReturnValue Bool and
we need to get out a type with the kind Bool. We need a function from a type
to a type, which means that we need another type family. Let’s add a new
type family called EvalEven that will perform the computation for the Even type
that we’re passing in:

{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}

module TypeFamilyListFuncs where
import GHC.TypeLits
import Data.Kind

type family IfThenElse (p :: Bool) (t :: a) (f :: a) :: a where
IfThenElse True t _ = t
IfThenElse False _ f = f

type ReturnValue r = r -> Type
data Even :: Natural -> ReturnValue Bool

type family
FindElems (p :: a -> ReturnValue Bool) (elems :: [a]) :: [a]
where
FindElems _ '[] = '[]
FindElems p (a:as) =

IfThenElse (EvalEven (p a)) (a : FindElems p as) (FindElems p as)
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type family EQ (a :: k) (b :: k) :: Bool where
EQ a a = True
EQ a b = False

type family EvalEven (expr :: Bool -> Type) :: Bool where
EvalEven (Even n) = EQ 0 (n `Mod` 2)

In this example, we’ve added a closed type family to evaluate our Even type,
and we’ve updated FindElems to call EvalEven to convert a ReturnValue Bool into a
Bool. We also added a new helper type family, EQ, to help us test for equality
between two types.

If we load this up into ghci you can see that it works as expected, and we’re
able to get all of the even numbers out of a type level list:

λ :kind! FindElems Even '[1,2,3,4,5,6]
FindElems Even '[1,2,3,4,5,6] :: [Natural]
= '[2, 4, 6]

There’s still one lingering problem and one more refactor to make before we’re
ready to be finished with this application. Since EvalEven is a closed type family,
we’re limited to only ever using FindElems to find even numbers. If we want to give
our users the ability to call FindElems with new functions we didn’t anticipate
ahead of time, then we should refactor EvalEven into an open type family. Since
it’ll be useful for computations other than testing for even values, we’ll also
rename it Even. While we’re at it, let’s also add a new type family we can use with
FindElems to find elements that are less than, or equal to, some number:

type ReturnValue r = r -> Type
data LessThanOrEqual :: Natural -> Natural -> ReturnValue Bool
data Even :: Natural -> ReturnValue Bool

type family Eval (expr :: ReturnValue r) :: r
type instance Eval (LessThanOrEqual a b) = b <=? a
type instance Eval (Even n) = EQ 0 (n `Mod` 2)

type family
FindElems (p :: a -> ReturnValue Bool) (elems :: [a]) :: [a]
where
FindElems _ '[] = '[]
FindElems p (a:as) =

IfThenElse (Eval (p a)) (a : FindElems p as) (FindElems p as)

By combining an open type family like Eval with a closed type family like Find-
Elems, we can get the right kind of flexiblity and power that we need for more
complicated type level computations. Let’s give this a try in ghci:

λ :kind! FindElems Even '[1,2,3,4,5,6]
FindElems Even '[1,2,3,4,5,6] :: [Natural]
= '[2, 4, 6]
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λ :kind! FindElems (LessThanOrEqual 3) '[1,2,3,4,5,6]
FindElems (LessThanOrEqual 3) '[1,2,3,4,5,6] :: [Natural]
= '[1, 2, 3]

λ :kind! FindElems Even (FindElems (LessThanOrEqual 3) '[1,2,3,4,5,6])
FindElems Even

(FindElems (LessThanOrEqual 3) '[1,2,3,4,5,6]) :: [Natural]
= '[2]

Working with type families to build up computations that work at the type
level is a critical part of writing type level code, but there are two more
important parts to working with type level programming effectively. In the
next section you’ll learn about GADTs, which will let you build up type level
data structures from the term level so that you can effectively generate inputs
to your type level code. Finally, we’ll look at how you can use type classes to
return the outputs of your type level code back to the term level for use in
the rest of your application.

GADTs: Functions from Terms to Types
GADTs are a new way to define data types that give us more flexibility in the
ways we express our data types, and which remove some limitations in how we
can define constructors that help us combine term and type level programming.
They also give us a brand new syntax for defining data types. We can enable
GADTs with the GADTs extension. In this section, we’ll look at how to use GADTs
to define some types you’re already familiar with, and how they can be used to
handle features like existential types more easily. After that, we’ll look at how
GADTs fit in with type level programming, and you’ll see how to use GADTs to
represent data types that couldn’t be written with traditional types.

GADTs

The GADTs extension has been available since GHC 6.8.1. It isn’t
enabled by default in either GHC2021 or Haskell2010 so you’ll need to
enable it manually. This is generally a safe extension that shouldn’t
interfere with any existing code. If you want to use the basic syntax
of GADTs without the new type system capabilities that they add,
you can also use the GADTSyntax extension, which will only enable
the new syntax. GADTSyntax is enabled by default in GHC2021 but will
need to be enabled manually in Haskell2010.

Using GADT Syntax
Let’s start learning about GADTs by rewriting a few types you’ll already be
familiar with using GADT syntax. We’ll start with Maybe, Either, and a List type.
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{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE KindSignatures #-}

module GADTs where
import Prelude hiding (Either(..), Maybe(..))
import Data.Kind

data Maybe a where
Nothing :: Maybe a
Just :: a -> Maybe a
deriving (Eq, Show)

data Either l r where
Left :: l -> Either l r
Right :: r -> Either l r

data List a where
Empty :: List a
Cons :: a -> List a -> List a
deriving Show

You can see in this example that GADT syntax has a strong resemblance to
the closed type family syntax worked with earlier in this chapter. With GADT
syntax, the constructors for our type are all listed in a where clause, and each
constructor is given a type annotation that represents the type of the construc-
tor. If you want to go even further, we can also use a kind signature instead
of a type parameter in the definition of the type:

data Maybe :: Type -> Type where
Nothing :: Maybe a
Just :: a -> Maybe a
deriving (Eq, Show)

You’ll notice in this example that we’re referencing the type variable a in our
constructors even though we didn’t explicitly bind it to the parameter when
we defined Maybe. That’s because GADTs are much more flexible with the way
we treat type variables.

GADT syntax makes working with existential types much more intuitive. For
example, imagine that we wanted to define a heterogenous list of values that
have a Show instance. With traditional data type syntax we’d write this:

data ShowList = ShowEmpty | forall a. Show a => ShowList a ShowList

Writing existential types with GADT syntax more closely resembles the way
we’d use constraints with a normal function definition:
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data ShowList where
ShowEmpty :: ShowList
ShowCons :: Show a => a -> ShowList -> ShowList

Even more conveniently, GADT syntax also allows us to use constraints with
ordinary constructors, which saves us the need to create smart constructors
if we want to restrict what values could be used with a particular type. For
example, imagine we wanted to have an ordinary list that could only hold
numeric values. We’d need to put our list in its own module, restrict the
export list, and add a smart constructor. With GADT syntax we can simply
add the constraints alongside each constructor. Unfortunately, using con-
straints like this means that we can’t derive type class instances in the usual
way, although we can still use StandaloneDeriving to derive instances for these
types:

data NumList a where
NumEmpty :: Num a => NumList a
NumCons :: Num a => a -> NumList a -> NumList a

deriving instance Eq a => Eq (NumList a)
deriving instance Show a => Show (NumList a)

Although it’s not very common, you can use records with GADT syntax:

data MultiRecord where
Record1 ::

{ intField :: Int, stringField :: String } -> MultiRecord

Record2 ::
{ intField :: Int, boolField :: Bool } -> MultiRecord

data SingleRecord a where
SingleRecordGADT ::

{ gadtStringField :: String
, gadtIntField :: Int
, gadtBoolField :: Bool
, gadtCustomField :: a
} -> SingleRecord a

Like traditional data types, record fields with the same name must have the
same type across different constructors. You’re also not obligated to provide
the same set of fields for records across each constructor. Using GADT syntax
for traditional sum types with record fields can lead to the same problem of
record field selectors that are partial functions. If we make use of the full
features of GADTs however, we can get record field selectors that are type
safe and won’t fail. In the next section you’ll learn more about how GADTs
work and how they are different for regular data types, even ones defined
using GADT syntax, and you’ll get a chance to see this in action.
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GADTs
The key difference between GADTs and regular data types is that the type of
a GADT value can be determined by the constructor that was called to create
it. This is the fundamental connection between GADTs and type level program-
ming. Since the type of a GADT value is determined by the term level function
called to create it, GADTs give us a way to connect term and type level code
by letting us construct the inputs to a type level program from the term level.

Before we get too far down the path of using GADTs for sophisticated type
level code though, let’s look at some smaller examples to get a feel for how
GADTs work. One of the best examples is the way that we can use records
fields with GADTs more safely than we could with normal sum types. Imagine
that we were writing a program that could recognize a user by their name or
a user ID, and we wanted to get a list of all users that were identified by name
and had a particular first name. Without GADTs we might write it like this:

data UserNameRecord =
UserNameRecord { userFirstName :: String, userLastName :: String }

data UserIDRecord = UserIDRecord { userID :: Int }
data User = UserByName UserNameRecord | UserByID UserIDRecord

usersWithFirstName :: String -> [User] -> [User]
usersWithFirstName targetFirstName = filter matchingFirstName

where
matchingFirstName nameRecord =

case nameRecord of
UserByName (UserNameRecord first last)

| first == targetFirstName -> True
_otherwise -> False

This example should look familiar; we’ve used this pattern several times in
the book. We first define two helper records that hold information about users
with names and users with IDs, respectively, and then we create a sum type
where each constructor holds one type of user record. This adds some extra
code, but it helps us avoid partial functions by avoiding having record fields
directly in a sum type. When we want to search our list of user records, we
might know that all of our users will be identified by name, but we still need
to go through the steps to pattern match against User and then unwrap the
inner UserNameRecord constructor to get at the name. Overall, we’re getting a
type safe program, but paying a fairly high cost for it.

With GADTs we can encode the constructor that was used to create a UserRecord
directly in the type that each constructor returns. Let’s take a look at how it
works:
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data User a where
UserByName ::

{ userFirst :: String, userLast :: String } -> User String

UserByID ::
{ userID :: Int } -> User Int

Now that we’re using a GADT, we’ve added a type parameter to User. Unlike
the earlier examples of GADT syntax though, we’re not using this type
parameter to represent some field in our records. Instead, each of our con-
structors is selecting a different value for our parameter, a. Let’s look at this
in ghci to get a better understanding of what’s going on.

We’ll start by looking at the types of UserByName and UserByID:

λ :t UserByName
UserByName :: String -> String -> User [Char]

λ :t UserByID
UserByID :: Int -> User Int

As you can see, each of our constructors returns a value with a different type.
If we create a value by calling UserByID we will always get a value with the
type User Int. Similarly, calling UserByName will always give us a value with the type
User String. One of the ways that this is useful is that the compiler can reason
about this relationship backwards as well as forwards. If we have a value
with the type User String then we know that it must have been created by calling
UserByName. We can see this in practice if we look at the types of our field
selectors:

λ :t userFirst
userFirst :: User String -> String

λ :t userLast
userLast :: User String -> String

λ :t userID
userID :: User Int -> Int

Being able to deduce the constructor, and available record fields, from the
type of the user means that we can greatly simplify our filter code:

usersWithFirstName :: String -> [User String] -> [User String]
usersWithFirstName firstName = filter ((== firstName) . userFirst)

Although it’s useful to be able to differentiate between different types of users
at the type level, this also ends up presenting us with a different problem.
Since constructing a user by name and by ID results in a different type, we
also can’t create a list of name and ID users.
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A Heterogenous User List
Earlier in this book you learned about using existential types as a way of
creating heterogenous lists, but that approach came with a substantial cost:
once a value was inserted into a list of existential typed values, we could
never recover the original type and were limited to accessing the values
through type classes.

It turns out that GADTs can give us another option for working with heteroge-
nous lists that don’t limit us in the same way that existential-based lists do,
although it comes at the cost of needing to do some type level programming.

Let’s start by taking a look at how we can use GADTs to define a heterogenous
user list:

{-# LANGUAGE DataKinds #-}

infixr 9 :++:
data Heterogenous a where

EmptyUsers :: Heterogenous '[]
(:++:) :: User a -> Heterogenous as -> Heterogenous (a : as)

Unlike existential-based heterogenous lists, our GADT approach uses a
straightforward, if somewhat brute force, approach to retaining the detailed
type information for every element in the list. Our list has a type parameter
that is itself a list of the type of every element that has been inserted into the
list. Each time we add a new value, we also add its type to the type of the list.
Let’s load up ghci and take a look to get an idea of what this means in practice:

λ byName = UserByName "Georgie" "Bird"
λ byID = UserByID 12345
λ :type EmptyUsers
EmptyUsers :: Heterogenous '[]

λ :type byName :++: EmptyUsers
byName :++: EmptyUsers :: Heterogenous '[[Char]]

λ :type byID :++: byID :++: byName :++: EmptyUsers
byID :++: byID :++: byName :++: EmptyUsers

:: Heterogenous '[Int, Int, [Char]]

As you can see, each time we add a new user type to the list, the type of the
list changes to keep track of the new information. That means the information
is always entirely recoverable.

