
Test-Driven
Development with
React and TypeScript

Building Maintainable React
Applications
—
Second Edition
—
Juntao Qiu

Test-Driven
Development with

React and TypeScript
Building Maintainable React

Applications

Second Edition

Juntao Qiu

Test-Driven Development with React and TypeScript: Building

Maintainable React Applications

ISBN-13 (pbk): 978-1-4842-9647-9		 ISBN-13 (electronic): 978-1-4842-9648-6
https://doi.org/10.1007/978-1-4842-9648-6

Copyright © 2023 by Juntao Qiu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (github.com/apress). For more detailed information, please visit
http://www.apress.com/source-code.

Paper in this product is recyclable

Juntao Qiu
Wantirna, 3152, VIC, Australia

https://doi.org/10.1007/978-1-4842-9648-6

To Mansi and Luna.

v

Table of Contents

About the Author��xiii

About the Technical Reviewers���xv

Acknowledgments���xvii

Foreword 1���xix

Foreword 2���xxi

Introduction��xxiii

Chapter 1: �A Brief History of Test-Driven Development�������������������������1

What Is Test-Driven Development?��1

The Red-Green-Refactor Cycle���2

A Closer Look at Red-Green-Refactor��4

Types of TDD���5

Prerequisites of TDD���8

Other Techniques That Can Help Implement TDD���10

Tasking���10

Summary���12

Further Reading���12

Chapter 2: �Get Started with Jest���15

Set Up the Environment���15

Install and Configure Jest���16

Jest at First Glance��18

Basic Concepts in Jest���21

vi

Using Matchers in Jest��25

Basic Usages��25

Matchers for Array and Object��27

The Powerful Function expect��28

Build Your Matchers��31

Mocking and Stubbing���34

jest.fn for Spying��35

Mock Implementation���35

Stub a Remote Service Call��36

Summary���37

Chapter 3: �Refactoring Essentials: The Basics You Need to Know�����39

The Ten Most Common Refactorings���39

Let’s Talk the Problem – Code Smells��40

Long Files���40

Big Props List���41

Mixing Computation with Views���42

Overuse of Mocks���43

Not Following Established Principles���44

The Problem – ROT13��45

The Initial Implementation���45

The Top Ten Refactorings���47

Step 1: Slide Statements��48

Step 2: Extract Constant���49

Step 3: Extract Function���50

Step 4: Rename Parameter���51

Step 5: Rename Variable��52

Step 6: Extract Function���53

Table of Contents

vii

Step 7: Replace if-else with ?���55

Step 8: Extract Function���56

Step 9: Extract Parameter���57

Step 10: Extract Constant���58

Step 11: Slide Statements��59

Step 12: Move Fields��60

Step 13: Function to Arrow Function��61

Step 14: Simplify Logic���62

Summary���63

Chapter 4: �Test-Driven Development Essentials����������������������������������65

Writing Tests��65

Using Given-When-Then to Arrange a Test���66

Triangulation Method���69

Example: Function addition��69

How to Do Tasking with TDD��72

An Expression Parser for Tracking Progress���73

Applying TDD Step by Step���75

Keep Refactoring – Extract Functions to Files��78

Summary���80

Chapter 5: �Project Setup��81

Application Requirements��81

Feature 1 – Book List���82

Feature 2 – Book Detail��83

Feature 3 – Searching��83

Feature 4 – Book Reviews��84

Table of Contents

viii

Create the Project��84

Using create-react-app��84

Material UI Library��88

Install Cypress��91

Commit Code to Version Control���95

Summary���96

Chapter 6: �Implement the Book List��97

Acceptance Tests for Book List��97

A List (of Books)���97

Verify Book Name���99

Refactoring – Extract Function���100

Refactoring – Extract Component���103

Talk to the Backend Server��105

Stub Server���106

Async Request in Application���108

Setup and Teardown���110

Adding a Loading Indicator��114

Refactor First��114

Define a React Hook���118

Unit Tests of the Bookish Application���120

Unit Test with the React Testing Library���120

Summary���123

Chapter 7: �Implementing the Book Detail View���������������������������������125

Acceptance Tests���125

Link to Detail Page���126

Verify Book Title on Detail Page��126

Frontend Routing��127

Table of Contents

ix

Unit Tests���132

Refactoring���133

Book Detail Page��137

File Structure��139

Testing Data���141

User Interface Refinement���143

Using Grid System��144

Handling Default Value���146

A Failing Test with undefined���146

One Last Change?��149

Summary���150

Chapter 8: �Searching by Keyword���153

Acceptance Test���153

One Step Further��158

What Have We Done?���162

Moving Forward – The Test Code Is As Important��163

Summary���167

Chapter 9: �Introduction to State Management����������������������������������169

State Management���170

A Typical Scenario of Building UI��170

Pub-Sub Pattern���171

A Brief of Redux��172

Decoupling Data and View��174

The Formula: view = f(state)��176

Implementing State Management��178

Environment Setup���178

Define a Slice���179

Table of Contents

x

Fetching Data from Remote��181

Define the Store��183

Migrate the Application��185

Book List Container��186

Refine the SearchBox���187

Test Individual Reducers��189

Book Details Slice��190

Do You Need a State Management Library?���193

Summary���194

Chapter 10: �Book Reviews���197

Business Requirements���198

Start with an Empty List���198

Rendering a Static List���200

Use the Review Component in BookDetail���201

Fulfill a Book Review Form���203

End-to-End Test��205

Define a Review Slice���207

Adjust the Stub Server for Book Reviews���209

Refactoring���214

Add More Fields���216

Review Editing���220

Save a Review – Action and Reducer���223

Integration All Together���227

Summary���230

Table of Contents

xi

Chapter 11: �Behavior-Driven Development��231

Play with Cucumber���232

Install and Config cucumber Plugin��233

Live Document with cucumber��235

File Structure��235

The First Feature Specification���235

Define the Steps���236

Book List���238

Searching���240

Review Page���242

Summary���244

�Appendix A: Background of Testing Strategies���������������������������������245

�Appendix B: A Short Introduction to TypeScript��������������������������������251

Index��259

Table of Contents

xiii

About the Author

Juntao Qiu is an accomplished software

developer renowned for his expertise

in producing high-quality and easily

maintainable code. He is committed to

helping individuals improve their code-

writing abilities and generously shares his vast

knowledge and experience through multiple

platforms, including books such as this one

and Maintainable React (Leanpub, 2022).

In addition, Juntao hosts a YouTube channel (@icodeit.juntao) where

he provides valuable insights, tips, and best practices for writing clean

code and performing refactoring. Juntao’s goal is to empower developers,

enabling them to reach their full potential and have a positive impact on

the software development industry.

xv

About the Technical Reviewers

Jeff Friesen is a freelance teacher and

software developer with an emphasis on

Java. In addition to authoring Java I/O, NIO

and NIO.2 (Apress) and Java Threads and

the Concurrency Utilities (Apress), Jeff has

written numerous articles on Java and other

technologies (such as Android) for JavaWorld

(JavaWorld.com) – now InfoWorld (www.

infoworld.com/category/java/), informIT

(InformIT.com), Java.net (no longer in existence), SitePoint (SitePoint.

com), and other websites. Jeff can be contacted via his email address:

jefff@xplornet.ca. 

Alexander Nnakwue has a background

in mechanical engineering and is a senior

software engineer with over seven years of

experience in various industries including

payments, blockchain, and marketing

technology. He is a published author for

professional JavaScript, a technical writer, and

a reviewer. He currently works as a software

engineer at Konecranes with the digital

experience team, working on machine data

and industrial cranes.

In his spare time, he loves to listen to music and enjoys the game of

soccer. He resides in Helsinki, Finland, with his lovely wife and son Kaobi.

https://urldefense.com/v3/__https:/www.infoworld.com/category/java/__;!!NLFGqXoFfo8MMQ!ocMCa8U7-pYHLa6_Xua2WVQg0sr-euprKNFgjVn36j4KTHqu-bMdKNoSfa_WmgKm14xrDpR2MEmMIoqrVWI3FfIqRUYaCcc$
https://urldefense.com/v3/__https:/www.infoworld.com/category/java/__;!!NLFGqXoFfo8MMQ!ocMCa8U7-pYHLa6_Xua2WVQg0sr-euprKNFgjVn36j4KTHqu-bMdKNoSfa_WmgKm14xrDpR2MEmMIoqrVWI3FfIqRUYaCcc$

xvii

Acknowledgments

I am profoundly grateful to my ThoughtWorks colleagues for their

enthusiastic engagement and invaluable contributions during the

development of this book. Our project discussions were a fountain of

insight, enriching the narrative with an array of diverse perspectives. A

special acknowledgment goes to Evan Bottcher for his meticulous review

and for providing an eloquent foreword for the book.

Before embarking on the second edition, I reached out to my

newsletter (https://juntao.substack.com/) subscribers with a survey,

seeking their expectations for the new iteration. The response was

overwhelming and deeply informative – my heartfelt thanks go out to

those dedicated readers who took the time to provide their input.

I must extend my profound appreciation to the editorial team for their

indispensable support throughout the second edition’s journey. Their

expert advice has proven invaluable in refining the text, and it’s their

tireless dedication that has brought this project to fruition.

Finally, upon first sharing my book’s vision with my colleagues

at ThoughtWorks, the outpouring of valuable feedback I received –

spanning from minor typographical corrections to substantial technical

suggestions – was truly overwhelming. In particular, on a cool morning

in May 2020, I was greeted with an uplifting email from Hannah Bourke,

who not only expressed her appreciation for the book but also offered

her editing assistance as a native English speaker and fellow developer.

Her subsequent pull requests offered not just high-quality language

corrections but also insightful technical review comments from a learner’s

perspective.

https://juntao.substack.com/

xviii

Furthermore, I am indebted to Martin Fowler, a distinguished

developer and writer, who surprised me with detailed and insightful

feedback on my initial draft. Although the content of the book has

significantly evolved since that draft, the essence of his invaluable

comments is still palpably present. Heeded his advice, I’ve trimmed

nearly a quarter of the content to enhance clarity and readability,

removed unrelated code snippets from examples, and provided more

context around the code. Above all, the lesson of simplicity that I learned

from Martin has been invaluable – emphasizing a thorough exploration

of one topic at a time, rather than superficially touching upon every

possible aspect.

In summary, the journey to this book’s completion has been enriched

by the collective wisdom and support of countless individuals. Their

feedback, suggestions, and encouragement have been nothing short of

invaluable, for which I am eternally grateful.

Acknowledgments

xix

Foreword 1

Sometimes, I find it hard to believe that it’s been more than two decades

since Kent Beck published Extreme Programming Explained including

Test-Driven Development (TDD) as a core practice. In the years since then,

the use of automated testing has become quite commonplace, something

that almost all developers are familiar with – however, the “Red-Green-

Refactor” cycle of TDD is often missing. The reality is that building

software test first is not easy or trivial in real-world software development

and requires deliberate practice and usually someone experienced to

learn from.

At ThoughtWorks, my role is Head of Engineering – responsible for the

quality of the software that our teams produce for and with our clients.