Extracting Fields from a Heterogenous List
If we have all of the type information for each element that we’ve inserted into
our user list, then we ought to be able to use that to recover specific fields.
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Let’s imagine that we wanted to extract a list of the users who are identified
by name from a heterogenous list of users. How might we approach that?
Once again GADTs help make this easy. Let’s look at the code:

nameUsers :: Heterogenous a -> [User String]
nameUsers EmptyUsers = []
nameUsers (user :++: users) =

case user of
UserByName _ _ -> user : nameUsers users
UserByID _ -> nameUsers users

Since the type of Heterogenous a carries all of the type information that we need,
we’re able to pattern match on each element of the list. The constructor used
to create each element also tells us the type of that element, and so we can
select all of the values with the type User String.

A GADT-Based Shell Command Wrapper
Being able to determine the type of a value by the constructor used to create
it is a powerful technique, but our user example only scratches the surface.
Let’s return to our ShellCommand example and look at how GADTs can allow us
to write an easier to use and more expressive language for writing shell scripts.

Earlier in this chapter, you wrote a small library to help a user write shell
scripts in their Haskell applications. In that example, we used a type class
called ShellCommand, along with an associated type family to describe a partic-
ular command.

This approach had the benefit of extensibility, and we were able to define
several different operations that we could run. We could even compose our
operations together by defining a Pipe and creating a ShellCommand instance for
it. The type class approach also had some drawbacks. The biggest drawback
is that each shell command was its own type. Composing commands required
creating a new type, and there was nothing to limit a users ability to create
an invalid or poorly behaved instance of ShellCommand.

GADTs allow us to implement ShellCommand as a small internal library that
gives us many of the same benefits of the type class approach. Let’s look at
a complete reimplementation of our earlier DSL using GADTs, and then walk
through how it works step by step.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE GADTs #-}
module GADTShellCmd where
import System.FilePath.Posix ((</>))
import System.Process (readProcess)
import System.IO.Error
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newtype ProgName = ProgName { getProgName :: FilePath }
newtype ProgArgs = ProgArgs { getProgArgs :: [String] }

data ShellCmd a b where
RunCommand ::

ProgName -> (a -> ProgArgs) -> (a -> String -> b) -> ShellCmd a b
Pipe :: ShellCmd a b -> ShellCmd b c -> ShellCmd a c
XArgs :: ShellCmd a b -> ShellCmd [a] [b]
MapOut :: (b -> c) -> ShellCmd b c

data GrepMatch = GrepMatch
{ grepMatchingFileName :: FilePath
, grepMatchingLineNumber :: Int
, grepMatchingLineContents :: String
} deriving (Eq, Show)

grep :: String -> ShellCmd FilePath [GrepMatch]
grep matchGlob =

RunCommand (ProgName "grep") makeArgs parseLines
where

makeArgs fileName = ProgArgs $ "-n" : matchGlob : [fileName]
parseLines fileName = map (parseResponse fileName) . lines
parseResponse fileName responseLine =

let (matchNumber, contents) = span (/= ':') responseLine
in GrepMatch fileName (read matchNumber) contents

listDirectory :: ShellCmd FilePath [FilePath]
listDirectory =

RunCommand (ProgName "ls") makeArgs parseResponse
where

makeArgs filePath = ProgArgs ["-1", filePath]
parseResponse filePath =
map (filePath </>) . lines

runShellCmd :: ShellCmd a b -> a -> IO b
runShellCmd cmd input =

case cmd of
RunCommand (ProgName exeName) mkArgs parseOut ->
parseOut input <$> catchIOError processOut (const $ pure "")
where

processOut = readProcess exeName (getProgArgs $ mkArgs input) ""
Pipe inputCmd out -> runShellCmd inputCmd input >>= runShellCmd out
XArgs inputCmd -> mapM (runShellCmd inputCmd) input
MapOut mapF -> pure $ mapF input

You can start to see the benefits of GADTs more clearly in this example if we
look at the way that letting each constructor determine the type of the output
allows us to build a DSL that ensures we’re composing individual parts of
our shell command in a type safe way. For example, the Pipe constructor allows
us to create a pipe from two ShellCmd values, but only if the output of the first
command matches the input of the second. The result of the Pipe constructor
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is a new ShellCmd that takes the input needed for the first sub-command, and
returns the output of the second sub-command. This is an improvement over
our earlier pipe implementation because it allows us to more directly compose
individual commands, rather than needing to create an explicit function to
map the results of the first command to the second.

The next major difference between our GADT-based approach and our earlier
type class approach is that we’ve added two new constructors, XArgs and
MapOut. The XArgs constructor allows us to take a shell command that would
run on a single argument, and instead run it on a list of inputs. This is an
example of a feature that would have been much harder to implement with
our type class based approach. Were we using type classes, we would have
needed to add an extra associated type family to handle the different input
types of each command, and then we would need to add that type family to
each instance we’d defined.

The next constructor, MapOut, is another example of a feature that is much
easier for us to add thanks to our use of GADTs. This constructor lets us lift
a pure function and treat it as a ShellCmd. This wouldn’t have fit well with the
runCmd function we defined in our ShellCommand class, since it relies on a poly-
morphic input type that, like XArgs, would have required an extra type family
be added to the class. Worse, MapOut can’t provide any useful command name
or arguments, and so our application may have encountered a runtime error
when it tried to execute an empty command.

Once our ShellCmd GADT is defined, you’ll notice that the definitions of grep
and listDirectory are largely unchanged. We have a very similar level of expressive
power for defining individual commands, while gaining a great deal of com-
posability thanks to our GADT-based types.

The last major difference in this example is the definition of runShellCmd. Instead
of calling the runCmd function from a type class, we’re pattern matching on
each constructor. Take particular note of the way we handle XArgs in this
function:

runShellCmd :: ShellCmd a b -> a -> IO b
runShellCmd cmd input =

-- ...
XArgs inputCmd -> mapM (runShellCmd inputCmd) input

What’s interesting about this case is that we’re calling mapM over input even
though the type of runShellCmd doesn’t specify that input must be a list. Thanks
to GADTs though, we know that XArgs will always result in a ShellCmd that
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accepts a list and returns a list, so any time we match on the XArgs case we
can guarantee that in that particular case, input will be a list.

Type Classes: Functions from Types to Terms
GADTs give us the ability to build up types alongside the values at the term
level. In a sense, each GADT constructor is a function from its term level
arguments to the type that the constructor returns. Type classes let us go
the other direction, taking the type level information that we’ve built up with
GADTs and generating new term level values. In this section, we’ll look at
how you can use type classes alongside GADTs to get better type safety
between different parts of your application.

We’ll start by continuing with the ShellCmd type that you built in the last section.
Let’s imagine that we want to build an application that will let us create a set
of pre-defined shell scripts that we’ve validated and know to be good. We’d
like to let our users write safer shell scripts by combining any number of
these commands and returning the output of each of them.

The first thing we’ll need is a way to define a collection of shell commands.
Since each of our shell commands might have different inputs and outputs,
our collection of scripts will need to be heterogenous. We’d still like to know
what the type of any particular script is, so let’s create a new module and use
a GADT to define a heterogenous collection of shell script commands. We’ll
add quite a few extensions in this example, including a new one: ConstraintKinds.
You’ll learn more about this extension later in the example when we make
use of it.

ConstraintKinds

The ConstraintKinds extension has been available since GHC 7.4.1.
It’s enabled by default in GHC2021 but you’ll need to enable it
explicitly in Haskell2010. This is a safe extension that shouldn’t cause
problems with any existing code. You can enable it project wide
in your cabal file if you like.

{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ScopedTypeVariables #-}
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{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE FlexibleInstances #-}

module CommandRunner where
import Data.Kind
import GHC.TypeLits
import Data.Proxy
import GADTShellCmd

data CommandSet :: [Symbol] -> [Type] -> Type where
EmptyCommandSet :: CommandSet '[] '[]
AddCommand ::

KnownSymbol name =>
ShellCmd a b ->
CommandSet names commands ->
CommandSet (name:names) (ShellCmd a b : commands)

You’ll notice in this example that we’re using our GADT to track two separate
lists. The first list is a list of the human-readable names that we’re giving to
each of our scripts. When our users want to execute a particular script, they
can refer to it by the symbol name we’re keeping track of here. The second
list is the list of actual shell command types. As in our earlier GADT-based
heterogenous list example, this list of types will allow us to get the exact shell
command type later, so that we’ll know which input and output types to
expect for a particular script.

Next, let’s create a set of commands that we might want to allow a user to
run. This example will use a few hardcoded shell commands, but you can re-
use some of the commands you built earlier in this chapter, or pick other
commands that work well on your system:

commands =
AddCommand @"ls" listDirectory $
addLiteral @"free" "free -h" $
addLiteral @"uptime" "uptime" $
addLiteral @"uname" "uname -a" $
addLiteral @"system info" "neofetch" EmptyCommandSet
where

addLiteral ::
forall name {names} {commands}. KnownSymbol name =>
String ->
CommandSet names commands ->
CommandSet (name : names) (ShellCmd () String : commands)

addLiteral command = AddCommand (literal command)
literal :: String -> ShellCmd () String
literal shellCommand =

RunCommand (ProgName "bash") args outputFunc
where

args = const $ ProgArgs ["-c", shellCommand]
outputFunc = const id
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You might notice in this example that we haven’t added a type annotation.
One of the advantages of the style of type level programming we’re building
out in this section is that it allows us to use type inference to produce lists
of commands, and to consume them. Although it’s a good practice to add the
type annotations when you’re finished with development, it’s incredibly conve-
nient to be able to allow the compiler to infer the types during the development
process when working with type level code like this, since the types tend to get
quite verbose. For example, the type of commands if we were to add it would be:

commands
:: CommandSet

'["ls", "free", "uptime", "uname", "system info"]
'[ShellCmd FilePath [FilePath], ShellCmd () String,

ShellCmd () String, ShellCmd () String, ShellCmd () String]

Now that we have a way to create a list of commands, we’d like to have a way
to run them. Ideally we should be able to look up a command by name, and
then run the command by passing it a value of its input type and get whatever
type of value that particular command returns. Let’s call this function run-
NamedCommand. How should we write runNamedCommand? Earlier in this chapter
on page 598, when we defined a heterogenous list of user types using a GADT,
we were able to take advantage of our value constructors to figure out the
type of a particular element and return a list of all users identified by name.
Now, things are a bit more complicated.

Our earlier nameUsers only took a single argument, the list we wanted to tra-
verse, and it always returned a value of type [User String]. In runNamedCommand
we’ll need to take a type level parameter with the name of the command we
want to run, and a term level parameter whose type will be determined by
which command we end up finding. The return type of runNamedCommand will
also depend on the particular shell command that we end up extracting from
the list. That means the behavior, as well as the input and return types of
our function, will depend on the type level name we pass in, plus the type of
the command list. When the behavior of a function depends on the types the
function was called at, that’s our hint that we should start thinking about
type classes.

If we make runNamedCommand itself a type class, we’ll be limited to only executing
the commands directly. Rather than limiting ourselves, let’s approach this in
two parts. First, we’ll add a new type class called CommandByName that will allow
us to find a particular command in a CommandSet given the name of a command.
Once we have the type class defined, we can use it to write runNamedCommand that
will let us execute a command. This will give us the flexibility in the future
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to do other things, like pipe different commands together, or pretty print a
shell script rather than executing the commands.

Let’s start by defining CommandByName:

class CommandByName
(name :: Symbol) commands shellIn shellOut |

commands name -> shellIn shellOut
where
lookupProcessByName ::

proxy name ->
commands ->
ShellCmd shellIn shellOut

The first thing you’ll notice in this example is that we’re using a lot of type
class parameters. You’ll also notice that we’ve brought back the FunctionalDepen-
dencies extension, so that we can add a dependency between the command
name and set of commands, and the input and output types of the particular
command we’re retrieving. You might be wondering why we’re using functional
dependencies instead of an associated type family. There are two important
reasons to avoid an associated type family in this example. First, using
functional dependencies will simplify type inference and help prevent our
type annotations from growing out of control. Type families typically require
more verbose type annotations since they need to be applied explicitly,
whereas functional dependencies can be inferred. Second, the overlap rules
for associated type families can introduce significant challenges when we’re
trying to carry out computations during type class resolution. Functional
dependencies allow us to have types that are dependent on arguments to our
type class without having to worry about overlap rules.

Now that we’ve defined a type class, let’s create an instance. We’ll start with
the easiest case, when the first element of our list of commands matches the
command name we’re looking for:

instance
CommandByName name (CommandSet (name:names) (ShellCmd a b : types)) a b
where
lookupProcessByName _ (AddCommand cmd _) = cmd

Although our definition of lookupProcessByName is straightforward, there are a
few notable things to take away from this type class instance. First, you’ll
notice that we’re pattern matching on the CommandSet that we’re passing in so
that we can extract both the current name and shell command. Second, you
can see that type classes, like type families, allow us to use the same name
to ensure that some types are equal. In this example, we are using name as both
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the first argument of our type class, and also the head of the list of names in
our command set. Similarly, we are pattern matching out the input and out-
put types of our shell command, a and b, and using those as the input and
output types for the class instance.

Before we move on, let’s take a moment to try out what we have so far in ghci.
If we try to run the first command, which is a listDirectory command, and pass
in a path, you’ll see that everything works exactly as we’d hope:

λ runShellCmd (lookupProcessByName (Proxy @"ls") commands) "./"
["./app","./CHANGELOG.md","./dist-newstyle","./src","./examples.cabal"]

Similarly, if we try to pass in a command that isn’t in our allowed list of
commands we’ll get an error:

λ runShellCmd (lookupProcessByName (Proxy @"erase files") commands) "/"

<interactive>:4:14: error:
• No instance for (

CommandByName
"erase files"
(CommandSet

'["ls", "free", "uptime", "uname", "system info"]
'[ShellCmd FilePath [FilePath], ShellCmd () String,
ShellCmd () String, ShellCmd () String, ShellCmd () String])

String
b0)

arising from a use of ‘lookupProcessByName’
• In the first argument of ‘runShellCmd’, namely

‘(lookupProcessByName (Proxy @"erase files") commands)’
In the expression:
runShellCmd

(lookupProcessByName (Proxy @"erase files") commands) "/"
In an equation for ‘it’:

it
= runShellCmd

(lookupProcessByName (Proxy @"erase files") commands) "/"

This error is a bit verbose and we’ll generate better error messages later on
in this section, but we’re still successfully using the type system to prevent
our user from erasing files.

Unfortunately, if we try to run one of the other commands that we’ve allowed,
like "free" or "system info" you’ll get the same error. Our type class is only defined
for the case where the command we’re looking for is at the head of the list of
commands we’re checking.

Type class instances, like type families, can be defined recursively. We can
use this, along with pattern matching, to implement computations at the type
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level by traversing data structures like our CommandSet. Let’s add a new instance
to handle the case where the command we’re looking for is in the set of all
allowed commands, but it isn’t the one at the head of the list:

instance CommandByName name (CommandSet names types) a b =>
CommandByName name (CommandSet (otherName:names) (cmd : types)) a b
where
lookupProcessByName nameProxy (AddCommand _ rest) =

lookupProcessByName nameProxy rest

In this example, we’re handling the case where the tail of our list of commands
has an instance of CommandByName. In that case, we’re recursively calling
lookupProcessByName with the tail of our list. If a command with a given name
exists, it will eventually be at the head of the list as we traverse the list, and
that will be the base case of our recursion. The recursive case lets us step
through each element of the list, checking the head against the name we’re
searching for. Unfortunately, we’ve got a problem. Although our base case
instance requires that the name we pass in match the name at the head of
the command list, this instance doesn’t prohibit the two values from being
the same. Once again, we find ourselves dealing with unintended overlap
causing a problem. If you load this code up into ghci and try to call lookupPro-
cessByName you can see for yourself that the compiler can’t decide which
instance to use and will generate an error.

Thankfully, now that we know about type families, we have a way we can
work around the overlap and implement our type classes without any overlap.
To do that, we need a way to differentiate between cases where the command
we’re looking for is at the head of the list from the cases where it isn’t, and
we want it to be unambiguous and without overlap. We’ll start by writing a
type family to help with this:

type family
HeadMatches (name :: Symbol) (names :: [Symbol]) :: Bool
where
HeadMatches name (name:_) = True
HeadMatches name _ = False

This type family will let us check a list of command names to see if the first
name is what we’re looking for. If it is, the type family will return True and we
can proceed with using the first command in our command list. If the type
family returns False then we’ll know we should proceed with our recursive
case. If we want to use this to prevent overlap in our type class instances,
we’ll need to make it a parameter of the type class. Let’s refactor our type
class definition and our base case instance to handle this extra parameter:

report erratum  •  discuss

Type Classes: Functions from Types to Terms • 607

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


class CommandByName'
(matches :: Bool) (name :: Symbol) commands shellIn shellOut |
name commands -> shellIn shellOut
where
lookupProcessByName' ::

proxy1 matches ->
proxy2 name ->
commands ->
ShellCmd shellIn shellOut

instance
CommandByName'

True name (CommandSet (name:names) (ShellCmd a b : types)) a b
where
lookupProcessByName' _ _ (AddCommand cmd _) = cmd

In our refactored class and instance we’ve added a new parameter, matches,
that will tell us if the head of our command list matches the name we’re
looking for. We’ve also added an extra proxy argument to pass around this
information. You might notice that we’ve also renamed CommandByName to
CommandByName'. Later, as we finish up this example, we’ll make CommandByName
a helper type class that lets us hide implementation details of our matches
argument. Like before, we can load this up into ghci and check to see that it’s
all working as expected:

λ proxyTrue = Proxy @True
λ proxyLs = Proxy @"ls"
λ runShellCmd (lookupProcessByName' proxyTrue proxyLs commands) "./"
["./app","./CHANGELOG.md","./dist-newstyle","./src","./examples.cabal"]

Now let’s make another attempt at defining our recursive instance, this time
using our new boolean parameter to help avoid an ambiguous instance:

instance
(CommandByName'

(HeadMatches name names)
name
(CommandSet names types)
shellIn
shellOut

) => CommandByName' False name
(CommandSet (badName : names) (t : types)) shellIn shellOut

where
lookupProcessByName' _ nameProxy (AddCommand _ rest) =

let matchProxy = Proxy @(HeadMatches name names)
in lookupProcessByName' matchProxy nameProxy rest

Just like with our earlier attempt, this instance needs a constraint on the tail
of our list to make sure that it contains the name we’re looking for. The
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addition of our new matching parameter adds a bit of difficulty though. There
are two possible instances that might be defined for the tail of our list. If the
next command in our list is the command that we’re looking for, then we need
to recursively call the base case. That means we need to pass a proxy True
value into lookupProcessByName, and we need to tell the compiler that an instance
of our class has to be defined where the match parameter is True. On the
other hand, if the next command isn’t a match, we need to have an instance
defined where the match is False, and we need to pass a proxy False value in
our recursive call. In short, if our current command isn’t a match, we need
to match and make the appropriate recursive call depending on whether the
next command matches or not.

We’re getting this information about which instance to call by using our
HeadMatches type family. It works, but it’s still quite verbose and it makes our
instance hard to read. One way we can make this a little bit easier is to use
an equality constraint. An equality constraint is a constraint that two type
variables must be equal. They can be used as you’d expect, to compare test
whether the types for two type variables are equal, but we can also use them
as a way of assigning a name to a longer part of a type level expression inside
of a constraint. The syntax for an equality constraint is:

a ~ b

Let’s refactor our instance to use an equality constraint so that we can say
nextMatches instead of having to repeat our call to HeadMatches:

instance
( nextMatches ~ HeadMatches name names
, CommandByName'

nextMatches name (CommandSet names types) shellIn shellOut
) => CommandByName' False name

(CommandSet (badName : names) (t : types)) shellIn shellOut
where
lookupProcessByName' _ nameProxy (AddCommand _ rest) =

lookupProcessByName' (Proxy @nextMatches) nameProxy rest

With our equality constraint, we can refer to nextMatches both inside of our
CommandByName' constraint on the tail of our command list, as well as inside
of our definition of lookupProcessByName' when we create our proxy value. It only
helps a bit, but every little bit helps when we are dealing with the very long
constraints and type annotations that come up with type level programming.

Before we move on, let’s load up ghci again and test our new instance to see
if it works:

report erratum  •  discuss

Type Classes: Functions from Types to Terms • 609

http://pragprog.com/titles/rshaskell/errata/add
http://forums.pragprog.com/forums/rshaskell


λ proxyTrue = Proxy @True
λ proxyFalse = Proxy @False
λ proxyLs = Proxy @"ls"
λ proxyFree = Proxy @"free"
λ runShellCmd (lookupProcessByName' proxyTrue proxyLs commands) "./"
["./app","./CHANGELOG.md","./dist-newstyle","./src","./examples.cabal"]

λ runShellCmd (lookupProcessByName' proxyFalse proxyFree commands) ()
>>= putStrLn

total used free shared buff/cache available
Mem: 31Gi 9.4Gi 1.3Gi 3.3Gi 20Gi 17Gi
Swap: 15Gi 184Mi 15Gi

Success! We’re now able to call any of the commands in our command list,
and get the correct input and output types for them. Now that we’ve shown
that it works, let’s clean up the ergonomics and make it nicer to use.

The first major ergonomic problem is that we are requiring that the user know
whether a particular command is at the front of the list of commands or not.
We can handle this for them automatically by adding a helper type class that
will call HeadMatches and pass the information along:

class CommandByName (name :: Symbol) commands shellIn shellOut |
commands name -> shellIn shellOut
where
lookupProcessByName ::

proxy name -> commands -> ShellCmd shellIn shellOut

instance
(matches ~ HeadMatches name names
, CommandByName' matches name (CommandSet names types) shellIn shellOut
) => CommandByName name (CommandSet names types) shellIn shellOut
where
lookupProcessByName _ =

lookupProcessByName' (Proxy @matches) (Proxy @name)

As you can see, our new class only needs a single instance. This instance
doesn’t do much work on its own, but it will call HeadMatches for us and pass
that along, so that we don’t have to look ourselves to decide which of the
CommandByName' instances we should call. Let’s try it out:

λ runShellCmd (lookupProcessByName (Proxy @"uptime") commands) ()
>>= putStrLn

01:48:58 up 17 days 2:37, 1 user, load average: 0.19, 0.24, 0.25

λ runShellCmd (lookupProcessByName (Proxy @"delete") commands) "/"
<interactive>:10:14: error:

• No instance for (
CommandByName'

'False "delete" (CommandSet '[] '[]) [Char] b0)
arising from a use of ‘lookupProcessByName’
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• In the first argument of ‘runShellCmd’, namely
‘(lookupProcessByName (Proxy @"delete") commands)’

In the expression:
runShellCmd

(lookupProcessByName (Proxy @"delete") commands) "/"
In an equation for ‘it’:
it

= runShellCmd
(lookupProcessByName (Proxy @"delete") commands) "/"

It works! Our error messages are still not very readable though. Thankfully
we can use TypeError with type classes to generate useful error messages, just
like we did with type families. However, we can’t just add a type error directly
inline in our instance. We’ll need to write a type family that will generate an
error only if the name we’re looking for isn’t in the list of available commands.
Let’s start by defining the type family that will generate our error:

type family HasMatch'
(needle :: Symbol) (haystack :: [Symbol]) (ctx :: [Symbol]) :: Constraint
where
HasMatch' a '[] ctx = TypeError

(Text "Missing required command '" :<>:
Text a :<>:
Text "' in command list: " :<>:
ShowType ctx)

HasMatch' a (a:as) ctx = ()
HasMatch' a (b:as) ctx = HasMatch' a as ctx

type HasMatch a as = HasMatch' a as as

Here we’re creating a type family named HasMatch' with three parameters: the
symbol we’re looking for, a list of symbols we’re searching through recursively,
and a copy of the original input so that we can generate a more readable error
message. We’ve also created a helper, HasMatch, so that we can have our full
list without always needing to pass it in twice.

You’ll also notice that the return type of this type family is something we
haven’t seen before. The Constraint kind is the kind used to represent type class
constraints. In earlier versions of GHC you’ll need to use the ConstraintKinds
extension to enable this. A Constraint can be any single constraint, like Show or
Eq, or it can be a tuple of any number of constraints. This means you can
programmatically build up constraints with type families. For our example,
we’re taking advantage of the fact that () is a valid empty constraint, so we
can return it if there is a valid match for the command in our list. If there
isn’t a match, we’re generating a TypeError. Thankfully, TypeError is polymorphic,
so we can use it in place of a Constraint or any other kind.
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Using our error handling is just like using any other constraint. We can add
it into our instance definition alongside the other constraints:

instance
(matches ~ HeadMatches name names
, HasMatch name names
, CommandByName' matches name (CommandSet names types) shellIn shellOut
) => CommandByName name (CommandSet names types) shellIn shellOut
where
lookupProcessByName _ =

lookupProcessByName' (Proxy @matches) (Proxy @name)

Now if we try to run a command that hasn’t been defined, we’ll get a much
more readable error:

λ runShellCmd (lookupProcessByName (Proxy @"delete") commands) "/"
<interactive>:183:14-32: error:

• Missing required command 'delete' in command list:
'["ls", "free", "uptime", "uname", "system info"]

• In the first argument of ‘runShellCmd’, namely
‘(lookupProcessByName (Proxy @"delete") commands)’

In the expression:
runShellCmd

(lookupProcessByName (Proxy @"delete") commands) "/"
In an equation for ‘it’:

it
= runShellCmd
(lookupProcessByName (Proxy @"delete") commands) "/"

Finally, now that we have a CommandByName class and the instances we need
to get a particular command, we can get back to writing runNamedCommand.
Most of the work for this function will be handled by our type class instances,
but there’s one extra level of safety we can add if we’re using GHC 9.2 or later.
Let’s look at the definition:

runNamedCommand ::
forall name {commands} {shellIn} {shellOut}.
( KnownSymbol name
, CommandByName name commands shellIn shellOut
) => commands -> shellIn -> IO shellOut

runNamedCommand allowedCommands input =
let process = lookupProcessByName (Proxy @name) allowedCommands
in runShellCmd process input

As you can see, most of the work in this function is done in the call to lookup-
ProcessByName. The type class instance will tell us what the input and output
types of our shell command are, and that’s defined by the set of commands
that we’re passing in. To help keep this safe and working as expected, we’re
using inferred types on page 234 for commands, shellIn, and shellOut. This means
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the user can’t try to work around the type checking that we’ve added and
instead must let the compiler infer these values by working through the type
level programming that we’ve implemented through our CommandByName instance
definitions. This is an optional layer of safety, and you can omit the inferred
type annotation if you are using an older version of GHC.