We set a high standard for the “internal” quality of the code we produce,

wanting it to be maintainable and extensible so that it can quickly be

changed with confidence. Test-Driven Development is a default practice

in ThoughtWorks – our experience shows that the practice leads to better

software design and good confidence from a comprehensive automated

test suite.

In my years at ThoughtWorks, I’ve seen the phenomenal rise in the

importance of JavaScript and browser applications. In 2010, we advised

that the industry should treat JavaScript as a first-class language (www.

thoughtworks.com/radar/languages-and-frameworks/javascript-

as-a-first-class-language) on the ThoughtWorks Technology Radar,

applying all of the same engineering rigor as other platforms. As one of

the authors of the Technology Radar, I’ve seen and helped document the

explosion of tooling and frameworks in JavaScript, many of which have

been related to the area of test automation.

http://www.thoughtworks.com/radar/languages-and-frameworks/javascript-as-a-first-class-language
http://www.thoughtworks.com/radar/languages-and-frameworks/javascript-as-a-first-class-language
http://www.thoughtworks.com/radar/languages-and-frameworks/javascript-as-a-first-class-language

xx

Test-Driven Development with React and TypeScript is a practical and

hands-on guide to learn TDD with React, the most prevalent browser

application framework in use today. It guides the reader through the

fundamentals of TDD with React by implementing a series of requirements

in a nontrivial example application. The book is fast-paced, so if you’re

unfamiliar with React and its friends, you’ll need to pause along the way

and do some research as the example application grows in features and

dependencies. Along the way, Juntao points out some “smells” or signs that

the approach can be improved – for example, cluttered code organization

or hard-to-maintain test data.

Read this book if you would like to learn by example from someone

who is an expert in using TDD to grow browser applications.

Evan Bottcher

March 2021

Foreword 1

xxi

Foreword 2

Landing in the middle of a React project that had very low test coverage,

in a team that had aspirations to improve it, but without a clear strategy

of how to go about it, I struggled to find resources that stepped out how to

approach testing for a frontend project. I couldn’t find a clear explanation

of how to implement Test-Driven Development for a UI, let alone

specifically for React. This book couldn’t have come at a better time.

There are a plethora of different testing methodologies and libraries

available just for React. The ones you choose will depend on many

things. This book doesn’t prescribe a particular solution but establishes

the purpose of tests in driving out specifications and suggests an overall

approach, with practical guidance and examples. Juntao provides a

holistic explanation of the purpose and implementation of Test-Driven

Development for React, demonstrating the benefits of moving testing

earlier in the process, improving the robustness and design of our code.

Juntao’s years of experience, his eagerness and passion for learning

and sharing his knowledge in a didactic way, help to make this a relevant,

practical, and engaging guide to follow and have given me confidence in

my own testing strategies.

Hannah Bourke

March 2021

xxiii

Introduction

This comprehensive book is your ultimate guide to mastering Test-Driven

Development (TDD) in the context of React and TypeScript. Whether you're

a seasoned developer seeking to refine your skills or a newcomer eager to

embrace industry-standard practices, this book caters to all levels of expertise.

Spanning a wide range of topics, each chapter in this book is

thoughtfully designed to provide you with a deep understanding of TDD

principles and their application in real-world scenarios. Let's take a

glimpse into the chapters and their role in your learning journey:

Chapters 1 to 4: Setting Up the Foundation

In these early chapters, we lay the groundwork for

your TDD journey. We provide a brief history of

Test-Driven Development, allowing you to grasp

the underlying concepts and motivations. You'll

then dive into getting started with Jest, Cypress, and

the React Testing Library, equipping you with the

necessary tools to write effective tests.

Chapters 5 to 10: Implementing the Features

These chapters form the heart of the book, as we guide

you through the step-by-step implementation of key

features in our Bookish application. From building

the book list and book detail view to incorporating

search functionality, state management, and even

enabling user reviews, you'll gain invaluable hands-on

experience in applying TDD principles to build robust

and reliable React applications.

xxiv

Chapter 11: Describing Acceptance Tests

In this final chapter, we explore the concept of

acceptance testing and introduce you to Behavior-

Driven Development (BDD). You'll learn how to

write acceptance tests that ensure your application

meets the desired behavior and satisfies stakeholder

requirements.

By following along with each chapter, you'll not only acquire the

knowledge and skills to excel in TDD but also experience the benefits

firsthand. Faster feedback cycles, improved code quality, enhanced

collaboration, and the confidence to make changes and add new features

are just a few of the advantages you'll gain.

Are you ready to embark on a transformative journey toward

becoming a more confident, efficient, and skilled developer? Test-Driven

Development with React and TypeScript: Building Maintainable React

Applications is your comprehensive companion. Let the power of TDD

guide your development process, elevate your coding skills, and lay the

foundation for a successful career in software development. Get ready to

dive in and unlock the full potential of TDD in your React projects.

Introduction

1

CHAPTER 1

A Brief History
of Test-Driven
Development
My purpose in writing this chapter is not to copy and paste cliches from

blogs or to make it seem like I was part of the historic events (such as the

Agile Manifesto or Extreme Programming activities) that led to the creation

of Test-Driven Development as a methodology – believe me, I’m not that old.

However, I do believe that providing context around the topics we’ll be

discussing in this book can be helpful. In this chapter, we’ll explore the basic

workflow of TDD and the various practical approaches used by different

schools of thought. If you prefer to jump straight into the code, feel free to do

so by navigating to the next chapter and getting your hands dirty.

�What Is Test-Driven Development?
TDD is a software development methodology in which tests are written to

drive the development of an application. It was developed/rediscovered by

Kent Beck in the late 1990s as part of Extreme Programming1 and was well

discussed in his famous book Test-Driven Development: By Example.

1 https://martinfowler.com/bliki/ExtremeProgramming.html

© Juntao Qiu 2023
J. Qiu, Test-Driven Development with React and TypeScript,
https://doi.org/10.1007/978-1-4842-9648-6_1

https://martinfowler.com/bliki/ExtremeProgramming.html
https://martinfowler.com/bliki/ExtremeProgramming.html
https://doi.org/10.1007/978-1-4842-9648-6_1

2

In his book, Kent Beck describes two essential rules:

•	 Write new code only if you first have a failing

automated test

•	 Eliminate duplication

which leads to the steps of Red-Green-Refactor, which we will discuss

soon. The ultimate goal for these two rules is to write (as Ron Jeffries

describes) clean code that works.

�The Red-Green-Refactor Cycle
Red-Green-Refactor is the core cycle of Test-Driven Development (TDD)

methodology. The cycle involves the following steps:

	 1.	 Red: Write a failing test that describes the desired

behavior of a specific feature or functionality. The

test should not pass yet as the functionality has not

yet been implemented.

	 2.	 Green: Write the minimum amount of production

code necessary to make the failing test pass. The

focus should be solely on passing the test, without

worrying about code quality or design.

	 3.	 Refactor: Improve the design of the production code

without changing its behavior, ensuring that all tests

continue to pass. This step includes optimizing

the code, removing duplication, and enhancing its

overall quality.

The cycle repeats with each new feature or functionality, with the goal

of producing high-quality code that meets the specified requirements

and is maintainable over time. The Red-Green-Refactor cycle (Figure 1-1)

emphasizes writing automated tests before writing any production code,

ensuring that the code is continually tested and improved as it evolves.

Chapter 1 A Brief History of Test-Driven Development

3

Figure 1-1.  Test-Driven Development

At first glance, the principles may seem straightforward to follow.

However, the challenge with many principles is that they may not work

effectively for beginners. The principles are generally high level and

challenging to implement, as they lack specificity and detailed guidance.

For example, just knowing the principles will not help you to answer

questions like

•	 How can I write my very first test?

•	 What does enough code actually mean?

•	 When and how should I refactor?

•	 What refactoring techniques do I need to begin with?

This book aims to address these questions and equip you with the

knowledge and skills necessary to apply these techniques with confidence

in your daily workflow. By the end of the book, you should be well

equipped to implement the discussed techniques effectively.

Chapter 1 A Brief History of Test-Driven Development

4

�A Closer Look at Red-Green-Refactor
Examining the Red-Green-Refactor cycle more closely reveals something

intriguing. To successfully integrate this method into our daily workflow,

we must consider several additional elements.

Traditionally, TDD contains two major parts: quick implementation

and then refactoring. In practice, the tests for quick implementation are

not limited to the unit tests. They can be the acceptance tests as well –

these are higher-level tests that focus more on business value and the

end-user journey, without worrying too much about the technical details.

Implementing the acceptance tests first could be an even better idea.

Starting with acceptance tests ensures that the right things are

prioritized, and it provides confidence to developers when they want

to clean up and refactor the code in the later stage. Acceptance tests

are intended to be written from the end user’s perspective; a passing

Figure 1-2.  Test-Driven Development. Source: Wikipedia (https://
en.wikipedia.org/wiki/Test-driven_development)

Chapter 1 A Brief History of Test-Driven Development

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development

5

acceptance test ensures the code meets the business requirement.

Additionally, it protects the developer from wasting time on false

assumptions or invalid requirements.

When applying TDD, you need to keep in mind a simple principle

from Extreme Programming: YAGNI, or You Aren’t Gonna Need It. YAGNI

can be very useful for protecting developers from wasting their valuable

time. Developers are very good at making assumptions around potential

requirement changes, and based on those assumptions, they may come

up with some unnecessary abstractions or optimizations that can make

the code more generic or reusable. The problem is that those assumptions

rarely turn out to be true. YAGNI emphasizes that you should not do it until

you have to.

However, in the refactor phase, you can implement those abstractions

and optimizations. Since you already have test coverage, it’s much safer to

do the cleanup then. Small refactors such as Change Class Name, Extract

Method, or Extract Class to a higher level – anything that helps to make the

code more generic and SOLID2 are now safer and easier to undertake.

�Types of TDD
Although TDD is a broad and diverse concept with many variations and

different schools, such as UTDD, BDD, ATDD, and others, it traditionally

implied Unit Test–Driven Development or UTDD. However, the TDD

discussed in this book is an extended version of the conventional concept,

known as Acceptance Test–Driven Development (ATDD), which places a

strong emphasis on writing acceptance tests from the business perspective

and using them to drive the development of production code.

2 SOLID is an acronym for a set of principles in object-oriented design that
promote maintainability, flexibility, and extensibility of software. Each letter
in SOLID represents a principle: Single Responsibility Principle (SRP), Open/
Closed Principle (OCP), Liskov Substitution Principle (LSP), Interface Segregation
Principle (ISP) and Dependency Inversion Principle (DIP).

Chapter 1 A Brief History of Test-Driven Development

6

Having various tests in different layers can ensure that we are always

on the right track and have the correct functionality.

�Implementing Acceptance Test–Driven Development

To put it succinctly, ATDD defines the behavior of software from the end

user’s perspective by prioritizing the business value of the application

rather than implementation details. Rather than validating that functions

are called at specific times with correct parameters, ATDD ensures that

when a user places an order, they receive their delivery on time.