Let’s load this up into ghci and look at runNamedCommand in action:

λ runNamedCommand @"free" commands () >>= putStrLn
total used free shared buff/cache available

Mem: 31Gi 6.8Gi 3.9Gi 3.3Gi 20Gi 20Gi
Swap: 15Gi 184Mi 15Gi

λ runNamedCommand @"ls" commands "./" >>= mapM_ putStrLn
./app
./CHANGELOG.md
./dist-newstyle
./src
./TAGS
./examples.cabal

So, what can we do with all of this type level machinery? Outside of ghci this
will allow our users to write their own code to make use of the shell scripts
that we’re telling them that they can use. For example:

runScript availableProcesses = do
runNamedCommand @"ls" availableProcesses "." >>= mapM_ putStrLn
runNamedCommand @"free" availableProcesses () >>= putStr
runNamedCommand @"uname" availableProcesses () >>= putStr

Thanks to type inference, our users can write scripts like this and the compiler
will be flexible, generating type signatures that require the minimum number
of commands necessary to fulfill what we’re using in our particular script,
while permissively allowing as many extra commands as we’d like. This lets
us make highly flexible but still type safe APIs available to us, and our users.

Summary
Congratulations! You’ve made it to the end of this chapter, and the end of
Effective Haskell. You’ve learned how to write fast, flexible, type safe code,
how to design applications that are easy to refactor, and how to use many of
the techniques used in the wild in real Haskell applications. There are many
interesting, useful, and sometimes mind boggling clever things to learn in the
world of Haskell, but you should close this book knowing that you have all
of the tools you need to work with Haskell effectively.

As you move to the exercises at the end of the chapter, and in particular the
final capstone exercise, try to take a moment to think through everything
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that you’ve learned in this book. Compare the approaches you might have
taken early on in the book with the ones you can use now. Think about how
many different ways you now have to approach problem solving, with varying
degrees of type safety, performance, and maintainability.

Exercises

A Complete Data-Family-Based ShellCommand
Continue with the example code from this chapter and refactor the ShellCommand
module to use data families. Try to add a few more commands that wrap some
of your favorite command line tools.

Better If Expressions
Earlier in the chapter you implemented conditionals inside of type families
using IfThenElse. Instead of making this a single type family, try to use a mixture
of GADTs and type families to explore other ways to encode conditionals that
give you more flexibility, or more closely resemble term level conditionals.

Type Level map
Write a type family named Map that works like the term level map function. It
should allow you to apply a function to each element of a type level list. Next,
add a new type or type family so that you can add a number to each element
of a type level list of naturals, as in this example:

λ :kind! Map (Add 5) [0,1,2,3,4]
Map (Add 5) [0,1,2,3,4] :: [Natural]
= '[5, 6, 7, 8, 9]

Expanded Shell Commands
Expand the GADT-based shell command DSL to support a new operation, wc,
that will call the wc program to count the number of lines in a file. After you’ve
added that, write a function with the type:

countLinesInMatchingFiles :: String -> ShellCmd FilePath [(FilePath, Int)]

The function should take a glob that can be passed to grep, and it should
return a shell command that, given a path to a directory full of files, will
output the name of each file that matched with grep, along with the number
of lines in that file. Be sure to only return one output for each file, even if
there are multiple matches within the file.
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Classless runScript
Using what you’ve learned in this chapter, experiment with other ways of
defining CommandSet and runScript so that you don’t need to use type classes.
What are the trade-offs you need to make?

Capstone Project: Build a Terminal Multiplexer
A terminal multiplexer is an application that lets you run different terminal
applications simultaneously. The multiplexer typically gives you tools to switch
between different “screens” displaying the output of different applications.
They may also allow you to configure a set of applications to open automati-
cally at startup. screen and tmux are two popular terminal multiplexers that
you can look at for inspiration.

Using everything that you’ve learned in this book, write your own application
that integrates a terminal multiplexer capability. For example, you might
want to reimplement the hcat project that you built in the middle of this book,
this time allowing users to open multiple files and switch between them, or
even show multiple files side by side. Design your library so that a user
writing their own terminal application can easily use your multiplexer to add
their own layout and contents.

This is a large project. You will need to use most of what you’ve learned in
this book, and you’ll need to learn new libraries and dive into areas we haven’t
covered in this book, like multi-threaded programming. You can make this
project as large or as small as you want. Whatever you decide, have fun with
it! Build something for yourself, use it, improve it, and update it with new
versions of GHC as they are released. A living project that you can use every
day will give you the best possible experience of how to build and maintain
effective Haskell code.
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ers, 471–475

polymorphic types, 135
running code conditional-

ly with when, 441

specifying type classes
with type applications,
231

type aliases example, 151

elem, 61

emptiness, type classes and,
239, 261

empty function, parser with Al-
ternative, 456

empty lists
Alternative and, 456
checking for, 50, 53, 291
creating lists with range

syntax, 4
creating new lists recur-

sively, 50–53
creating with brackets ([]),

48
errors, 290–293
functors and, 337
inductively defined lists,

138
running head and tail on,

50, 290
smart constructors and,

195
type level programming,

564

encode, 404, 406

encodeUtf8, 299, 410

encoding
base64 encoding and seri-

alization, 404
with existential types,

422–432, 438
FilePack serialization ex-

ample, 404, 406, 409–
419, 422–432, 438

images, 460
raw binary data, 411–414
with reversible parsing,

466
tagless final encoding,

504
testing, 407, 452
with type classes, 409–

432

endianness, 413

entries field in cost centers,
527

Enum, as derivable, 248

enums
deriving, 248
sum types as, 127

environment
configuring, 2
environment path and

installing packages
with cabal, 156

Eq type class
constraints, 214–217
deriving instances, 247–

250

equality
equality constraints, 609
equality operator (==) and

checking for empty
lists, 50

equality operator (==) as
type class, 210, 214

equality operators and
cabal, 164

phantom, 255
roles, 254
tests, peano numbers,

137

equals sign (=), guard claus-
es, 36

error function, incomplete pat-
terns, 71

errors
branching, 35
closed type families, 584–

587
compiler options, 166
deriving, 249, 257
deserializing, 439–441, 

448
display of and DataKinds,

559
empty lists, 290–293
encoding/decoding, 414
existential types, 423, 

427
folds and pointfree style,

57
formatting messages,

586, 611
functors, 337
guard clauses, 37
guessing game with mon-

ad transformers, 499
higher kinded types, 245
import lists, 178
internal mutability with
ST type, 539

IO actions order, 272
IO evaluation process,

278, 280
IO, handling, 294–298, 

371
lifting, 491–495
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lists with more than one
type, 5

monad transformers,
475–480, 483–489, 503

monads, 463
mtl style vs. direct style,

505
orphan instances, 238
overlapping instances,

418, 560, 580, 582, 
588, 607

OverloadedStrings extension
and, 314

parsing, 454, 457, 463
parsing calculator exam-

ple, 142
parsing with monad

transformers, 471–475
partial functions, 50
pattern matching, 71–

74, 312
PolyKinds extension, 562
qualified imports, 175
raising/throwing options,

297
reusing variable names,

12
serialization, 406, 414, 

418
smart constructors, 195
summing records, 132
terminal buffering, 311, 

327
tuples, 6
type aliases, 149, 151
type classes, 216, 225, 

228, 233, 238, 606
type families, 576, 578–

581
type holes, 106
type level programming,

lifting, 563
type level programming,

overlapping instances,
560, 580, 582, 588, 
607

type level programming,
type classes and
GADTs, 606, 611

types, 96–100, 110
validation, 195

escaping context error mes-
sage, 424

escaping quotes in Haddock
comments, 206

eta expansion, 15

eta reduction, 15, 20

examples
about, xv
code formatting, xvi
organizing, xvii

ExcepT monad, nesting monad
transformers, 483–489

Exception type class, 294

exceptional monad transform-
ers, 476

ExceptT, 476

exclusion lists, 179

exec (cabal), 167

executable function, 317

Executable option for
projects, 157

executable target stanza, 162

exercises
about, xv
Applicative type class, 362
deserialization, 465
documentation, 207
FilePack example, 432, 

465, 511
functors, 362
IO, 282, 329
IORefs, 400
lists, 87
monads, 362, 510
organization, 207
pager example, 329, 465, 

552
parsing, 466
performance, 552
serialization, 432
spellchecker example,

552
syntax, 44–46
terminal multiplexer, 615
type classes, 261, 362, 

615
type level programming,

614
types, 114–115, 152

existential constraints, 430

existential types
collections, 430
constraints, 423, 430
GADT syntax, 594
serialization, 422–432, 

438
vs. type classes, 427–430

ExistentialQuantification extension,
422

explicit forall, 233, 241–242

explicit universal quantifica-
tion, 233

ExplicitForAll extension, 232, 
241–242, 422, 539

export lists, 187–200

exporting
constructors and, 190–

196
field selectors and, 190–

193
modules, 187–203
phantom types and, 196–

200
re-exporting modules,

201–203
selective exporting with

export lists, 187–200
smart constructors, 193–

196

exposed-modules, 163, 182

F
%F %T format string, 319

f for Functor types, 243

factorial exercise, 44

Fibonacci sequence
Applicative type class exam-

ple, 347
exercises, 45
lazy evaluation example,

80–86

field selectors
exporting and, 190–193
records, 121

fields
bang operators, 398
binding, 123–125, 318
duplicate, 125–127
extracting, 122
GADT syntax, 595, 598
Haddock comments, 206
ignoring in pattern

matching, 119
monadic parsing, 449–

453
names, 121, 126
newtypes, 237
order of tuple fields, 6
pattern matching sum

types, 129
weak head normal form,

398

FilePack example
building list of files, 419–

431
deserializing, 435–465
exercises, 432, 465, 511
with existential types,

422–432, 438
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with monad transform-
ers, 467–471, 511

organizing with type pa-
rameters, 415

serializing, 403–432
serializing overview, 435–

438
serializing with type

classes, 409–419
setup, 405–409
supporting multiple file

types, 408

files
adding parent directory

to name in associated
data families example,
572–574

building list of files, 419–
431

cabal file format, 161–
165

cabal project files, 523
closing for IO actions,

272
enabling language exten-

sions on per-file basis,
124

file archiver example with
monad transformers,
489–510

information tools for, 316
literate Haskell files, 157
loading and importing

modules, 169
modules organization

and, 181
names, 368, 405
opening for IO actions,

271
parsing, 438–453
permissions, 317, 405
reading contents of, 293
reading filenames from

command line, 287–
289

relative file names, 368
replacing strings with

text and bytestrings,
298–300

setup for FilePack exam-
ple, 405

size, deserializing and,
439–442, 448

size, obtaining, 317
size, parsing and, 448
size, storing in file packs,

405, 416
traversing files IORefs ex-

ample, 367–390, 400

viewing contents of text
file in pager example,
286–300

viewing multiple exercise,
330

viewing text one page at
a time, 300–315

filter, 60–62

filtering, with list comprehen-
sions, 63

fixity declaration, 23, 26–31, 
561

fizzbuzz problem, 37–44

FlexibleContexts extension, 577

FlexibleInstances extension, 349, 
410, 428

flip, 15

flipping, function arguments,
15

Float type, 90

fmap
<$> alias, 276, 334
composition law of func-

tors, 353
handling command-line

arguments, 290
mapping IO values, 274–

277
monadic parsers, 444–

447, 450
readability and do nota-

tion, 324
using, 333–342

-fno-full-laziness option, 533

Foldable type class, 242

foldl
vs. foldr, 58
higher kinded types and,

242–245
infinite lists, 88
list deconstruction, 54–

59

foldMap, 418

foldr
vs. foldl, 58
higher kinded types and,

242–245
infinite lists, 77–80, 88
list deconstruction, 54–

59

folds
associativity, 56–59
defined, 54
exercises, 87
filtering list elements, 60–

62

higher kinded types and,
242–245

inductively defined data
structures, 138

infinite lists, 77–80, 88
list deconstruction, 54–

59
names, 243
serializing tuples and

lists, 418
tips for, 58

food budget example, 61

for_ function, 370

forall
explicit, 233, 241–242
internal mutability with
ST type, 538

monad transformers, 494
multiple file types, 421
printing, 235

format specifiers, 319

format strings, 318

formatTime, 319

-fprof-auto option, 524, 527

freeze file, 164

fromStrict, 299

fst, 6, 69

fully saturated functions, 14

fully saturated types, kind
and, 241, 338

function application operator
($), 17–18, 30, 276

function composition operator
(.), 17–18

functional dependencies
vs. associated type fami-

lies, 605
monad transformers,

501–503

FunctionalDependencies extension,
501, 605

functions, see also anony-
mous functions; currying;
higher-order functions; in-
fix functions; partial func-
tions; polymorphic func-
tions; recursion; type
classes
Applicative type class and,

343, 345–347
applying to values inside

IO actions, 274–277
applying values to with
map, 60

associativity, 23
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calling without parenthe-
ses, 7

canceling with Control-C,
486

chaining, 19
closures, 393
commutative, 266
composition, 16–20, 341
creating, with let bind-

ings, 32
in data types, 144–148
deducing behavior from

type signatures, 268
default implementation,

217–229
eta expansion, 15
eta reduction, 15, 20
fixity declaration, 29
flipping arguments, 15
fully saturated, 14
as functors, 340–342
grouping in records, 211–

213
as heap objects, 393
inductively defined data

structures and, 139
lifting, 474, 479, 484, 

488, 491–498
monadic parsing, 444–

447
monomorphic, 100
names, 24
operators as, 15, 24
parsing function for

FilePack deserialization
example, 439–442

passing functions vs. type
classes, 260

pointfree style, 20, 95
precedence, 15, 22–31
referential transparency,

41, 534
scope, 13
shape of, 54, 66, 335
specified vs. inferred

types, 234–236
ST type and, 534–537
trace tool exercise, 433
type families and type

level programming,
565–593

types and type annota-
tions, 92–96, 114

unsafe, 535
vectors, 545
where keyword for in-

stances that don’t need
defined functions, 227

writing, 13–21

functors
Applicative type class and,

333, 342, 493
Bifunctor type class, 362
as computations, 334
contravariant, 363
covariant, 363
creating, 335
exercises, 362
existential types, 426
functions as, 340–342
laws, 352–354
lists as, 334, 336
mapping, 333–342
mapping IO values, 275
monadic parsers, 444–

447
monads and, 333, 347, 

493
names, 243
Profunctor type class, 363

fusion, 550

G
GADTs, 593–613

advantages, 600
connecting term and type

level with, 596
exercises, 614
shell command wrapper

example, 599–602
syntax, 593
vs. type classes, 599
user record example,

596–599
values, 596–597

GADTs extension, 593

GADTSyntax extension, 593

garbage collection
let floating, 533
memoization caches and,

533
profiling summary statis-

tics, 525
space leaks and, 386, 

389, 394, 396, 533
thunks, 389
weak head normal form,

396

GeneralizedNewtypeDeriving exten-
sion, 250, 258, 260

generation number, package
changes and, 158, 164

generators, see streams

get
calling directly, 498–503

FilePacker, naive version,
470

lifting, 474, 484
monad transformers, 481

getArgs, 288–289

getModificationTime, 317

getPermissions, 317

GHC, see compiler

ghc Main, compiling with, 8

ghc-options field, 165

GHC.Arr module, 544

GHC.Exts module, 551

GHC.TypeLits module, 556–557, 
576

GHC2021 language standard,
xviii

ghci
about, 2
canceling with Control-C,

78, 486
code formatting of exam-

ples, xvi
configuring, 2–3
enabling language exten-

sions, 124
import lists, 176
importing modules, 169, 

183
inline tests, 407, 452
loading files, 169
loading modules, 8
multiline mode, 91
performance and running

code in, 9
printing to screen, 7
prompt, 3
running spellchecker ex-

ample from, 521
scrolling through history,

27
searching history, 27
syntax basics, 2–31
type errors, 96–100, 110
type information, 91
warnings, enabling/dis-

abling from, 72–74

Glasgow Haskell Compiler,
see compiler

global variables, metrics sys-
tem example of IORefs, 376–
390, 397–400

greeting examples
creating local variables

with let bindings, 31–
33

documentation, 204–207
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exporting modules, 188–
193

functions, writing, 13–21
module creation, 183–

187
variables, creating, 11

guard clauses
case statements with, 70
syntax, 35

guessing game example, 498–
504

H
hGetContents, 272

Hackage, 203

Haddock, 203–207, 226

haddock function, 203

handle function, 371

handles
closing, 272
opening, 271

hashable library, 552

Haskell
advantages, xiii, 1
Haskell 98, 265
Haskell2010 standard,

xviii, 160
history, xiii
laws, 352–361
as pure functional lan-

guage, 1, 152

hcat, see pager example

hClose, 272

head, 49, 290

head, list
appending list elements,

49
creating new lists recur-

sively, 50–53
empty lists, 50
inductively defined lists,

138
lazy evaluation and, 74
list deconstruction, 53–

59
running empty lists, 290
traversing and perfor-

mance, 543

header section, heap objects,
391

heap objects
memory allocation and,

391–396
thunks as, 391
weak head normal form,

395–396

Hello World, 8

help screen exercise, 330

helper methods
binding, 52
streams, 76, 84–86

heuristics, spellchecker exam-
ple, 542

hGetChar, 310

hGetContents, 272

hiding, 179

higher kinded types
monad transformers, 477
polymorphism and, 240–

247
as type parameters, 477

higher ranked types, 538

higher-order functions
in data types, 144–148
defined, 18
defunctionalization, 590–

593
function composition op-

erator as, 18
lists in, 47–66
type annotations, 95
type level programming,

588–593

histograms, metrics system
example of IORefs, 382–390, 
398–400

history
scrolling through, 27
searching, 27

homepage, project, 158

homomorphism, 359

hSetBuffering, 311, 327

hSetEcho, 313

I
:i command, 92

iconv, 522

id, 100

identity
functor laws and, 352–

354
Identity monad, 481–483
monads laws and, 354–

356

Identity monad, 481–483

if
looping, 38–44
running conditionally

with branches, 34–37

images, encoding/decoding,
460

immutability
Haskell advantages, xiv
in pure functional lan-

guages, 1

import keyword
ghci access to module im-

ports, 170
vs. load, 170
modules, 167

import lists, 176–181

importing, see also qualified
imports

exclusion lists, 179
hiding, 179
indentation and, 202
modules, 167–182
modules conventions,

180
modules in-line in ghci,

170
modules with multiple

aliases, 173
same module more than

once, 178
selective importing with

import lists, 176–181

impredicative polymorphism,
422

indentation
do notation, 324
import statements, 202
monad transformers ex-

ample, 470
syntax, 9

indexes
inlining look up, 550
lists, 48
memoization with

thunks, 529–534

indirection, 393, 543, 551–
552

individual field in cost centers,
527

inequality operator (/=), 214

infinite lists
exercises, 88
monad transformers, 487
splitting lists, 302
using, 75–82

infinite recursion
reusing variable names,

11
type classes, 224

infinite streams, 82–86
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infix, 26

infix functions
associativity, 23
creating with backticks,

15, 24, 141
fixity declaration, 29
operators as, 15, 24

infixl, 26

infixr, 26

:info, 26, 92

inherited field in cost centers,
527

init
projects, 156
stripping trailing new-

lines, 309

initializing
projects with cabal, 156
vectors, 546

INLINABLE pragma, 549

INLINE pragma, 549

inlining, 549–550

in keyword, creating local
variables with let bindings,
31–33

insertWith, 383

install (cabal), 156

installing
ghci, 2
libraries and applications

with cabal, 156

instances, see also overlap-
ping instances

deriving, 247–250
orphan instances, 238

Int type, 89

[Int] type, 90

Integer type, 89

--interactive flag, 156

intercalate, 105

interchange, law of, 360

IO, see also monads
Alternative instances and,

456
application building

challenges, 283–285
design patterns, 283–285
error handling, 294–298, 

371
error handling with mon-

ad transformers, 475–
480

exercises, 282, 329
IORefs, 365–401

lazy evaluation and, 264–
270, 277–281, 383, 
385–400

mapping IO values, 274–
277

monad transformers, 505
pager example, 285–331
procedural shell, function-

al core pattern, 284
strict, 383, 389, 396–400
as term, 263
types, 113
understanding, 263–281
working with local sys-

tem, 283–331

IO actions
chaining with =<<, 329
combining, 266–274
defined, 264–265
error handling with mon-

ad transformers, 475–
480

keypresses, 309–313
law of associativity and

monads, 357
main type and, 113
mapping IO values, 274–

277
order, 265–274
procedural shell, function-

al core pattern, 284
pure advantages, 342–347
sequencing, 265–274
status bar for pager app,

316
throwing exceptions and,

297
in thunks, 392

IO FilePath type, 289

IO type
Alternative and, 456
defined, 264
exercises, 282
pairing with values, 265
as State monad, 469

ioError function, 297, 475

IOError
modules for, 294
pager example, 294–298

IORefs
creating, 366
exercises, 400
lazy evaluation and, 385–

400
limits of, 534
memory and, 375
metrics system example,

376–390, 397–400

as non-strict, 389
reading and writing, 366
space leaks, 390–396
traversing files example,

367–390, 400
using, 365–385
using multiple, 378

ISO-8859 encoding, 522

isPrint, 168

IsString, 350

Ix, as derivable, 248

J
join

evaluating computations
in lists, 374

monadic parsers, 460

joining
lists, 11, 88
monadic actions, 460
strings, 11, 13, 239

Just, 343, 348

K
key-value pairs

cabal files, 162
Map type for, 376

keypresses, pager example of
actions, 309–313

:kind, 556

:kind!, 557, 576

kinds, see also higher kinded
types

constraints, 611
defined, 240
defunctionalization, 590
functors and, 338
GADT syntax, 594
higher kinded types, 240–

247
monad transformers, 477
promoting types to, 558–

565
signatures, 243, 246
type families, 575
Type kind, 554
type level programming,

554–565
type variables, 101

KindSignatures extension, 240, 
242, 477

KnownSymbol constraint, 577–
578
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L
lambda functions, see anony-

mous functions

language extensions
defined, 123
enabling, 123–125
enabling and cabal, 163, 

187
enabling and modules,

186
enabling on per-file basis,

124
enabling with :set or :seti,

124
list of, xix
versions, xviii

language pragmas, 124

language standard
selecting for projects, 160
versions, xviii

laws
Applicative type class, 352, 

357–361
functors, 352–354
monads, 352, 354–357

lazy evaluation
bytestrings, 299
call by need laziness, 74
exploring type space,

103–105
Fibonacci example, 80–86
Haskell advantages, 2
IO and, 264–270, 277–

281, 383, 385–400
memoization with

thunks, 529–534
monad transformers, 486
mutual recursion, 458
reusing variable names,

11
space leaks, 386–396
strict IO, 383, 389, 396–

400
understanding, 74–86

Left in Either type
error case, 135
functors and, 339
running code conditional-

ly with when, 441

left-hand identity, monad
laws and, 354–356

let bindings
binding record fields, 124
creating, 31–33
with guard clauses, 36
helper methods, 52

indentation and do nota-
tion, 324

pattern matching, 68
recursive, 32
strictness annotations,

398
type annotations, 90, 93
vs. where bindings, 33

let floating, 533

let keyword, 31

Levenshtein distance, 514–
518

--lib flag, 156

libraries, see packages

Library option for projects,
157

library target stanza, 162–165

library-profiling option, 524

LICENSE file, 158

licenses
BSD-3, 158
open-source code, 158
setting in cabal, 158
SPDX license identifiers,

158

liftA2, 342

lifting
errors, 491–495
functions, 474, 479, 

484, 488, 491–498

line buffering, disabling, 311, 
327

line counting exercise, 614

lines, 306

list comprehensions, 63–66

List type
converting to regular list,

349
GADT syntax example,

593
sequencing with monads

example, 348–351

lists, see also empty lists
Alternative parsers, 456
appending elements, 49
Applicatives type class and,

343
breaking across multiple

lines, 4
caches as list of lists, 531
combining, 48, 65, 344
combining into tuples, 65
converting List type to

regular list, 349
converting to strings, 7

creating, 3–5
creating recursively, 50–

53
creating vectors from,

544
deconstructing, 49, 53–

59
deconstructing with folds,

54–59
destructuring values with

pattern matching, 66–
74

embedded arithmetic ex-
pressions in, 4

exercises, 87
extracting fields with

GADTs, 598
filtering elements, 60–62
as functors, 334, 336
GADT syntax, 593
getting elements of, 48
heterogenous list exam-

ple with GADTs, 598
homomorphism and, 360
indices, 48
inductively defined, 138
infinite, 75–82, 88, 302, 

487
joining, 11, 88
lazy evaluation, 74–86
lifting literal lists to type

level lists, 563
list comprehension, 63–

66
lists of lists, 48, 531
mapping, 59
monadic parsing, 453–

459
nesting, 6
operations with type fam-

ilies, 587–593
performance and, 543
prepending elements, 48
range syntax, 3
readability, 4
restrictions of single

types in, 5, 47, 563
sequencing with monads

example, 348–351
serializing, 418
splitting, 301
sum types and, 130
syntax basics, 3–5
syntax for higher-order

functions, 47–66
transforming elements,

59
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type level programming,
561–565, 580, 582, 
587–593

types, 90
user record example of

GADTs, 596–599
zipping, 65, 88

literate Haskell files, 157

:load
advantages, 8
export lists and, 189
vs. import, 170
module imports and, 170

local, 510

local system
IO and, 283–331
pager example, 285–331

locality and vectors, 546

logging
MonadIO example, 506
redacted library example

of type classes, 226–
229, 256–260

loops
syntax, 37–44
traversing files IORefs ex-

ample, 369

M
Main

compiling with, 8
pager example, 286

main function
pager example, 286
type and, 113

Main.hs files
organizing examples for

this book, xvii
project creation, 157

Main.lhs files, project creation,
157

maintainability
custom operators, 24
importing modules and,

174
orphan instances, 238
pointfree style, 21
RecordWildCards extension

and, 123

major version number
changes, 158, 164

many, 486

many to one relationships,
deriving and, 253

map
applying values to func-

tions, 60
relationship to fmap, 334
transforming list ele-

ments, 59

Map type, key-value pairs, 376

mapM
converting values, 276
GADTs, 601
IO lazy evaluation se-

quence, 279–281

mapM_, 281

MapOut, 601

mapping
exercises, 88
Fibonacci sequence exam-

ple of lazy evaluation,
81

functors, 333–342
IO values, 274–277
lines of text into word-

wrapped text, 306
list elements, 59
map collisions, 383
metrics system example

of IORefs, 376, 383
serializing tuples and

lists, 418
type level programming

exercise, 614

math, functor and monad
laws, 352–361

maximum residency, memory,
388, 397

Maybe a type, 246

Maybe type
Alternative parsers, 456
Applicatives instance exam-

ple, 343
authentication example,

199
creating polymorphic

types, 134
deriving example, 252–

256
functors, 335
GADT syntax example,

593
IORefs and, 366
kind and, 241, 244, 246, 

339
law of interchange and,

361
monads example, 347

memoization
defined, 529

internal mutability with
ST type, 534–543

let floating, 533
spellchecker example,

529–543
with thunks, 529–534

memory, see also space leaks
bang patterns, 550
bytestrings, 300
compiler optimization,