We can merge the ATDD and UTDD into one diagram, as shown in

Figure 1-3.

Figure 1-3.  Acceptance Test–Driven Development

The diagram describes the following steps:

	 1.	 Write an acceptance test and see it fail.

	 2.	 Write a unit test and see it fail.

	 3.	 Write code to make the unit test pass.

	 4.	 Refactor the code.

	 5.	 Repeat steps 2–4, until acceptance test passes.

Chapter 1 A Brief History of Test-Driven Development

7

When you look at this process closely, you find that during the

development stage, the acceptance test could be failing for quite some

time. The feedback loop turns out to be very long, and there is a risk that

an always-failed test means no test (protection) at all.

Developers could be confused about whether there are defects in the

implementation or whether there is any implementation at all.

To resolve this problem, you have to write acceptance tests in relatively

small chunks, testing a tiny slice of the requirement at a time. Alternatively,

you could use the “fake it until you make it” approach, as we are going to

use across this book.

The steps almost remain the same; only an extra fake step is added:

	 1.	 Write a failed acceptance test.

	 2.	 Make it pass in the most straightforward way (a fake

implementation).

	 3.	 Refactor based on any code smells (like hard-coded

data, magic number, etc.).

	 4.	 Add another new test based on a new requirement

(if we need a new acceptance test, go back to step 1;

otherwise, the process is just like traditional TDD).

Note that in the second step, you can use hard coding or a snippet of

static HTML to make the test pass. At first glance, that may look redundant,

but you will see the power of fake in the next few chapters.

The benefit of this variation is that when a developer is refactoring,

there is always a passing acceptance test protecting you from breaking

existing business logic. The drawback of this approach is that when a

developer doesn’t have enough experience, it can be difficult for them to

come up with clean code designs – they could keep the fake in some way

(e.g., a magic number, lack of abstractions, etc.).

Chapter 1 A Brief History of Test-Driven Development

8

�Behavior-Driven Development

Another important variation of TDD is BDD, or Behavior-Driven

Development. Behavior-Driven Development is an agile practice that

encourages collaboration among different roles, developers, quality engineers,

business analysts, or even other interested parties in a software project.

Although BDD is to some extent a general idea about how software

development should be managed by both business interests and technical

insight, the practice of BDD involves some specialized tools. For example,

a Domain-Specific Language (DSL) is used to write tests in natural

language that can be easily understood by nontechnical people and can be

interpreted by code and executed behind the scenes.

The following code snippet of a BDD test case shows how a

requirement can be described:

Given there are `10` books in the library

When a user visits the homepage

Then they would see `10` books on the page

And each book would contain at least `name`, `author`, `price`

and `rating`

We’ll discuss this in detail in Chapter 10.

�Prerequisites of TDD
To be candid, TDD can be a challenging methodology to apply. Several

prerequisites must be met before implementing it effectively. A crucial

prerequisite for TDD is a developer’s ability to detect code smells and

refactor them toward better design. Suppose, for example, you encounter

smelly code, such as a lack of abstractions or magic numbers, and are

unsure how to improve it. In that case, TDD alone may not be sufficient.

While the TDD workflow must be followed, there is a risk of creating

unmaintainable tests in addition to producing low-quality code.

Chapter 1 A Brief History of Test-Driven Development

9

�Be Aware of Code Smell and Refactoring

In his book Refactoring: Improving the Design of Existing Code, Martin

Fowler listed 68 refactorings. I would recommend this book as almost

a mandatory prerequisite for anyone who values clean code and high-

quality code. But don’t worry too much, some of the refactorings he

mentioned you may have already used in your daily work.

As mentioned earlier, a typical TDD workflow has three steps:

•	 A test case description requirement (specification)

•	 Some code to make the test pass

•	 Refactor the implementation and tests

It is a common misconception that test code is secondary or does

not hold the same level of importance as production code. However, I

would contend that test code is equally as crucial as production code.

Maintainable tests are crucial to people who have to make changes later on

or add new ones. Every time you refactor, make sure the changes made in

the production code are reflected in the test code.

�Test First or Test Last

The hardest part of applying TDD in your daily workflow is that you have

to write tests before you start writing any production code. For most

developers, that’s not just different and counterintuitive but also breaks

their own way of working significantly.

Nevertheless, the key to applying TDD is that you should build the fast

feedback mechanism first. Once you have it, it doesn’t matter much if you

write the test first or last. By fast feedback, I mean that a method or an if-

else branch can be tested in a very lightweight and effortless manner. If you

add tests after all the functionality has been completed, you are not doing

TDD by any means. Because you are missing the essential fast feedback

loop – seen as the most important thing in development – you may also be

missing the benefits promised by TDD.

Chapter 1 A Brief History of Test-Driven Development

https://www.goodreads.com/book/show/44936.Refactoring
https://martinfowler.com/articles/refactoring-2nd-changes.html

10

By implementing a fast feedback loop, TDD ensures you are always

on the right track – safely. It also gives you sufficient confidence to do the

further code cleanup. And proper code cleanup can lead to a better code

design. Of course, the cleanup does not come automatically, it requires

extra time and effort. However, TDD is a great mechanism to protect you

from breaking the application when you are making changes.

�Other Techniques That Can Help Implement TDD
For the beginner, it can be challenging when applying TDD as it sometimes

feels counterintuitive to test first. In practice, there are common reasons

for resistance to TDD:

•	 For simple tasks, they don’t need TDD.

•	 For complicated tasks, setting up the TDD mechanism

itself can be too difficult.

There are a lot of tutorials and articles out there to describe techniques

you should use to do TDD, and some may even involve describing how to

split tasks before implementing TDD. However, things discussed in those

tutorials are often oversimplified and can be hard to apply to a real-world

project directly.

For example, in a web application, both the interaction and a

considerable portion of business logic now exist in the frontend: the

UI. The traditional techniques of how to write a unit test to drive backend

logic are already outdated.

�Tasking
Another critical skill required by TDD is splitting a large requirement into

smaller chunks through tasking. I would suggest every developer should

learn how to split requirements before they even start to write their first test.

We’ll discuss the tasking process in detail in the next chapter.

Chapter 1 A Brief History of Test-Driven Development

11

�Maintaining a Simple Checklist

Usually, we can stop at the second round of splitting, since the Red-Green-

Refactor is far too detailed in terms of tasking. And too granular tasks

means more management effort (tracking those tasks needs more energy).

To make the tasks visible, we can put it down on a post-it note and mark a

simple tick once it’s done (Figure 1-4).

By using this simple tool, you can then focus on what you’re going to

do and make the progress more accurate when you want to update it to

other team members (e.g., in the daily stand-up meeting). By saying a task

is 50% done, half of the items on the list are ticked off on the list you made

earlier.

Figure 1-4.  Tasking with sticky notes

Chapter 1 A Brief History of Test-Driven Development

12

�Summary
Refactoring depends on the sense and experience of identifying code

smells. Once you find a code smell, you can then apply the corresponding

refactoring technique. And then we may achieve maintainable, human-

readable, extendable, and clean code along the way.

In the next chapter, we will introduce a concrete example to

demonstrate how to apply TDD step by step. Along with that example,

we will also cover the fundamental skills needed for implementing TDD,

including how to use the jest testing framework and how to do tasking with

real-world examples.

�Further Reading
There is extensive debate around TDD – every now and then, you would

see people arguing about whether we need TDD or not or the right way

to implement TDD. I found the following articles are really helpful in

understanding some of those arguments:

•	 Uncle Bob has a great article3 discussing test first

or test last approaches. If you haven’t read it yet, I

highly recommend you do.

•	 The latest and most famous debate regarding TDD came

from David Heinemeier Hansson (DHH) (author of

Ruby on Rails), Kent Beck, and Martin Fowler; you can

find more here.4

3 https://blog.cleancoder.com/uncle-bob/2016/11/10/TDD-Doesnt-work.html
4 https://martinfowler.com/articles/is-tdd-dead/

Chapter 1 A Brief History of Test-Driven Development

https://blog.cleancoder.com/uncle-bob/2016/11/10/TDD-Doesnt-work.html
https://martinfowler.com/articles/is-tdd-dead/
https://blog.cleancoder.com/uncle-bob/2016/11/10/TDD-Doesnt-work.html
https://martinfowler.com/articles/is-tdd-dead/

13

Also, I highly recommend reading these books to build a solid

foundation for implementing TDD. Even if you decided not to utilize TDD,

these books are still highly recommended:

•	 Clean Code: A Handbook of Agile Software

Craftsmanship by Robert C. Martin5

•	 Refactoring: Improving the Design of Existing Code by

Martin Fowler6

5 www.goodreads.com/book/show/3735293-clean-code
6 https://martinfowler.com/books/refactoring.html

Chapter 1 A Brief History of Test-Driven Development

https://martinfowler.com/books/refactoring.html
https://martinfowler.com/books/refactoring.html
http://www.goodreads.com/book/show/3735293-clean-code
https://martinfowler.com/books/refactoring.html

15

CHAPTER 2

Get Started with Jest
In this chapter, we’ll explore the key concepts and features of Jest,1 a

popular JavaScript testing framework. We’ll cover different types of

matchers, as well as the powerful and flexible expect and the useful mock

for unit testing. Moreover, we’ll learn how to organize our test suite in a

manner that’s easy to maintain, and we’ll explore best practices drawn

from real-world projects. By the end of the chapter, you’ll have a solid

understanding of Jest’s capabilities and how to use it effectively in your

own projects.

We will be using ES6 as the primary programming language throughout

this book.

To start off, we’ll walk you through setting up your environment

to write your first test. Throughout this book, we’ll be using ES6 as the

primary programming language.

�Set Up the Environment
To follow along with the examples in this book, you’ll need to install node.

js, which we’ll be using as the primary platform. If you’re using a MacOS

with homebrew, you can install node by running the following command:

brew install node

1 https://jestjs.io/

© Juntao Qiu 2023
J. Qiu, Test-Driven Development with React and TypeScript,
https://doi.org/10.1007/978-1-4842-9648-6_2

https://jestjs.io/
https://jestjs.io/
https://doi.org/10.1007/978-1-4842-9648-6_2

16

If you’re running a different operating system or prefer another option,

you can download node from here.2

Once you have node installed locally, you can use npm (Node Package

Manager) to install node packages. npm is a binary program that comes

bundled with the node runtime.

�Install and Configure Jest
Jest is a testing framework from Facebook that allows developers to write

reliable and fast-running tests in a more readable syntax. It can watch

changes in test/source files and rerun the necessary tests automatically.

This allows you to get quick feedback, and that is a crucial factor in

TDD. The speed of feedback can even determine whether TDD works

for you or not. Simply put, the faster tests can run, the more efficient

developers can be.

Let’s firstly create a folder for our experiment and initialize the folder

with a package.json to maintain all the following package installations:

mkdir jest-101

cd jest-101

npm init -y #init the current folder with default settings

When you install jest as a development dependency, it means that

jest is only needed during the development phase of your project and

is not required in the final production package. This helps to keep your

production package lean and focused on the essential components that

your users need.

npm install --save-dev jest

2 https://nodejs.org/en/download

Chapter 2 Get Started with Jest

https://nodejs.org/en/download/
https://nodejs.org/en/download

17

After the installation, you can run jest --init to specify some default

settings, such as where jest should find the test files and the source code,

which environment (there are a lot) jest should run against (browser or

node for the backend), and so on. You have to answer some questions to

let jest understand your requirements; for now, let’s just accept all the

default settings by saying Yes for all the questions.

Note that if you have installed jest globally (with npm install jest -g),

you can use the following command to init the config directly:

jest --init

Otherwise, you will have to use the local installation by npx, which

looks for jest binary from node_modules/.bin/ and invokes it:

npx jest --init

For the sake of simplicity, we use node as a test environment, without

coverage report, and all other default settings like so:

npx jest --init

The following questions will help Jest to create a suitable configuration

for your project:

✔ Would you like to use Typescript for the configuration

file? ... no

✔ Choose the test environment that will be used for

testing › node

✔ Do you want Jest to add coverage reports? ... no

✔ Which provider should be used to instrument code for

coverage? › v8

✔ Automatically clear mock calls, instances, contexts and

results before every test? ... no

 Configuration file created at /Users/juntao/icodeit/ideas/

jest-101/jest.config.js

Chapter 2 Get Started with Jest

18

To use TypeScript with jest-101, we need to first install and configure

babel. If you’re not familiar with babel, don’t worry – we’ll cover it in the

next chapter. In essence, babel is a tool that can translate TypeScript to

JavaScript that can be understood by the JavaScript runtime (Node).

npm install --save-dev babel-jest @babel/core @babel/preset-env

And then create a babel.config.js file in the root of our project (the

jest-101 folder), with the following content:

module.exports = {

 presets: [['@babel/preset-env', {targets: {node: 'current'}}]],

};

Now let’s enable TypeScript for our source code:

npm install --save-dev @babel/preset-typescript

And modify babel.config.js with the following content:

module.exports = {

 presets: [

 ['@babel/preset-env', {targets: {node: 'current'}}],

 '@babel/preset-typescript',

],

};

We’re all set now. It’s time to write our first Jest test.

�Jest at First Glance
Cool, we’re ready to write some tests to verify that all parts can work

together now. Let’s create a folder named src and put two files in calc.

test.ts and calc.ts.

Chapter 2 Get Started with Jest

19

The file ends with "test.ts", that means it’s a pattern that jest will

recognize and treat them as tests, as defined in the jest.config.js we

generated previously:

 // The glob patterns Jest uses to detect test files

 // testMatch: [

 // "**/__tests__/**/*.[jt]s?(x)",

 // "**/?(*.)+(spec|test).[tj]s?(x)"

 //],

Note the previous configuration is the default generated one, and

you can modify it to support other file name patterns. We’ll keep it as is

because ts is already included.

Let’s add some code to our calc.test.ts file:

import { add } from "./calc";

describe("calculator", function () {

 it("should be able to add two numbers", function () {

 expect(add(1, 2)).toEqual(3);

 });

});

In Jest, the describe function is used to group related tests together

and create a logical structure within your test suite. It provides a way to

organize and categorize tests based on a specific functionality, component,

or feature. And the it function, also known as a test case or a spec, is used

to define an individual test within your test suite. It represents a specific

scenario or behavior that you want to verify in your code.

The describe function takes two arguments: a description string and

a callback function. The description string is typically a brief explanation

of what the tests in that group are targeting. The callback function contains

the actual tests or nested describe blocks.

Chapter 2 Get Started with Jest

20

The it function takes two arguments: a description string and a

callback function. The description string describes what behavior or

outcome you are testing. The callback function contains the actual test

assertions or expectations.

In our example, the assertion expect(add(1, 2)).toEqual(3) checks

whether the result of calling the add function with arguments 1 and 2 is

equal to 3.

The function add is imported from another file and is implemented

like this:

function add(x: number, y: number) {

 return x + y;

}

export { add };

To run the test and check the result:

npm run test

And you would see something like this:

npm run test

> jest-101@1.0.0 test

> jest

 PASS src/calc.test.ts

 calculator

 ✓ add two numbers (1 ms)

Test Suites: 1 passed, 1 total

Tests: 1 passed, 1 total

Snapshots: 0 total

Time: 0.259 s, estimated 1 s

Ran all test suites.

Fantastic, we now have our very first test up and running!

Chapter 2 Get Started with Jest

21

�Basic Concepts in Jest
By utilizing the power of describe and it, you can structure your test suite,

enhance readability, and convey the intent of your tests more effectively.

These functions form the building blocks for creating comprehensive and

well-organized test suites in Jest. Let’s dive into the world of Jest testing

and harness the full potential of describe and it to ensure the quality and

reliability of your code.

�Jest API: describe and it

For example, we can put all arithmetic into one group:

describe("calculator", () => {

 it("should perform addition", () => {});

 it("should perform subtraction", () => {});

 it("should perform multiplication", () => {});

 it("should perform division", () => {});

});

What’s more, we can nest describe functions like so:

describe("calculator", () => {

 describe("should perform addition", () => {

 it("adds two positive numbers", () => {});

 it("adds two negative numbers", () => {});

 it("adds one positive and one negative numbers", () => {});

 });

});

The fundamental idea is to group relevant tests together, so that the

test descriptions make sense for those who maintain them. It’s even more

helpful if you can describe the description (the first parameter for the

describe and it functions) using domain language within a business

Chapter 2 Get Started with Jest

22

context. This way, the test suite is easier to understand and more closely

aligned with the needs of the stakeholders who will ultimately benefit from

the software being tested.

�Organize Your Tests Maintainer Friendly

For instance, when you are developing a hotel reservation application, the

tests read like this:

describe("Hotel Sunshine", () => {

 describe("Reservation", () => {

 �it("should make a reservation when there are enough rooms

available", () => {});

 �it("should warn the administrator when there are only 5

available rooms left", () => {});

 });

 describe("Checkout", () => {

 it("should check if any appliance is broken", () => {});

 �it("should refund guest when checkout is earlier than

planned", () => {});

 });

});

You may occasionally find some duplicated code scattered in test

cases, for example, setting up a subject in each test is not uncommon:

describe("addition", () => {

 it("adds two positive numbers", () => {

 const options = {

 precision: 2,

 };

Chapter 2 Get Started with Jest

23

 const calc = new Calculator(options);

 const result = calc.add(1.333, 3.2);

 expect(result).toEqual(4.53);

 });

 it("adds two negative numbers", () => {

 const options = {

 precision: 2,

 };

 const calc = new Calculator(options);

 const result = calc.add(-1.333, -3.2);

 expect(result).toEqual(-4.53);

 });

});

�Set Up and Tear Down

To reduce duplication, we can utilize the beforeEach function provided

by Jest to define reusable object instances. This function is automatically

invoked before Jest runs each test case. In our case, the calculator

instance can be used in all the test cases within the same describe block,

making it a convenient and efficient way to reduce repetition in our code:

describe("addition", () => {

 let calc = null;

 beforeEach(() => {

 const options = {

 precision: 2,

 };

 calc = new Calculator(options);

 });

Chapter 2 Get Started with Jest

24

 it("adds two positive numbers", () => {

 const result = calc.add(1.333, 3.2);

 expect(result).toEqual(4.53);

 });

 it("adds two negative numbers", () => {

 const result = calc.add(-1.333, -3.2);

 expect(result).toEqual(-4.53);

 });

});

You might be wondering if there is a corresponding function named

afterEach or if there is a way to handle cleanup tasks. The answer is yes!

Jest provides an afterEach function that can be used to perform any

necessary cleanup work after each test case has been run:

describe("database", () => {

 let db = null;

 beforeEach(() => {

 db.connect("localhost", "9999", "user", "pass");

 });

 afterEach(() => {

 db.disconnect();

 });

});

In this example, we are setting up a database connection before each

test case and closing it down afterward. In a real-world scenario, you might

also want to add a function to roll back any database changes or perform

other cleanup tasks in the afterEach step.

Chapter 2 Get Started with Jest

25

Furthermore, if you need something to be set up before all the test

cases start and then torn down after all of them are finished, you can use

the beforeAll and afterAll functions provided by Jest:

beforeAll(() => {

 db.connect("localhost", "9999", "user", "pass");

});

afterAll(() => {

 db.disconnect();

});

�Using Matchers in Jest
Jest offers a variety of helper functions (matchers) that developers can use

for assertions when writing tests. These matchers allow you to test various

data types in different scenarios. We’ll start with some basic examples and

then move on to more advanced ones later on.

�Basic Usages
�Equality

toEqual and toBe may be the most common matchers you will find and use

in almost every test case. As the name implies, they are used to assert whether

values are equal to each other (the actual value and the expected value).

For example, it can be used for string, number, or composed objects:

it("basic usage", () => {

 expect(1 + 1).toEqual(2);

 expect("Juntao").toEqual("Juntao");

 expect({ name: "Juntao" }).toEqual({ name: "Juntao" });

});

Chapter 2 Get Started with Jest

26

and for toBe:

it("basic usage", () => {

 expect(1 + 1).toBe(2); // PASS

 expect("Juntao").toBe("Juntao"); // PASS

 expect({ name: "Juntao" }).toBe({ name: "Juntao" }); //FAIL

});

The last test will fail. For primitives like strings, numbers, and

booleans, you can use toBe to test the equality. While for Objects,

internally jest uses Object.is to check, which is strict and compares

objects by memory address. So if you want to make sure all the fields are

matching, use toEqual.

�.not Method for Opposite Matching

Jest also provides .not that you can use to assert the opposite value:

it("basic usage", () => {

 expect(1 + 2).not.toEqual(2);

});

Sometimes, you might not want an exact match. Say you want a

string to be matching some particular pattern. Then you can use toMatch

instead:

it("match regular expression", () => {

 expect("juntao").toMatch(/\w+/);

});

In fact, you can write any valid regular expression:

it("match numbers", () => {

 expect("185-3345-3343").toMatch(/^\d{3}-\d{4}-\d{4}$/);

 expect("1853-3345-3343").not.toMatch(/^\d{3}-\d{4}-\d{4}$/);

});

Chapter 2 Get Started with Jest

27

Jest makes it very easy to work with strings. However, you can use

comparisons with numbers too:

it("compare numbers", () => {

 expect(1 + 2).toBeGreaterThan(2);

 expect(1 + 2).toBeGreaterThanOrEqual(2);

 expect(1 + 2).toBeLessThan(4);

 expect(1 + 2).toBeLessThanOrEqual(4);

});

�Matchers for Array and Object
Jest also provides matchers for Array and Object.

�toContainEqual and toContain

For instance, it’s quite common to test if an element is contained in

an Array:

const users = ["Juntao", "Abruzzi", "Alex"];

it("match arrays", () => {

 expect(users).toContainEqual("Juntao");

 expect(users).toContain(users[0]);

});

Note that there is a difference between toContain and

toContainEqual. Basically, toContain checks if the item is in the

list by strictly comparing elements using ===. On the other hand,

toContainEqual just checks the value (not the memory address).