165
getting usage data, 387, 

523
indexes, 530
IORefs, 375
layout with vectors, 543–

547
maximum residency,

388, 397
memoization caches, 533
memoization with ST, 542
memory allocation and

heap objects, 391–396
metrics system example,

376–390, 397–400
performance and memory

allocation, 391
profiling summary statis-

tics, 525–528
spellchecker example

with vectors, 545–547

mempty, 239, 485

metadata, status bar for
pager example, 315–321, 
326

metrics
edit distance metrics,

memoization, 529–543
edit distance metrics,

memoization with ST,
540–543

edit distance metrics, mi-
cro-optimizations, 547–
551

edit distance metrics,
naive example, 514–
518, 526–528

metrics system example
of IORefs, 376–390, 397–
400

MINIMAL pragma, 224, 416

minimum function example
of smart constructors, 194

minor version number
changes, 158, 164

modifyIORef, 370, 396

module keyword, 182
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MODULE profiling output, 526

modules
aliases, 170–173
assigning same alias to

multiple, 173
creating, 181–187
demo building, 202
documenting, 181, 203–

207
enabling language exten-

sions and, 186
exclusion lists, 179
exporting, 187–203
import lists, 176–181
importing, 167–182
importing conventions,

180
importing in-line in ghci,

170
importing same module

more than once, 178
importing same module

with multiple aliases,
173

loading into ghci, 8
module names and file

path relationship, 181
module names and quali-

fied imports, 174–175
organization, 181
phantom types and, 196–

200
qualified imports, 174–

175, 544
re-exporting modules,

201–203
reloading, 17
running without compil-

ing, 8
setting private vs. public

in projects, 163, 182
smart constructors, 193–

196
using code from other,

167–181

modulos, avoiding with infi-
nite lists, 76

monad transformers, 467–
510

advantages, 510
combining, 467, 483–489
combining effects with,

470
decoupling, 497–503
defined, 476
direct style, 504
error handling with, 475–

480, 483–489, 503

exceptional, 476
file archiver example,

489–510
functional dependencies,

501–503
guessing game example,

498–504
lifting transformers, 474, 

479, 484, 488, 491–
498

mtl style, 504
name parser example,

471–475
nesting, 472, 483–489
State transformation exam-

ple, 480–483
tagless final encoding,

504
writing basic operations

instead, 496

MonadError, 503

MonadFail, 464, 503

MonadIO, 505

monads, see also monad
transformers

about, 333, 347
Applicative type class and,

460, 493
computation with for_

function, 371
converting monad values,

276
exercises, 362, 510
functors and, 493
laws, 352, 354–357
monadic parsers, 443–

465
relationship to Applicative

type class, 333, 347
relationship to functors,

333, 347
using, 347–352

Monoid type class
deriving example, 252–

256
using type classes with

newtypes, 238–240

monomorphic functions, 100

mtl library
about, 467
exceptional transformers,

476
mtl style, 504
State monad and, 469
version, xx

MultiParamTypeClasses extension,
427, 501

mutability
internal mutability with
ST type, 534–543

IORefs, 365–401
vectors and, 546

mutual recursion, parsing
and, 458

N
name property, cabal files, 162

names, see also aliases
cabal files, 161
disambiguating with

qualified imports, 126
duplicate record fields,

125–127
files, 368, 405
folds, 243
functions, 24
functors, 243
library target, 163
module names, 54, 181
module names and quali-

fied imports, 174–175
name collisions and com-

piler, 54
name parser example

with monad transform-
ers, 471–475

newtype fields, 237
operators, 24
packages, 157
punning, 118
record fields, 121, 126
relative file names, 368
reusing variable names,

10–13
shadowing and RecordWild-
Cards extension, 123

type constructors, 24
type level programming,

559
type variables, 101
types, 89, 559
Unicode in, 9
value constructors, 118
variables, 9–13

Nat kind, 556

Natural kind, 556

Natural type
converting to peano

numbers, 582
grouping functions in

records example, 211–
213
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type class example, 213–
217

type level programming,
556

nesting
do blocks, 323, 329
FilePack exercise, 432
if expressions, 35
let bindings, 32
lists, 6
monad transformers,

472, 483–489
parentheses, 95
polymorphism with high-

er ranked types, 538
tuples, 6

Netpbm format, 460

newIO, 269

newIORef, 366

newlines, stripping trailing,
309

newtype, 236

newtypes
associated data families,

573
deriving in, 248, 250–256
newtype deriving strategy,

260
wrapping monad trans-

formers, 490
wrapping multiple IORefs

in, 379
wrapping types in, 236–

240

nixpkgs, 164

NoBuffering, 311

NOINLINE pragma, 549

NoStarIsType extension, 554

notional equality, 254

null
checking for empty lists,

50, 53
deriving nullable exercise,

261
type classes exercises,

261

null function, 50, 53

Nullable type, 261

numbers, see also peano
numbers

converting natural num-
bers to peano, 582

converting to strings, 7, 
35

floats, 90

grouping functions in
records example, 211–
213

pattern matching, 67
type class example, 213–

217
type level natural num-

bers, 556

O
-O flag, 524

one to many relationships,
deriving and, 253

open data families, 574–581

open type families, 565, 574–
581, 592

open-source code, licenses,
158

openFile, 271

operators
associativity, 26–31, 57
bang operators, 397–

400, 550
binary, 24, 142
bitwise, 411
custom operators, creat-

ing, 24–31
custom operators, fixity

declaration, 23, 26–31
defined, 24
folds, 57
as functions, 15, 24
as infix, 15, 24
names, 24
precedence, 24, 26, 29
type level programming,

561

optimization
bang patterns, 550
configuring, 524, 533
edit distance metrics, mi-

cro-optimizations, 547–
551

enabling compiler, 165
fusion, 550
inlining, 549–550
let floating, 533
levels of, 387
memory layout with vec-

tors, 543–547
tips, 551
unboxed values, 551
unsafe text, 551

optimization option, 524

OPTIONS_GHC pragma, 533

or operator (.|.), bitwise, 412

Ord type class
deriving instances, 247–

250
example of default imple-

mentation with type
classes, 217–226

order, see also associativity;
precedence
Applicative type class, 447
arguments and folds, 55
bytes, 413
default implementation

of Ord example, 217–
226

endianness and, 413
IO actions, 265–274
monad transformers,

467, 483–489
named arguments in

records, 121
parsing, 447–448
predicates, 36
recursive let bindings, 32
tuple fields, 6
type level programming,

560, 588
type parameters and

functors, 340

organizing
directories, 159
example code organiza-

tion, xvii
exercises, 207
IO challenges in building

applications, 283–285
modules, 181
projects, 155–167, 207

orphan instances, type class-
es and, 238

OS, checking for, 308

os string, 308

other-extensions, 163

other-modules, 163, 182

OVERLAPPABLE pragma, 419

overlapping instances
serialization, 418
type level programming,

580, 582, 588, 605, 
607

OverlappingInstances extension,
419

OVERLAPS pragma, 419

OverloadedStrings extension,
314, 349, 404
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P
-p flag, 525

pack, 172, 406, 411

Package Versioning Policy
(PVP), 158, 164

packages
installing, 156
names, 157
package management

with cabal, 156–157
properties and cabal, 162
version constraints, 164
version numbers policy,

158, 164
versions, xx

padTo, 326

padding, 326

pager example, 285–331
calling external applica-

tions, 306–309
described, 285
do notation for readabili-

ty, 321–325, 327–329
exercises, 329, 465, 552
handling IO exceptions,

294–298
printing to screen, 313–

315
refactoring for final ver-

sion, 325–329
setup, 285
status bar, 315–329
terminal dimensions,

handling, 306–309, 
330

user input, 309–313
viewing contents of text

file, 286–300
viewing text one page at

a time, 300–315
word wrapping, 300, 

302–306

pagination
scrolling backwards exer-

cise, 330
viewing text one page at

a time in pager exam-
ple, 300–315

word wrapping, 300, 
302–306

parameters
adding/subtracting from

functions, 14
bang operators, 398
strictness annotations,

398

parametric polymorphism
limits of, 209
type variables, 100–103

parent modules, re-exporting
modules, 201–203

parentheses (())
calling functions without,

7
custom operator prece-

dence with the same
associativity, 29

function composition, 17–
19

function precedence, 16, 
22–24, 30

operators as functions,
15, 24

polymorphic types, 135
tuples, 6
type annotations, 93–95

parsing
Alternative parsing, 455–

459
associativity and, 23
calculator example, 141–

148
as common problem, 465
creating a function for,

439–442
defining inline, 451
discarding first character

example, 486–489
with ExceptT, 478
file archiver example,

489–510
FilePack deserialization

example, 438–465
FilePack example with

monad transformers,
467–471

files, 438–453
handling command-line

arguments, 289–293
joining actions, 460
with monad transform-

ers, 467–475, 478, 
483–510

monadic, 443–465
mutual recursion, 458
order, 447–448
removing leading spaces

from input, 485
reversible parsing, 466
sub-parsers, 460
syntax basics, 21–31

partial functions
deconstructing lists, 50, 

290

defined, 14, 50
indexes, 530
pattern matching as, 67
polymorphic types, 135
summing records, 131

patches, package version
numbers and, 158, 164

paths
canonical path, tracking,

369
documentation with Had-

dock and, 203
module names and file

path relationship, 181

pattern matching, see al-
so case statements
@ symbol for original val-

ue in destructuring, 69
checking for empty lists,

291
data types, 119
destructuring values

with, 66–74
existential types, 424
ignoring fields, 119
ignoring values in, 70
module creation greeting

example, 185
sum types, 128
thunks and infinite lists,

79
type families, 587
type level programming,

587, 605–613
understanding structure

with, 335
warnings, 71–74, 312
wildcard pattern, 69

payload section, heap objects,
391–394

peano numbers
ad hoc polymorphism ex-

ample, 211
closed type families exam-

ple, 582
converting natural num-

bers to, 582
recursion and inductively

defined data structures
example, 136–139

type class example, 214, 
216

performance, 513–552
bang patterns, 550
bytestrings and, 298–300
caches, adding, 532
compile time and import

lists, 181
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compiler optimization,
165

edit distance metrics,
memoization, 529–543

edit distance metrics,
memoization with ST,
540–543

edit distance metrics, mi-
cro-optimizations, 547–
551

edit distance metrics,
naive example, 514–
518, 526–528

exercises, 552
fusion, 550
indexes and, 530
indirection and, 543, 

551–552
inlining, 549–550
lists and, 543
memoization and, 529–

543
memory layout with vec-

tors, 543–547
mtl style vs. direct style,

505
replacing with text and

bytestrings, 298
running code in ghci, 9
space leaks, 386, 391, 

525
spellchecker example,

naive version, 513–521
spellchecker example,

profiling, 521–528
spellchecker example,

vectors, 545–547
Text vs. String, 383
tips, 551
unboxed values, 551
unsafe text, 551

permissions
files, 405
getting file permissions,

317
pager example, 317, 319
storing as numerical val-

ue, 405

permutations, 170

phantom equality, 255

phantom types
defined, 197
exporting and, 196–200
proxies, 577–581

pipe operator (|)
documentation com-

ments, 204, 207

functional dependencies,
502

guard clauses, 36
list comprehensions, 63
MINIMAL pragma, 224
sum type syntax, 131

pipeline, data processing, 60–
62

pointfree style
defined, 20
folds, 57
function type annota-

tions, 95
functions, 20

PolyKinds extension, 561

polymorphic functions
type holes, 108–110
type variables and, 100–

103, 108–110

polymorphic types, creating,
133–135

polymorphism
ad hoc, 100, 209
creating polymorphic

types, 133–135
higher kinded types, 240–

247
impredicative, 422
nesting with higher

ranked types, 538
parametric, 100–103, 209
polymorphic functions

and type variables,
100–103, 108–110

proxies, 577
specified vs. inferred

types, 234
type classes, 232–233

precedence
composed functions, 19
determining, 26
flipping arguments, 15
functions, 15, 22–31
operators, 24, 26, 29
parentheses (()) and, 16, 