Chapter 2 Get Started with Jest

28

For example, if you want to check whether an object is in a list:

it("object in array", () => {

 const users = [{ name: "Juntao" }, { name: "Alex" }];

 expect(users).toContainEqual({ name: "Juntao" }); // PASS

 expect(users).toContain({ name: "Juntao" }); // FAIL

});

The second assertion would fail since it uses a more strict comparison.

As an object is just a combination of other JavaScript primitives, we can

use dot notion and test the existence of the field or use the preceding

matchers for fields in an object:

it("match object", () => {

 const user = {

 name: "Juntao",

 address: "Xian, Shaanxi, China",

 };

 expect(user.name).toBeDefined();

 expect(user.age).not.toBeDefined();

});

�The Powerful Function expect
We have briefly seen the power of matcher in the previous sections. Now,

let’s explore another powerful tool provided by Jest: the expect object.

The expect object comes with several useful helper functions, such as

•	 expect.stringContaining

•	 expect.arrayContaining

•	 expect.objectContaining

Chapter 2 Get Started with Jest

29

Using these functions, you can create your own custom matchers. For

example:

it("string contains", () => {

 const givenName = expect.stringContaining("Juntao");

 expect("Juntao Qiu").toEqual(givenName);

});

The variable givenName here is not a simple value, it’s a new matcher

and matches strings containing Juntao.

Similarly, you can use arrayContaining to check a subset of an array:

describe("array", () => {

 const users = ["Juntao", "Abruzzi", "Alex"];

 it("array containing", () => {

 const userSet = expect.arrayContaining(["Juntao", "Abruzzi"]);

 expect(users).toEqual(userSet);

 });

});

It looks a bit strange at first glance, but once you understand it, that

pattern would help you to build more complicated matchers.

For instance, say we retrieve some data from the backend API, with a

payload that looks like

interface User {

 name: string;

 address: string;

 projects: Project[];

}

interface Project {

 name: string;

}

Chapter 2 Get Started with Jest

30

const user: User = {

 name: "Juntao Qiu",

 address: "Xian, Shaanxi, China",

 projects: [

 { name: "ThoughtWorks University" },

 { name: "ThoughtWorks Core Business Beach" },

],

};

For whatever reason, in our test we don’t care about address at all. We

do care if the name field contains Juntao and the project.name contains

ThoughtWorks.

�The containing Family Functions

So let’s define a matcher by using the stringContaining,

arrayContaining, and objectContaining like so:

const matcher = expect.objectContaining({

 name: expect.stringContaining("Juntao"),

 projects: expect.arrayContaining([

 { name: expect.stringContaining("ThoughtWorks") },

]),

});

This expression describes exactly what we expect, and we can then use

toEqual to do the assertion:

expect(user).toEqual(matcher)

As you can see, this pattern is pretty powerful. Basically, you can define

a matcher just as you would in natural language. It could even be used in a

contract between frontend and backend services.

Chapter 2 Get Started with Jest

31

�Build Your Matchers
Jest also allows you to extend the expect object to define your own

matchers. In that way, you can enhance the default matcher set and make

the test code more readable.

Let’s see a concrete example in this section. We’ll use a package called

jsonpath to extract data from JSON objects or to transform JSON data

using JSONPath expressions.

JSONPath is a query language used for searching and manipulating

JSON data. It’s similar to XPath, which is used for searching XML data, but

JSONPath is specifically designed for JSON data.

�Example: jsonpath Matcher

Firstly, let’s install jsonpath to the project root jest-101:

npm install jsonpath --save

And then use it like this:

import jsonpath from "jsonpath";

const user = {

 name: "Juntao Qiu",

 address: "Xian, Shaanxi, China",

 projects: [

 { name: "ThoughtWorks University" },

 { name: "ThoughtWorks Core Business Beach" },

],

};

const result = jsonpath.query(user, "$.projects");

console.log(JSON.stringify(result));

Chapter 2 Get Started with Jest

32

And you will get the result:

[

 [

 { name: "ThoughtWorks University" },

 { name: "ThoughtWorks Core Business Beach" },

],

]

and query $.projects[0].name

const result = jsonpath.query(user, '$.projects[0].name')

would get

["ThoughtWorks University"]

The query would return an empty array ([]) if the path didn’t match

anything:

const result = jsonpath.query(user, '$.projects[0].address')

�Extend the expect Function

Let’s define a matcher named toMatchJsonPath as an extension by using

function expect.extend:

import jsonpath from "jsonpath";

expect.extend({

 toMatchJsonPath(received, argument) {

 const result = jsonpath.query(received, argument);

 if (result.length > 0) {

 return {

 pass: true,

Chapter 2 Get Started with Jest

33

 message: () => "matched",

 };

 } else {

 return {

 pass: false,

 message: () =>

 �expected ${JSON.stringify(received)} to match

jsonpath ${argument}`,

 };

 }

 },

});

So internally, Jest would pass two parameters to the customizing

matcher. The first one is the actual result – the one you pass to function

expect(). The second one, on the other hand, is the expected value you

passed to the matcher, which in our case is toMatchJsonPath.

For the return value, it’s a simple JavaScript object that contains pass,

which is a boolean value that indicates whether the test passes or not, and

a message field to describe the reason for the pass or fail, respectively.

Once defined, you can use it in your test just like any other built-in

matchers:

describe("jsonpath", () => {

 it("matches jsonpath", () => {

 const user = {

 name: "Juntao",

 };

 expect(user).toMatchJsonPath("$.name");

 });

Chapter 2 Get Started with Jest

34

 it("does not match jsonpath", () => {

 const user = {

 name: "Juntao",

 address: "ThoughtWorks",

 };

 expect(user).not.toMatchJsonPath("$.age");

 });

});

Impressive, isn’t it? This technique can be very handy in making

your matcher more readable, especially when you want to use a Domain-

Specific Language.

For example:

const employee = {};

expect(employee).toHaveName("Juntao");

expect(employee).toBelongToDepartment("Product Halo");

�Mocking and Stubbing
During unit testing, it is often preferable to avoid making actual calls

to underlying external functions. In such cases, we can make use of a

technique called mocking where we simply simulate the function call

rather than actually invoking it. For instance, when testing email template

functionality, we may not want to send an email to a real client. Instead,

we can test whether the HTML generated contains the correct content or

verify that an email was sent to a specific address. Similarly, connecting to

a production database to test the deletion API would not be acceptable in

most scenarios.

And in Jest, there are many ways to do the mocking.

Chapter 2 Get Started with Jest

35

�jest.fn for Spying
So we, as developers, need to set up a mechanism to enable this. Jest

provides a variety of ways to do this mock. The simplest one is function

jest.fn for setting up a spy for a function:

it("create a callable function", () => {

 const mock = jest.fn();

 mock("Juntao");

 expect(mock).toHaveBeenCalled();

 expect(mock).toHaveBeenCalledWith("Juntao");

 expect(mock).toHaveBeenCalledTimes(1);

});

You can use jest.fn() to create a function that could be invoked just

like other regular functions, except it provides the ability to be audited. A

mock can track all the invocations to it. And it can record the invoke times,

and the parameter passed in for each invoke. That could be very useful,

since in many scenarios we just want to ensure the particular function has

been called with specified parameters and in the correct order – we don’t

have to do the real invoke.

�Mock Implementation
A dummy mock object as seen in the previous example doesn’t do anything

interesting. The following one is more meaningful:

it("mock implementation", () => {

 const fakeAdd = jest.fn().mockImplementation((a, b) => 5);

 expect(fakeAdd(1, 1)).toBe(5);

 expect(fakeAdd).toHaveBeenCalledWith(1, 1);

});

Chapter 2 Get Started with Jest

36

Instead of defining a static mock, you can define an implementation by

yourself too. The real implementation could be very complicated; maybe

it does some calculation based on a complex formula on some given

parameters.

�Stub a Remote Service Call
Additionally, just imagine we have a function that invokes a remote API

call to fetch data:

export const fetchUser = (id: string, process: () => void) => {

 return fetch(`http://localhost:4000/users/${id}`);

};

In the test code, especially in a unit test, we don’t want to perform any

remote calls, so we use mock instead. In this example, we’re testing that our

function fetchUser will call the global fetch:

describe("mock API call", () => {

 const user = {

 name: "Juntao",

 };

 it("mock fetch", () => {

 // given

 global.fetch = jest

 .fn()

 .mockImplementation(() => Promise.resolve({ user }));

 const process = jest.fn();

 // when

 fetchUser(111).then((x) => console.log(x));

Chapter 2 Get Started with Jest

37

 // then

 expect(global.fetch).toHaveBeenCalledWith(

 "http://localhost:4000/users/111"

);

 });

});

We expect that the fetch is invoked by http://localhost:4000/

users/111; note the id we are using here. And we can see that the user

information is printed out on the console:

 PASS src/advanced/matcher.test.ts

 ● Console

 console.log src/advanced/matcher.test.js:152

 { user: { name: 'Juntao' } }

That is something very useful. Jest provides other mock mechanisms

as well, but we are not going to discuss them here. We are not using any

advanced features in this book other than what we have addressed earlier.

If you are interested, please check jest help or home page for more

information.

�Summary
In this chapter, we’ve covered the fundamentals of jest, including its

essential features like test blocks, matchers, and the expect object. Building

upon this foundation, the upcoming chapter will delve deeper into Test-

Driven Development (TDD) with jest. TDD is a highly effective technique

that enables us to write higher-quality code and detect bugs at an early

stage. With jest, we’ll discover the process of writing tests before code and

utilizing them as a guide throughout development. Prepare yourself for an

exciting journey of advancing your development skills to new heights!

Chapter 2 Get Started with Jest

39

CHAPTER 3

Refactoring
Essentials:
The Basics You
Need to Know
Before we dive into Test-Driven Development, let’s discuss some

common refactorings that we will be utilizing throughout this book. These

refactorings may seem small on the surface and may not appear to do

much, but mastering them can make you a more effective programmer. It’s

not just about how fast you can type but also how quickly you can mold

and reshape your code to prevent losing the ideas you have in your mind.

I have compiled a list of the most common refactorings I use daily, and

they will be presented in this section.

�The Ten Most Common Refactorings
Like in many other fields, the 20/80 rule applies in refactoring as well. In

case you’re wondering, Martin Fowler, in his book Refactoring: Improving the

Design of Existing Code, described around 48 common refactorings, and 20%

of them is (20% * 48 = 9.6) roughly 10, which we’ll cover in this chapter.

© Juntao Qiu 2023
J. Qiu, Test-Driven Development with React and TypeScript,
https://doi.org/10.1007/978-1-4842-9648-6_3

https://doi.org/10.1007/978-1-4842-9648-6_3

40

�Let’s Talk the Problem – Code Smells
Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.

—Martin Fowler

The following are some common code smells or symptoms that I’ve

encountered in various projects:

•	 Meaningless names

•	 Long files

•	 Excessively large props list (React)

•	 Mixing computation with views (React)

•	 Overuse of mocks

•	 Not adhering to established principles

Eliminating these symptoms can greatly improve the readability

and maintainability of our code, which is crucial for clean code. In the

following sections, we will discuss each of these symptoms in detail.

�Long Files
The long file code smell refers to a situation where a single file in a

codebase becomes excessively long, often containing multiple functions,

classes, and other components. Long files can be difficult to navigate,

understand, and maintain and can lead to issues such as code duplication,

decreased performance, and reduced readability. It is generally considered

a best practice to keep files as small and focused as possible and to split

them into separate files if they become too large.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

41

�Big Props List
The Big Props List issue refers to a problem that arises when a React

component receives a large number of props. This can make the

component’s code difficult to read, understand, and maintain over

time. It’s bad because it violates the Single Responsibility Principle

and can lead to tightly coupled components that are hard to reuse or

refactor. Additionally, passing too many props can cause performance

issues, as React needs to re-render the component every time any of its

props change.

const BasketContainer = ({

 testID,

 orderData,

 basketError,

 addCoupon,

 voucherSelected,

 validationErrors,

 clearErrors,

 removeLine,

 editLine,

 hideOrderButton,

 hideEditButton,

 loading,

}: BasketContainerProps)

It’s normal that programmers tend to put related code together, and

that’s seemingly the effortless one. But in my experience, that’s the most

expensive mistake you can ever make.

There are many reasons why a large file is bad. Firstly, it’s hard to

read and understand. Let’s admire that most of our development work is

about understanding the existing code rather than composing new code.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

42

Secondly, the impact of your change is not predictable when it’s large. The

longer a file, the harder it becomes to understand. And a large file also

means it tries to do too many things in one place, or you can call it lack of

abstraction.

�Mixing Computation with Views
Mixing computation with rendering logic in React can make the code

less modular, harder to test, and less reusable. It can also make it more

difficult to understand the code and to make changes without introducing

new bugs. Additionally, it can lead to performance issues as the rendering

process may take longer due to the extra computations when re-rendering

(which can be more frequent than you think).

const Order = () => {

 const { t } = useTranslation('order');

 �const serviceText = serviceMethod === 'Pickup' ? t('PickUp')

: t('Deliver');

 const storeNameOrDeliveryAddress =

 serviceMethod === 'Pickup'

 ? selectedStore && selectedStore.media.name

 �: selectedDeliveryAddress === undefined || '' ||

!selectedDeliveryAddress.displayAddress

 ? t('DeliveryAddressNotAvailable')

 : selectedDeliveryAddress.displayAddress;

 return <div>

 {...}

 </div>

}

Chapter 3 Refactoring Essentials: The Basics You Need to Know

43

�Overuse of Mocks
Sometimes, you may see a long list of mocks in each test file or maybe a

long beforeEach or afterEach. Or in other cases, you may see the tests are

verifying data structures rather than behaviors, but they all fit the hard to

test category.

const mockUseLocation = jest.fn().mockImplementation(() => ({

state: {} }))

jest.mock('@reach/router', () => ({

 ...jest.requireActual<{}>('@reach/router'),

 navigate: jest.fn(),

 useLocation: mockUseLocation,

}))

const mockShowAlert = jest.fn()

jest.mock('@company/hooks-and-hocs', () => ({

 ...jest.requireActual<{}>('@company/hooks-and-hocs'),

 useSdkAvailable: jest.fn().mockImplementation(() => ({

 found: true,

 })),

 useAlert: jest.fn().mockImplementation(() => ({

 showAlert: mockShowAlert,

 })),

 //...

}))

Chapter 3 Refactoring Essentials: The Basics You Need to Know

44

Using too many mocks in testing can be a bad idea for several reasons:

•	 It can lead to false positives: Mocks are used to simulate

certain functionality, but they are not the real thing.

This means that if there is a problem with the real

functionality that is not reflected in the mock, your tests

may give you a false sense of security.

•	 It can lead to brittle tests: If the code under test changes

in a way that requires changes to the mocks, you

may have to update a lot of tests, which can be time-

consuming and error-prone.

•	 It can make tests harder to read and maintain: If you

have too many mocks, your tests can become difficult

to understand and maintain, which can lead to errors

and wasted time.

�Not Following Established Principles
In the not-so-long history of the computer science and software

engineering industry, we have many proven design principles, for

instance, SOLID, Don’t Repeat Yourself, You Aren’t Gonna Need It, and

so on. Often, the unclean code can be avoided by simply following these

principles or patterns.

Unfortunately, many developers do not pay too much attention to

these principles and, for whatever reason, just put the code together and

try to make the application run. To be honest, many software I’ve seen in

projects are not designed but only put together and hoped it would work.

All right, let’s get started with an existing implementation of ROT13 first.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

45

�The Problem – ROT13
So the code snippet we’re using in this chapter implements ROT13. ROT13,

or “rotate by 13 places,” is a simple letter substitution cipher that replaces

a letter with the 13th letter after it in the alphabet. So A becomes N, B to

O, and so on till M to Z. And then it looks backward, so N becomes A and O

becomes B and so on.

In this chapter, we’ll focus on one implementation of ROT13 and try to

apply different refactorings (with WebStorm shortcuts for demonstration)

to make it a better version.

�The Initial Implementation
So we have already got an implementation here; it definitely has room for

improvement, but it works and can make all the tests pass:

export const convert = (str: string) => {

 const letters = "ABCDEFGHIJKLMNOPORSTUVWXYZ";

 return str.split("")

 .map((c) => {

 const index = letters.indexOf(c);

 if (index !== -1) {

 if (index + 13 >= 26) {

 return letters[index + 13 - 26];

 } else {

 return letters[index + 13];

 }

 }

 return c;

 }).join("");

};

Chapter 3 Refactoring Essentials: The Basics You Need to Know

46

where the corresponding tests are

•	 Returns N when given A

•	 Returns A when given N

•	 Returns NO when given AB (multiple letters)

•	 Returns AB!! when given NO!! (keep other symbols as is

while converting)

Before we make any code changes, let’s run these tests first:

describe("ROT13", () => {

 it("returns N when given A", () => {

 expect(convert("A")).toEqual("N");

 });

 it("return A when given N", () => {

 expect(convert("N")).toEqual("A");

 });

 it("return NO when given AB", () => {

 expect(convert("AB")).toEqual("NO");

 });

 it("return AB!! when given NO!!", () => {

 expect(convert("NO!!")).toEqual("AB!!");

 });

});

And now all the tests are passing fine.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

47

Figure 3-1.  Unit tests are all passing

In the upcoming sections, we will examine the preceding

implementation and employ commonly used refactorings using WebStorm

shortcuts to transform the code into a maintainable condition. You may

use any text editor or IDE of your preference to accomplish the task.

�The Top Ten Refactorings
The refactorings we’ll discuss in this chapter will be

	 1.	 Rename Variable: Change the name of a variable to

improve clarity and readability.

	 2.	 Change Function Declaration: Modify the signature

of a function to better represent its behavior and

purpose.

	 3.	 Rename Parameter: Update the name of a function

parameter to better reflect its meaning and usage.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

48

	 4.	 Extract Variable: Create a new variable to store

an intermediate value and improve readability

and maintainability. Extract Constant: Create a

new constant to store a frequently used value and

improve code clarity.

	 5.	 Extract Parameter: Create a new function parameter

to increase flexibility and reusability.

	 6.	 Extract Function: Create a new function to

encapsulate a set of related statements and improve

modularity.

	 7.	 Slide Statements: Rearrange the order of statements

to improve clarity and readability.

	 8.	 Move Fields: Move a field from one class to

another to better align responsibility and improve

maintainability.

	 9.	 Inline Variable: Remove a redundant or unnecessary

variable and simplify the code.

	 10.	 Simplify Logic: Simplify complex logical expressions

to improve clarity and readability.

Let’s transform the code together.

�Step 1: Slide Statements
Slide Statements is perhaps the simplest refactoring you could find, but

sometimes it makes a huge difference. If you imagine arranging source

code in a file like arranging things on your desk or ordering books on your

bookshelf. Just thinking that Philosopher’s Stone is between UNIX Network

Programming and TCP/IP Guide on your shelf, what would you do? Yes,

slide the Philosopher’s Stone into its own section.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

49

We see that in the code all the time as well, so Slide Statements is a great

technique that can make the code read more smoothly and more coherent.

Just slide the code up and down by pressing Command+Shift+Up/Down

in WebStorm. You can select multiple lines, a block (a for-block, for

example), or even a function and then slide them up and down.

const letters = "ABCDEFGHIJKLMNOPORSTUVWXYZ";

export const convert = (str: string) => {

 return str.split("")

 .map((c) => {

 const index = letters.indexOf(c);

 if (index !== -1) {

 if (index + 13 >= 26) {

 return letters[index + 13 - 26];

 } else {

 return letters[index + 13];

 }

 }

 return c;

 }).join("");

};

�Step 2: Extract Constant
It would help if you had a variable whenever you spot an expression that is

too long or needs a concept to hold. I’m not treating variables, fields, and

constants as different refactorings in JavaScript or TypeScript. The only

difference would be the scope of where to put them.

For the following code snippet, the empty string can be extracted as a

variable named separator as that is what exactly it does. Also, the constant

13 can be pulled into shift or offset to indicate its meaning (we’ll do that

in a minute).

Chapter 3 Refactoring Essentials: The Basics You Need to Know

50

Pressing Command+Option+V in WebStorm will do the work:

const letters = "ABCDEFGHIJKLMNOPORSTUVWXYZ";

const separator = "";

export const convert = (str: string) => {

 return str.split(separator)

 .map((c) => {

 const index = letters.indexOf(c);

 if (index !== -1) {

 if (index + 13 >= 26) {

 return letters[index + 13 - 26];

 } else {

 return letters[index + 13];

 }

 }

 return c;

 }).join(separator);

};

Nothing fancy at all. One important aspect of clean code is it

should not raise any surprise to their reader. It should be plain and

straightforward.

�Step 3: Extract Function
Functions are the most crucial building block in many programming

languages, and also it’s a perfect place to put your business logic and

expressions in. If you don’t pay close attention, it can quickly go oversize or

have too many things inside.

Although there is no such law for how many lines of code for the

function body, I tend to make it small. If it goes too long, I extract a

subfunction from some statements to make them readable and easy to

modify. The key here is how you would name your extracted functions.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

51

For example, the anonymous function inside the map can be extracted

into a separate function, which will be much easier to read and test (or be

reused in other places).