22–24, 30
type classes, 221
type level programming,

560, 588

predicates, guard clauses, 36

Prelude module, 3, 134, 168

prime variables, 11

primitives library, 544

print-explicit-foralls option, 235

printf, 318, 320, 412

printing
bit twiddling, 412
clearing screen for, 314
command-line argu-

ments, 289–293
converting lines of text

into bytestrings for,
306

forall part of types, 235
format strings, 318
metrics example, 381–

382
module creation greeting

example, 184
pager example, 313–315
pretty print exercise, 153
pretty printing with re-

versible parsing, 466
syntax, 7

procedural shell, functional
core design pattern, 284

process package, xx, 307–309, 
566

processes, managing external
applications with, 307–309

product types
creating, 127
defined, 119
vs. sum types, 128
terms for, 128

-prof option, 166

profiling
cost centers, 526
enabling, 166, 523
spellchecker example,

521–528
summary statistics, 525–

528
tips, 552

profiling option, 524

Profunctor type class, 363

projects
category, 159
compiler options, 165
configuring files, 523
configuring projects, 157–

160
creating modules, 181–

187
creating, with cabal, 156–

160
creating, with ghc Main, 8
documenting modules,

181, 203–207
exporting modules, 187–

203
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file format and cabal,
161–165

homepage, 158
importing modules, 167–

182
initializing with cabal,

156
licenses, 158
organizing, 155–167, 207
re-exporting code mod-

ules, 201–203
running from command

line, 287
running with cabal, 166, 

287
synopsis, 158
using code from other

modules, 167–181
warnings, enabling/dis-

abling, 72–74

prompt, ghci, 3
properties, package level and

cabal, 162

proxies, 577–581, 608–610

punning, 118

pure
Applicative type class and,

342–347
IO actions, 270
monadic parser for

FilePack example, 446
monads, 459
return and, 270

purity
Haskell as pure function-

al language, 1, 152
lazy evaluation and IO

challenges, 264–270
memoization challenges,

529
referential transparency,

534

put
calling directly, 498–503
FilePacker, naive version,

470
lifting, 474, 484
monad transformers, 481

putStr, 7
putStrLn, 7, 272

PVP (Package Versioning Poli-
cy), 158, 164

Q
qualified, 174–175

qualified imports
disambiguating names

with, 126
hiding, 179
with import lists and

aliases, 177–179, 181
re-exporting modules

and, 202
using, 174–175
vector modules, 544
verbosity and, 180

quantification, universal,
233, 494

QuantifiedConstraints extension,
494

quotes
double quotes (") for Had-

dock comments, 206
single quotes (') for Had-

dock comments, 206
single quotes (') for chars,

90
single quotes (') for prime

variables, 11
single quotes (') for pro-

moted types, 560

R
range syntax for lists, 3

ranked types, higher, 538

RankNTypes extension, 538

re-exporting, modules, 201–
203

Read, as derivable, 248

read
creating human-readable

text from values, 215
FilePack serialization ex-

ample, 406
type classes with type

applications, 231, 233

Read type class, 215, 406

readEither, 142, 406

readFile
IO lazy evaluation se-

quence, 279–281
metrics system example

of IORefs, 383
printing file to screen,

293

readIO, 270

readIORef, 366

readMaybe, 348

readProcess, 307

readability
breaking up multiline ex-

pressions, 4
case statements with

guard clauses, 70
custom operators, 24
deriving and, 254
do notation and, 321–

325, 327–329
function type annota-

tions, 95
IO errors, 295
let bindings vs. where

bindings, 33
lists, 4
pointfree style, 21
record wildcards and,

125
type aliases and, 148, 

151

readable, 317

ReaderT monad transformer,
510

record syntax
newtypes, 237
summing records, 131–

133
using, 121

record update syntax, 122, 
184, 186

records
associated data families,

573
binding, 123–125, 318
creating, 121–123
duplicate fields, 125–127
existential types, 424–

431
field selectors, 121
GADT syntax, 595
grouping functions in,

211–213
Haddock comments on

specific fields, 206
module creation greeting

example, 185
monadic parsing, 449–

453
status bar for pager app,

316
summing, 131–133
vs. type classes, 261
updating, 122
weak head normal form,

398
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RecordWildCards extension
authentication example,

199
binding record fields,

123–125, 318
enabling, 123–125
module creation greeting

example, 185

recursion
base case, 43, 51
co-recursion, 75
inductively defined data

structures and, 136–
139

infinite, 11, 224
list creation, 50–53
list deconstruction, 53–

59
looping, 41–44
mutual, 458
parser for calculator ex-

ample, 141–148
parsing example, 453–

454
recursive let bindings, 32
reusing variable names,

11
vs. streams and lazy

evaluation, 75

redacted logging library exam-
ple of type classes, 226–
229, 256–260

referential transparency, 41, 
534

relative file names, 368

:reload, 17

rem function, 52

repl (cabal), 169

representational equality,
254–255

resources for this book
cabal, 162
compiler options, 165
format specifiers, 319
Haddock, 207–208
language extensions, 123
memory usage data, 388
Package Versioning Policy

(PVP), 158
vectors, 545

return
IO actions, 270
monads, 347–351, 355–

357, 459
pure and, 270
using with >>= (bind op-

erator), 275

reverse, 240

reversible parsing, 466

Right in Either type, 135, 339

right-hand identity, monad
laws and, 354–356

rigid skolem error message,
423

roles, equality, 254

round trip tests, 407, 452

rowCost, 550

RTS flags, 387, 523

-rtsopts option, 524

rule of threes, 261

run (cabal), 167, 287

runhaskell Main.hs, 8
running

code conditionally with
branches, 34–37

code conditionally with
when, 441

without compiling, 8
performance and running

code in ghci, 9
projects from cabal, 166, 

287
projects from command

line, 287
RTS flags, 387, 523

S
-s RTS flag, 387, 525

%s format string, 319

scope
binding record fields with

wildcards, 124
functions, 13
let bindings, 36
reusing variable names,

12
type variables, 101–103
where bindings, 36

ScopedTypeVariables extension,
232–233, 241, 428, 577

SCOWL (Spell Checker Orient-
ed Word List), 522

screen, clearing, 314

screen terminal multiplexer,
615

scripts
shell script wrapper exam-

ple with GADTs, 599–
602

shell script wrapper exam-
ple with type classes,
602–613

scrolling
code history, 27
scrolling backwards exer-

cise, 330
viewing text one page at

a time in pager exam-
ple, 300–315

word wrapping, 300, 
302–306

security
phantom types and, 196–

200
smart constructors and,

200

seed value, streams, 75

Select type, 246

selectors, records, 121

semicolon (;) for do notation,
324

Semigroup type class
deriving example, 253–

256
using type classes with

newtypes, 238–240

seq function, 397

sequence function, 374

serializing
base64 encoding and,

404
data, 403–432
exercises, 432
with existential types,

422–432, 438
lists, 418
testing, 407, 414, 452
tuples, 418
with type classes, 409–

419

:set
enabling language exten-

sions, 124
enabling/disabling warn-

ings, 73

Set data structure
libraries for, 367
traversing files IORefs ex-

ample, 369

:seti, enabling language exten-
sions, 124

shape of functions or data
structure concept, 54, 66, 
335

shell command
code formatting of exam-

ples, xvi
exercises, 614
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library example and type
families, 565–574

wrapper example with
GADTs, 599–602

wrapper example with
type classes, 602–613

shift, 412

show
converting types to

strings, 7, 35
serialization and, 407

Show type class
creating human-readable

values with, 215
deriving and, 247–250, 

257
example, 215–217
file pack serialization ex-

ample, 406
logging library example,

226–229

ShowType, type family errors,
586

shuffling spellchecker word
list files, 523

side effects
defined, 265
evaluation of, 278
IO type, 265
lack of in pure functional

languages, 1
mtl style and, 505

smart constructors, 193–196

snd, 6, 69

space leaks
let floating, 533
memoization caches and,

533
profiling with summary

statistics, 525
understanding, 386–396

SPDX license identifiers, 158

Spell Checker Oriented Word
List (SCOWL), 522

spellchecker example, 513–
552

edit distance metrics,
memoization, 529–543

edit distance metrics,
memoization with ST,
540–543

edit distance metrics, mi-
cro-optimizations, 547–
551

edit distance metrics,
naive example, 514–
518, 526–528

naive version, 513–521
naive version, profiling,

521–528
reporting matches, 518–

521
running from command

line, 521
shuffling files, 523
threshold, 520
vectors, 545–547

splitAt, 144, 301

src directory, 159

SRC profiling output, 526

ST type
edit distance metrics for

spellchecker example,
540–543

memoization and internal
mutability with, 534–
543

understanding function
of, 534–540

StandaloneDeriving extension,
249, 254, 595

stanzas, cabal, 162, 524

StarIsType extension, 555

state
deriving with functional

dependencies, 501–503
guessing game example,

498–504
looping, 39–44
managing with monad

transformers, 469–475

State monad
FilePack parsing exam-

ple, 468–475
managing mutable state,

469–475
name parser example,

471–475
nesting monad transform-

ers, 483–489
transformation example,

480–483

statistics, profiling summary,
525–528

status bar, pager example,
315–329

stdin, 310

stdout, 310, 327

sterr, 310

stock deriving strategy, 259

streams
infinite streams, 82–86
lazy evaluation, 75–77, 

82–86
seed value, 75

STRefs, 540

strictness
annotations, 398
bang patterns, 550
do notation as, 389
exercises, 401
implementing with BangPat-
terns, 397–400

implementing with seq,
397

IO, 383, 389, 396–400

String type
as alias for Char, 148, 150
converting to Text type,

172
defined, 90
serialization, 406, 410
vs. Text, 383

strings
breaking or splitting, 144
converting bytestrings to,

407
converting case example

and functor laws, 353
converting to Text value,

172
converting types to, 7, 35
CSV conversion example

and higher kinded
types, 242–245

decoding, 441
edit distance metric and

spellchecker example,
514–518

file handles, 272
format strings, 318
IO actions, 272
joining, 11, 13, 239
listing command-line ar-

guments, 288
as lists of characters, 47
literal values for with
OverloadedStrings exten-
sion, 314

parser for calculator ex-
ample, 141–148

pattern matching, 66
printing to screen, 7
replacing with text and

bytestrings, 298–300
string literal syntax, 349
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string tags and monadic
parsing, 461–463

type level programming,
557

stylish-haskell, 156

sub-parsers, 460

succ, 136, 271

success, avoiding motto, 1

sum of products, 128

sum types
calculator example, 139–

152
creating, 127–135
encoding/decoding im-

ages, 461
as enums, 127
FilePack serialization ex-

ample, 408, 420
GADT syntax, 595
vs. product types, 128
record syntax, 131–133
recursion and inductively

defined data struc-
tures, 136–139

Symbol kind, 557

symbolVal, 576–578

symbols (type level strings),
557

synopsis, project, 158

syntax
basics of Haskell, 2–31
cabal file format, 161–

165
custom operators, 24–31
exercises, 44–46
functions, writing, 13–21
GADTs, 593
guard clauses, 35
indentation, 9
let bindings, 31–33
lists, 3–5, 47–66
looping, 37–44
multiline expressions, 4
parsing, 21–31
printing, 7
record syntax, 121, 131–

133, 237
record update syntax,

122, 184, 186
string literal syntax, 349
tuples, 6
variables, 9–13
whitespace, 9, 324

System.Directory module, 316

System.Environment module, 288

System.Info module, 308

System.IO module, 271, 310

System.IO.Error module, 294

System.IO.Unsafe module, 535

System.Process module, 307, 
566

T
:t command, 91

t for Foldable types, 243

T.index, 530

tacit programming, see point-
free programming

tagless final encoding, 504

tags, string tags and monadic
parsing, 461–463

tail, 49

tail, list
appending list elements,

49
creating new lists recur-

sively, 50–53
empty lists, 50
inductively defined lists,

138
lazy evaluation and, 74
list deconstruction, 53–

59
running empty lists, 290

takeWhile, 81

term, type level programming,
554, 596

term level, type level program-
ming, 554, 559, 596

terminal echoing, 312

terminal multiplexer exercise,
615

terminals
buffering, 311, 327
clearing screen, 314
dimensions and format-

ting status bar, 318–
321

dimensions, handling,
306–309, 330

echoing, 312
resizing, 331
terminal multiplexer exer-

cise, 615
tput for dimensions, 307–

309
truncating text in status

bar, 320
word wrapping, 300, 

302–306

test directory, 160

test-suite target stanza, 162

testing
deserializing, 448, 452
inline tests, 407, 452
loading modules for, 9
mtl style and, 505
null test exercise, 261
organization with cabal,

160, 162
parsing, 448
round trip tests, 407, 452
serializing, 407, 414, 452
test suite creation with

cabal, 160
type class laws and, 354
type level programming,

576

text library
advantages, 298
installing, 156
version, xx

Text type
advantages, 298
aliasing example, 170–

173
vs. ByteString type, 314, 

317
converting bytestrings in-

to lines of text, 306
converting String to, 172
exercises, 330
FilePack serialization ex-

ample, 408, 410
importing example, 170–

181
replacing strings with,

298–300
vs. String, 383
type family errors, 585
unsafe text and micro-

optimization, 551

threes, rule of, 261

threshold, spellchecker, 520

throw, 297

throwIO, 297

thunks
creation by default, 389
described, 390
garbage collection, 389
infinite lists and folds,

77–80
lazy evaluation, 74–86, 

385–396
lazy streams, 84–86
memoization, 529–534
pattern matching, 79
space leaks, 386–396
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updating with indirection,
393

weak head normal form
for values, 395–396

ticks (prime variables), 11

time
formatting, 319
profiling apps, 522, 526

time command, 522

time package, xx, 316, 319, 
380

%time profiling output, 526

timers
metrics example, 380–

382, 397, 399
timing pure functions ex-

ercise, 400

timestamps, pager example,
316, 319

tmux, 615

toList, 544

toStrict, 299

total functions, 67

toUpper, 353

tput, 307–309, 330

trace tool exercise, 433

transformers library
about, 467, 492
exceptional transformers,

476
exercises, 510
State monad and, 469
version, xx

transparency, referential, 41, 
534

Traversable type, 243

troubleshooting
existential types, 425–

430
folds and pointfree style,

57
types, 105–113

tuples
combining lists into, 65
creating, 6
getting elements of, 6
nesting, 6
parsing, 451
pattern matching, 67–68
returning when parsing,

143
serializing, 418
type level programming,

564, 579
types, 90

TupleSections extension, 451

type aliases, 148–152, 478, 
568

type annotations
binding, 90, 93
deducing function behav-

ior from, 268
default implementation

of functions in type
classes, 228

defined, 90
errors, 96–100
functions, 92–96
GADT syntax, 594
IO errors, 295
omitting, 106
records, 121
type aliases, 149
type families, 605
type level programming,

604
type variables and, 101–

103
using, 90–96
values, 90

type applications
error handling in pager

example, 297
monad transformers, 500
skipping, 232
specified vs. inferred

types, 234–236
specifying type classes

with, 229–236
using multiple, 231
visible, 221, 235

type checking
Haskell advantages, xiv
internal mutability with
ST type, 539

ScopedTypeVariables exten-
sion and, 232

type level programming,
612

UndecidableInstances exten-
sion and, 501

type classes, 209–262, see
also functors; monads

ad hoc polymorphism in,
209–229

constraints, 214–217, 
226–229, 342, 577–
581, 611

creating, 213–217
decoupling monad trans-

formers, 497–503

default function imple-
mentation with, 217–
229

defined, 213
deriving and, 247–260, 

506
exercises, 261, 362, 615
existential constraints,

430
vs. existential types, 427–

430
formatting error mes-

sages, 611
functor and monad laws,

352–361
GADT syntax, 595
vs. GADTs, 599
newtypes and, 238
vs. passing functions,

260
polymorphic, 232–233
vs. records, 261
serializing with, 409–419
single instance rule, 238, 

429
specifying with type appli-

cations, 229–236
tips for, 260
vs. type families, 566–

568, 570
type level programming,

579, 602–613

:type command, 91

type constructors
binding record fields, 124
existential types, 425
kind and, 241, 339
names, 24
polymorphic types, 133
type level programming,

559

type families, 565–593
about, 501
adding parameters to,

584
associated data families,

572–587
associated type families,

565–572, 575, 605
closed data families, 581–

587
closed type families, 565, 

581–587, 592
constraints, 577–581, 

611
creating, 568
defined, 565
enabling, 568
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exercises, 614
formatting error mes-

sages, 611
limitations, 572, 579, 588
list operations, 587–593
vs. multi-parameter type

classes, 566–568, 570
open data families, 574–

581
open type families, 565, 

574–581, 592
pattern matching, 587

type family, 575

type holes
exercise, 115
IO functions, 267
troubleshooting with,

105–113

type inference
brackets [], 235
GADTs, 597
Haskell advantages, 2
higher kinded types, 243
PolyKinds extension, 562
type holes, 106–113
type level programming,

562, 597, 604, 612
wrong attribution, 110

type instance, 575

type keyword, 148, 568

Type kind, 554

type level programming, 553–
615, see also type families

conditional expressions,
589, 614

defined, 553
evaluating expressions,

556
exercises, 614
functions and type fami-

lies, 565–593
GADTs, 593–613
higher-order functions,

588–593
kinds in, 554–565
limitations, 554, 572, 

579, 588
lists, 561–565, 580, 582, 

587–593
natural numbers, 556
pattern matching, 587, 

605–613
strings, 557
testing, 576
tuples, 564, 579
type classes, 602–613
types in, 554–558

type parameters
ambiguous types, 428
existential types, 425
higher kinded types as,

477
monad transformers,

477, 494
organizing FilePack serial-

ization example, 415
polymorphic types, 133–

135
with type aliases, 150

type signatures, see type an-
notations

type variables
building file list for

FilePack example, 421
defined, 101
existential types, 423
functors and, 339, 341
GADT syntax, 594
polymorphic functions,

100–103, 108–110
polymorphic types, 134

TypeApplications extension, 230, 
297, 428

TypeError, 585, 611

TypeFamilies extension, 568

TypeOperators extension, 555, 
561–562

types, see also data types;
phantom types; polymor-
phic types; sum types

adding inhabitants to,
118

aliasing, 148–152
ambiguous types, 427–

428
common, 89
converting to strings, 7, 

35
creating data types, 117–

127
creating polymorphic

types, 133–135
creating sum types, 127–

135
defined, 89
exercises, 114–115, 152
existential types, 422–

432, 438
exploring type space with
undefined, 103–105

fully saturated types,
241, 338

functional dependencies,
501

Haskell advantages, xiv, 
2

higher kinded types, 240–
247, 477

higher ranked types, 538
inductively defined data

structures and recur-
sion, 136–139

IO, 113
kinds as type of type,

240, 338
kinds, promoting to, 558–

565
names, 89, 559
polymorphic functions,

100–103, 108–110
product types, 119, 127
restrictions of single

types in lists, 5, 47, 
563

roles, 254
with single inhabitant,

118
specified vs. inferred

types, 234–236
troubleshooting, 105–113
type errors, 96–100
type holes, 105–113, 

115, 267
type information, 91
uses for, xiv
value constructors, 118, 

128
wrapping in newtypes,

236–240
wrong attribution, 110

U
unboxed values, 551

uncurry, 45, 66

UndecidableInstances extension,
501

undefined
exercises, 114–115
exploring type space with,

103–105

underscore (_)
ignoring fields in pattern

matching, 119
operator names, 25
type holes, 106, 111
wildcard pattern match-

ing, 69

Unicode
bytestrings and, 299
Char type, 90
in names, 9
Text type for, 408
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Unit (single inhabitant val-
ues), 118

unit tests, type class laws
and, 354

universal quantification, 233, 
494

unix library, xx

unlines, 306, 326

unpack, 407, 411

unsafe
functions, 535
text, 551

unsafePerformIO, 535

unwords, 141

updating
records, 122
thunks with indirection,

393
values in data types, 120

user info examples
GADTs, 596–599
phantom types and, 196–

200
re-exporting modules,

201–203

user input, keypress actions
in pager example, 309–313

userError, 297

UTF8
spellchecker wordlists,

522
viewing contents of text

file in pager example,
286–300

V
validation

errors, 195
phantom types and, 197–

200
smart constructors, 194–

196

value constructors
creating, 118
creating sum types, 128
as infix, 141
weak head normal form,

395

values
applicative laws, 357–361
applying to functions

with map, 60
boxed, 551
coercing and representa-

tional equality, 255

converting monad values,
276

creating human-readable
text with Show, 215

destructuring values with
pattern matching, 66–
74

existential constraints,
430

existential types, 422–
431, 438

functions as and data
types, 144–148

GADTs, 596–597
identity law of functors,

353
ignoring in pattern

matching, 70
initial empty/zero and

type classes, 239
mapping IO values, 274–

277
monadic parsing, 453–

459
with named arguments,

121
proxies, 577–581, 608–

610
seeing variable values, 9
with single inhabitant,

118
smart constructors, 194–

196
ST type and, 534–537
structure with Applicative

type class, 342–347
type annotations, 90
unboxed, 551
updating data types, 120
updating records, 122
value constructors, 118, 

128
weak head normal form,

395–400

variables
assigning to another

variable, 9
assigning to if expres-

sions, 34
creating, 9–13
creating local variables

with let bindings, 31–
33

global variables in met-
rics system example of
IORefs, 376–390, 397–
400

marking as inferred, 236
names, 9–13

pointfree style, 20
prime, 11
referential transparency,

41, 534
replacing with pattern

matching, 66
reusing names, 10–13
seeing value of, 9
specified vs. inferred

types, 234–236

vector library, xx, 544

vectors
creating, 544
locality, 546
memory layout, 543–547
spellchecker example,

545–547
unboxed, 551

version property, cabal files,
162

versions
cabal, 156, 162
compiler, xviii, 2, 164
constraints, 164
freeze file, 164
installing packages with

cabal, 156
language extensions, xviii
language standards, xviii
Package Versioning Policy

(PVP), 158, 164
packages, xx

via deriving strategy, 260

visible type applications,
221, 235

Void type, 117

W
-Wall option, 74, 166, 560, 588

warnings
compiler options, 166
DerivingStrategies, 257, 260
enabling/disabling, 72–

74
pattern matching, 71–

74, 312
toggling, 73
type level programming,

560, 588

weak head normal form, 395–
400

-Werror option, 166

-Weverything option, 166
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when
running code conditional-

ly, 441
running computations

conditionally, 372

where bindings
closed type families, 583
GADTs, 594
helper methods, 52
instances that don’t need

defined functions, 227
module creation, 182
type annotations, 90
using, 32, 36

where keyword, 32, 182

whitespace, 9, 324

wildcards
binding record fields,

123–125, 318
underscore (_) in pattern

matching, 69

-Wincomplete-patterns option, 72

-Wno-incomplete-patterns option,
73

Word type, 90, 405

word wrapping
mapping lines of text into

word-wrapped text, 306
terminals, 300, 302–306

Word32 values
CMode alias for, 405
converting to Word8, 411
FilePack deserialization

example, 439–442, 449
FilePack serialization ex-

ample, 411–414
parsing, 449
storing unsigned numeric

values, 405

Word8 values
converting Word8 to, 411
example of default imple-

mentation with type
classes, 218–226

words, see also edit distance
metrics; spellchecker exam-
ple

replacement utility exer-
cise, 282

word boundaries, 303

words function, 141

writable, 317

writeFile, 279–281

writeIORef, 366, 385, 389

X
XArgs, 601

Z
zero

divide by zero exercise,
153

initial empty/zero and
type classes, 239

zip, 65, 88

zipWith, 88, 326
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Explore functional programming and discover new
ways of thinking about code. You know you need to
master functional programming, but learning one
functional language is only the start. In this book,
through articles drawn from PragPub magazine and
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functional thinking and functional style and idioms
across languages. Led by expert guides, you’ll discover
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of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
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Practical A/B Testing
Whether you’re a catalyst for organizational change or
have the support you need to create an engineering
culture that embraces A/B testing, this book will help
you do it right. The step-by-step instructions will de-
mystify the entire process, from constructing an A/B
test to breaking down the decision factors to build an
engineering platform. When you’re ready to run the
A/B test of your dreams, you’ll have the perfect
blueprint.

Leemay Nassery
(166 pages) ISBN: 9798888650080. $29.95
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Agile Web Development with Rails 7
Rails 7 completely redefines what it means to produce
fantastic user experiences and provides a way to
achieve all the benefits of single-page applications – at
a fraction of the complexity. Rails 7 integrates the
Hotwire frameworks of Stimulus and Turbo directly as
the new defaults, together with that hot newness of
import maps. The result is a toolkit so powerful that
it allows a single individual to create modern applica-
tions upon which they can build a competitive busi-
ness. The way it used to be.
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Creating Software with Modern Diagramming Techniques
Diagrams communicate relationships more directly
and clearly than words ever can. Using only text-based
markup, create meaningful and attractive diagrams to
document your domain, visualize user flows, reveal
system architecture at any desired level, or refactor
your code. With the tools and techniques this book will
give you, you’ll create a wide variety of diagrams in
minutes, share them with others, and revise and up-
date them immediately on the basis of feedback. Adding
diagrams to your professional vocabulary will enable
you to work through your ideas quickly when working
on your own code or discussing a proposal with col-
leagues.

Ashley Peacock
(156 pages) ISBN: 9781680509830. $29.95
https://pragprog.com/book/apdiag

Mockito Made Clear
Mockito is the most popular framework in the Java
world for automating unit testing with dependencies.
Learn the Mockito API and how and when to use stubs,
mocks, and spies. On a deeper level, discover why the
framework does what it does and how it can simplify
unit testing in Java. Using Mockito, you’ll be able to
isolate the code you want to test from the behavior or
state of external dependencies without coding details
of the dependency. You’ll gain insights into the Mockito
API, save time when unit testing, and have confidence
in your Java programs.
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Designing Data Governance from the Ground Up
Businesses own more data than ever before, but it’s
of no value if you don’t know how to use it. Data gov-
ernance manages the people, processes, and strategy
needed for deploying data projects to production. But
doing it well is far from easy: Less than one fourth of
business leaders say their organizations are data
driven. In Designing Data Governance from the Ground
Up, you’ll build a cross-functional strategy to create
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ment.
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Data is at the core of every business, but it is useless
if nobody can access and analyze it. Learn how to
generate business value by making your data accessi-
ble with advanced table UIs. This definitive guide
teaches you how to bring your data to the fingertips
of nontechnical users with advanced features like
pagination, sorting, filtering, and infinity scrolling.
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