The shortcut for the Extract Function is Command+Option+M (M for

method in object-oriented language).

const letters = "ABCDEFGHIJKLMNOPORSTUVWXYZ";

const separator = "";

const transform = (c: string) => {

 const index = letters.indexOf(c);

 if (index !== -1) {

 if (index + 13 >= 26) {

 return letters[index + 13 - 26];

 } else {

 return letters[index + 13];

 }

 }

 return c;

}

export const convert = (str: string) => {

 return str.split(separator)

 .map(transform).join(separator);

};

�Step 4: Rename Parameter
Renaming a function’s parameter is equally as important as renaming a

variable inside it. A good parameter name should tell what the expected

parameter is for. You may have your own convention here. For example,

aLetter is one of the ways I saw a lot in some old codebases. I prefer a

generic and short name for parameter names.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

52

Pressing Command+Option+P can start the renaming process in

WebStorm. A tiny pop-up will show up, and once you have done the

editing, hit Enter to finalize it, and all the references will be updated

automatically.

const letters = "ABCDEFGHIJKLMNOPORSTUVWXYZ";

const separator = "";

const transform = (letter: string) => {

 const index = letters.indexOf(letter);

 if (index !== -1) {

 if (index + 13 >= 26) {

 return letters[index + 13 - 26];

 } else {

 return letters[index + 13];

 }

 }

 return letter;

}

export const convert = (str: string) => {

 return str.split(separator)

 .map(transform).join(separator);

};

�Step 5: Rename Variable
The same thing applies to variables as well. There are many times I

couldn’t think of a good name, then I would use a pretty general one, like x

or segment, as a placeholder, and once I made the change and got a better

idea of what the variable is holding, I would change the variable name.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

53

const dict = "ABCDEFGHIJKLMNOPORSTUVWXYZ";

const separator = "";

const transform = (letter: string) => {

 const index = dict.indexOf(letter);

 if (index !== -1) {

 if (index + 13 >= 26) {

 return dict[index + 13 - 26];

 } else {

 return dict[index + 13];

 }

 }

 return letter;

}

export const convert = (str: string) => {

 return str.split(separator)

 .map(transform).join(separator);

};

The old variable letters is a bit unclean, so I renamed it to dict by

pressing Shift+F6. It’s a generic renaming shortcut that can also be used

for renaming a function.

And since there are quite a few lines in the function transform, we can

apply the Extract Function one more time.

�Step 6: Extract Function
Press Command+Option+M again to extract a new function here called

getLetterWithOffset. That way, we simplified the transform a bit. Note

the general principle is that the smaller a function is, the more likely it
can be reused. We’re not aiming for a small function, but reusability is

important.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

54

const dict = "ABCDEFGHIJKLMNOPORSTUVWXYZ";

const separator = "";

const getLetterWithOffset = (letter: string) => {

 const index = dict.indexOf(letter);

 if (index + 13 >= 26) {

 return dict[index + 13 - 26];

 } else {

 return dict[index + 13];

 }

}

const transform = (letter: string) => {

 const index = dict.indexOf(letter);

 if (index !== -1) {

 return getLetterWithOffset(letter);

 }

 return letter;

}

export const convert = (str: string) => {

 return str.split(separator)

 .map(transform).join(separator);

};

Note that a function is the most important building block in most

languages, so please pay more attention to the size and meaning of

functions. Once you spot an oversized function, try to break it down with

Extract Function.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

55

�Step 7: Replace if-else with ?
In WebStorm, if you press Option+Enter, some context-related suggestions

will pop up. For example, if an if-else is short and straightforward

enough, I prefer to use a ternary operator to replace them.

const dict = "ABCDEFGHIJKLMNOPORSTUVWXYZ";

const separator = "";

const getLetterWithOffset = (letter: string) => {

 const index = dict.indexOf(letter);

 �return index + 13 >= 26 ? dict[index + 13 - 26] :

dict[index + 13];

}

const transform = (letter: string) => {

 const index = dict.indexOf(letter);

 if (index !== -1) {

 return getLetterWithOffset(letter);

 }

 return letter;

}

export const convert = (str: string) => {

 return str.split(separator)

 .map(transform).join(separator);

};

In WebStorm, Option+Enter often gives you great options when you

are not sure what to optimize. I also use it to fix the auto import when it

complains that some constants, types, or functions are not defined or to fix

incompatible type issues.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

56

�Step 8: Extract Function
Let’s do the Extract Function one more time by pressing Command+Option+M

to put the index calculation out as a separate function. It seems there is some

pattern about to emerge once we have the getIndex, isn’t it?

const dict = "ABCDEFGHIJKLMNOPORSTUVWXYZ";

const separator = "";

const getIndex = (index: number) => {

 return index + 13 >= 26 ? index + 13 - 26 : index + 13;

}

const getLetterWithOffset = (letter: string) => {

 const index = dict.indexOf(letter);

 return dict[getIndex(index)];

}

const transform = (letter: string) => {

 const index = dict.indexOf(letter);

 if (index !== -1) {

 return getLetterWithOffset(letter);

 }

 return letter;

}

export const convert = (str: string) => {

 return str.split(separator)

 .map(transform).join(separator);

};

Even in some cases, it may seem unnecessary to create a new function,

but it is worth doing it as, in many cases, once you extract a new one, some

duplications would appear like magic. And the worst case is that you can

always inline the extracted logic back by pressing Command+Option+N in

WebStorm.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

57

�Step 9: Extract Parameter
Extract Parameter often happens during a big refactoring inside a function.

When you need an internal state to be passed in from the outside world,

and you don’t want to use a global constant at that point, you can extract a

parameter first and then in the calling place, pass in a variable (could be a

global constant).

const dict = "ABCDEFGHIJKLMNOPORSTUVWXYZ";

const separator = "";

const getIndex = (index: number, offset: number) => {

 �return index + offset >= 26 ? index + offset - 26 : index

+ offset;

}

const getLetterWithOffset = (letter: string) => {

 const index = dict.indexOf(letter);

 return dict[getIndex(index, 13)];

}

const transform = (letter: string) => {

 const index = dict.indexOf(letter);

 if (index !== -1) {

 return getLetterWithOffset(letter);

 }

 return letter;

}

export const convert = (str: string) => {

 return str.split(separator)

 .map(transform).join(separator);

};

Chapter 3 Refactoring Essentials: The Basics You Need to Know

58

Here, we extract an optional parameter with Command+Option+P first

with a default value, so it will not break any existing code. Then we can

check all the call sites and fix them.

�Step 10: Extract Constant
It seems the 13 here is not really meaningful, so let’s use Command+Option+C

to give it a better name. Note you can use a family of keyboard

shortcuts to extract constant (Command+Option+C), extract variable

(Command+Option+V), extract parameter (Command+Option+P), and extract

method (function) (Command+Option+M).

const dict = "ABCDEFGHIJKLMNOPORSTUVWXYZ";

const separator = "";

const getIndex = (index: number, offset: number) => {

 �return index + offset >= 26 ? index + offset - 26 : index

+ offset;

}

const getLetterWithOffset = (letter: string) => {

 const index = dict.indexOf(letter);

 const shift = 13;

 return dict[getIndex(index, shift)];

}

const transform = (letter: string) => {

 const index = dict.indexOf(letter);

 if (index !== -1) {

 return getLetterWithOffset(letter);

 }

 return letter;

}

Chapter 3 Refactoring Essentials: The Basics You Need to Know

59

export const convert = (str: string) => {

 return str.split(separator)

 .map(transform).join(separator);

};

�Step 11: Slide Statements
We then would slide this constant up to the variable definition area for the

next move:

const dict = "ABCDEFGHIJKLMNOPORSTUVWXYZ";

const separator = "";

const shift = 13;

const getIndex = (index: number, offset: number) => {

 �return index + offset >= 26 ? index + offset - 26 : index

+ offset;

}

const getLetterWithOffset = (letter: string) => {

 const index = dict.indexOf(letter);

 return dict[getIndex(index, shift)];

}

const transform = (letter: string) => {

 const index = dict.indexOf(letter);

 if (index !== -1) {

 return getLetterWithOffset(letter);

 }

 return letter;

}

Chapter 3 Refactoring Essentials: The Basics You Need to Know

60

export const convert = (str: string) => {

 return str.split(separator)

 .map(transform).join(separator);

};

As we mentioned earlier, you not only can slide one statement but also

a couple of statements, a block, or a function. Select the block and press

Command+Shift+Up/Down.

�Step 12: Move Fields
Often when you slide statements up to the higher scope or extract a few

utility functions, you will soon realize it may be good to move them into

a place so other modules can use them. Also, I found even if it’s not that

commonly reusable, moving them to a separate file can make the current

file concise, thus easier to read and understand.

Pressing F6 will launch a pop-up for you; then select variables and

functions that you would like to move out, type in a file name, and you’re

done. If the file doesn’t exist, WebStorm will create one for you. Otherwise,

the content will be amended.

Let’s say we would like to move

export const dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

export const separator = "";

export const shift = 13;

into file constants.ts, and then in file convert.ts, we reference these

constants:

import {dict, separator, shift} from "./constants";

const getIndex = (index: number, offset: number) => {

 �return index + offset >= 26 ? index + offset - 26 : index

+ offset;

}

Chapter 3 Refactoring Essentials: The Basics You Need to Know

61

const getLetterWithOffset = (letter: string) => {

 const index = dict.indexOf(letter);

 return dict[getIndex(index, shift)];

}

const transform = (letter: string) => {

 const index = dict.indexOf(letter);

 if (index !== -1) {

 return getLetterWithOffset(letter);

 }

 return letter;

}

export const convert = (str: string) => {

 return str.split(separator)

 .map(transform).join(separator);

};

�Step 13: Function to Arrow Function
The arrow function should be your default choice now. It’s more compact

and clear once you get used to it. I only use the traditional function

declaration (with function keyword) in very few cases, like a React function

name that displayName matters.

import {dict, separator, shift} from "./constants";

const getIndex = (index: number, offset: number) => {

 �return index + offset >= 26 ? index + offset - 26 : index

+ offset;

}

Chapter 3 Refactoring Essentials: The Basics You Need to Know

62

const getLetterWithOffset = (letter: string) => {

 const index = dict.indexOf(letter);

 return dict[getIndex(index, shift)];

}

const transform = (letter: string) => {

 if (dict.indexOf(letter) !== -1) {

 return getLetterWithOffset(letter);

 }

 return letter;

}

export const convert = (str: string) => {

 return str.split(separator)

 .map(transform).join(separator);

};

This can be done by Option+Enter. WebStorm will show you a couple

of great suggestions. And in this case, convert to variable holding arrow
function would do the work.

�Step 14: Simplify Logic
Finally, let’s make some final touches to make the code look even more

professional.

For example:

•	 Simplify the one statement arrow function.

•	 Use dict.includes to replace dict.indexOf.

•	 Use dict.length to replace hardcode 26.

•	 Use mod operation % to get a new index when it is out

of dict bound.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

63

import {dict, separator, shift} from "./constants";

const getIndex = (index: number, offset: number) =>

 (index + offset) % dict. length;

const getLetterWithOffset = (letter: string) => {

 const index = dict.indexOf(letter);

 return dict[getIndex(index, shift)];

}

const transform = (letter: string) =>

 dict.includes(letter) ? getLetterWithOffset(letter) : letter

export const convert = (str: string) =>

 str.split(separator)

 .map(transform).join(separator);

And when we run all the tests again, it should not surprise us at all.

�Summary
To recap, this chapter provided a step-by-step guide on using keyboard

shortcuts (in WebStorm IDE) to simplify your code and make it easier to

modify. By mastering these essential refactorings, you can improve your

coding efficiency and productivity. Don’t hesitate to revisit this chapter as

needed, and feel free to move on to the next chapter to continue building

on your coding skills.

Chapter 3 Refactoring Essentials: The Basics You Need to Know

65

CHAPTER 4

Test-Driven
Development
Essentials
In this chapter, we will learn how to apply TDD in your daily development

routine through a step-by-step guide. Along with this demo, you will get

an idea of how to split a big task into relatively smaller ones and complete

each one with a set of passing tests while learning some refactoring

techniques. Before we dive into the code, let’s get a fundamental

understanding of how to write a proper test.

�Writing Tests
So how would you start to write a test? Typically, there are three steps (as

always, even to put an elephant into a fridge) required. Firstly, do some

preparation work, like setting up the database, initializing the object to

be tested, or loading some fixture data. Secondly, invoke the method or

function to be tested, usually assigning the result to some variable. Finally,

do some assertions to see whether the result is as expected or not.

© Juntao Qiu 2023
J. Qiu, Test-Driven Development with React and TypeScript,
https://doi.org/10.1007/978-1-4842-9648-6_4

https://doi.org/10.1007/978-1-4842-9648-6_4

66

�Using Given-When-Then to Arrange a Test
Given-When-Then (GWT) is a common and effective structure for writing

tests in software development. The GWT structure provides a clear and

concise way to organize and document tests, and it helps ensure that tests

are comprehensive, covering all possible scenarios and edge cases.

It consists of three essential components of a test:

	 1.	 Given: The initial context or setup for the test. This

includes any data or objects that need to be created

or initialized before the test can be executed.

	 2.	 When: The action or behavior being tested. This

is the part of the test where a specific action or

operation is performed on the given context.

	 3.	 Then: The expected outcome or result of the test.

This is where the expected behavior or state of the

system is defined, and the actual result is compared

to the expected result.

By breaking down a test into these three components, the GWT

structure can help ensure that tests are clear, well organized, and easy to

understand. It also helps to ensure that tests are comprehensive, covering

all possible scenarios and edge cases.

A test can also be described in 3A format; the 3A (Arrange-Act-Assert)

structure consists of three essential components of a test:

	 1.	 Arrange: The initial context or setup for the test

	 2.	 Act: The action or behavior being tested

	 3.	 Assert: The expected outcome or result of the test

They are essentially the same thing. Let’s take the GWT as an

example here.

Chapter 4 Test-Driven Development Essentials

67

As an example, say we have the following snippet:

// given

const user = User.create({

 name: "Juntao",

 address: "ThoughtWorks Software Technologies (Melbourne)",

});

// when

const name = user.getName();

const address = user.getAddress();

// then

expect(name).toEqual("Juntao");

expect(address).toEqual("ThoughtWorks Software Technologies

(Melbourne)");

Typically, you will split test cases with many assertions into several

independent ones and let each have a single assertion, like so:

it("creates user name", () => {

 // given

 const user = User.create({

 name: "Juntao",

 address: "ThoughtWorks Software Technologies (Melbourne)",

 });

 // when

 const name = user.getName();

 // then

 expect(name).toEqual("Juntao");

});

Chapter 4 Test-Driven Development Essentials

68

it("creates user address", () => {

 // given

 const user = User.create({

 name: "Juntao",

 address: "ThoughtWorks Software Technologies (Melbourne)",

 });

 // when

 const address = user.getAddress();

 // then

 �expect(address).toEqual("ThoughtWorks Software Technologies

(Melbourne)");

});

Please note there is some debate among developers about whether

each test case should have only one assertion or multiple assertions.

Advocates of the “one assertion per test case” approach argue that it

helps make tests more focused and specific, making it easier to identify

the cause of a test failure. When a test case has multiple assertions, it can

be more difficult to determine which assertion caused the test to fail,

potentially slowing down the debugging process.

On the other hand, supporters of the “multiple assertions per test case”

approach argue that it can lead to more efficient and effective testing, as

it allows multiple aspects of the code to be tested with a single test case.

This can also help reduce duplication in test cases and make testing more

maintainable.

Ultimately, the choice of whether to use one assertion or multiple

assertions per test case will depend on the specific requirements and

constraints of the project, as well as personal preferences and team

standards. Regardless of which approach is used, the important thing is

to ensure that tests are well designed, comprehensive, and effective in

catching errors and bugs.

Chapter 4 Test-Driven Development Essentials

69

�Triangulation Method
In Test-Driven Development (TDD), triangulation is a technique used to

help guide the creation of tests.

This method involves writing a test for a specific behavior, running

the test, and then writing another test that forces the code to behave in

a different way. By iteratively writing tests that explore different paths

or scenarios, the developer can gain a deeper understanding of the

requirements and constraints of the code and can create more robust and

comprehensive tests.

Imagine we are implementing a calculator with TDD. A test for addition

could be a good starting point.

�Example: Function addition
�The First Test for addition

The specification of addition could be

describe('addition', () => {

 it('returns 5 when adding 2 and 3', () => {

 const a: number = 2;

 const b: number = 3;

 const result: number = add(a, b);

 expect(result).toEqual(5);

 });

});

Chapter 4 Test-Driven Development Essentials

70

�A Quick and Dirty Implementation

The simplest implementation to make the test pass can be

const add = () => 5

At first glance, it might seem very strange to write your function like

this. But it has several benefits. For example, it’s a good way for a developer

to verify if everything is connected correctly. It drives the creation of the

add function and the data type of the function.

A typical technique to check if your tests are actually linked to the code

is to make an obvious failure. For example, run the preceding test to see

it pass, and then modify the preceding value 5 to 3 to see if the test is still

passing. When test and implementation are not linked properly, you can

get a misleading green test.

�The Second Test Case to Make Our Implementation
Less Specific

Now let’s create another test for the add function:

it('returns 6 when adding 2 and 4', () => {

 const a: number = 2;

 const b: number = 4;

 const result: number = add(a, b);

 expect(result).toEqual(6);

});

To make the test pass, the simplest solution then becomes

const add = (a: number, b: number): number => 2 + b;

Chapter 4 Test-Driven Development Essentials

71

The idea is to write a failing but specific test to drive the

implementation code to be more generic, in each step. So now the

implementation is more generic than in the first step. However, there’s still

some room for improvement.

�The Final and Simple Implementation

The third test could be something like

it("returns 7 when adding 3 and 4", () => {

 const a: number = 3;

 const b: number = 4;

 const result: number = add(a, b);

 expect(result).toEqual(7);

});

This time, there are no patterns in the test data to follow, so we

have to write something more complicated to make it pass. The

implementation becomes

const add = (a: number, b: number): number => a + b;

Now the implementation is more generic and will cover most addition

scenarios. In the future, our calculator might need to support addition for

imaginary numbers; we can do that by adding more tests to drive out the

solution in the same way.

And now you see why the approach is called Triangulation: you

write a failed test and write just enough code to make the test pass, then

you write another test to drive the changes from another angle. And that,

in turn, will lead you to make the implementation more generic. You

continue working in this manner, step by step, until the code becomes

generic enough to support most of the cases that fall within the business

requirements.

Chapter 4 Test-Driven Development Essentials

72

While it may appear to be a simplistic and time-consuming

approach, this baby step method provides a solid foundation for software

development that you can and should depend on. Whether you’re tackling

simple tasks or complex projects, the same fundamental process applies.

This is because TDD emphasizes breaking down larger tasks into smaller,

more manageable pieces, making the overall process more manageable

and less daunting. By adopting this approach, you can simplify tasks and

ensure that your code is well tested and robust.

OK, let’s move one step further by looking into applying TDD in a more

complicated example.

�How to Do Tasking with TDD
In Test-Driven Development, tasking refers to the process of breaking

down a larger problem into smaller, more manageable tasks. By breaking

the problem down into smaller pieces, it becomes easier to identify and

solve specific issues, and the overall development process becomes more

manageable and less daunting.

Tasking involves defining specific tasks or subtasks that need to be

completed in order to achieve the desired outcome. Each task should be

well defined, clearly outlined, and achievable within a specific timeframe.

By focusing on completing each task one at a time, developers can

gradually build up the functionality of their codebase and ensure that each

component is well tested and functioning as expected.

The tasking process can also help identify potential issues or

roadblocks early on in the development process, allowing developers to

adjust their approach and refine their strategy accordingly. Overall, tasking

is an important aspect of TDD and can help ensure that the development

process is well organized, efficient, and effective.

Chapter 4 Test-Driven Development Essentials

73

In the project I’m currently working on, our team uses a very simple

manner to track the efforts put into each user story (a small chunk of

work that could be accomplished independently). Usually, a card can

have one of the following statuses: analysis, doing, testing, or done, as

it progresses through its lifecycle. If a user story cannot progress because

it depends on something that is incomplete or not yet ready, we mark it

as blocked. This system allows us to easily track the progress of each user

story and identify any potential issues or roadblocks in the development

process.

The measure of efforts on stories we’re using is pretty simple. Basically,

we track how many days were spent on coding or how many days it was

blocked. The project manager then has a chance to understand what

progress looks like and what the overall health status of the project is and

maybe any further actions that could be taken to improve it.

We put a d in lowercase in the title of a card to indicate that it has been

under development for half a day and an uppercase D for a full day. Not

surprisingly, q is for half a QA day and Q for a whole QA day. This means that

at any given moment, you will see something like this on the title of a card:

[ddDQbq] Allow user to login to their profile page – the b is for

blocked.

�An Expression Parser for Tracking Progress
Let’s build a parser that can read the tracking marks ddDQbq and translate it

into a human-readable format, something like this:

{

 "Dev days": 2.0,

 "QA days": 1,

 "Blocked": 0.5

}

Chapter 4 Test-Driven Development Essentials

74

Looks pretty straightforward, right? Can’t wait to jump in and write the

code? Hold on, let’s get started with a test first, and get a feeling of how to

apply TDD in such a case.

�Split the Parser to Subtasks

So the first question could be how can we split a task like this into
smaller tasks that are easy to achieve and verify? While there are

multiple ways to do it, a reasonable split could be

	 1.	 Write a test to make sure we can translate d to half a

dev day.

	 2.	 Write a test to make sure we can translate D to one

dev day.

	 3.	 Write a test to handle more than one mark like dD.

	 4.	 Write a test to handle q.

	 5.	 Write a test to handle qQ.

	 6.	 Write a test to handle ddQ.

As we discussed in Chapter 1, the splitting is essential for applying

TDD. And small tasks should be engaging and encourage you in

different ways:

	 1.	 It’s fun (it has been proven that when we experience

small amounts of achievement, our brains release

dopamine, which is connected to feelings of

pleasure, learning, and motivation).

	 2.	 It ensures fast feedback.

	 3.	 It allows you to easily understand the progress of the

task at any given time.

Chapter 4 Test-Driven Development Essentials

75

�Applying TDD Step by Step
�The First Test – Parse and Calculate Mark d

OK, enough theory, let’s get our hands dirty. According to the output of the

tasking step, the first test should be

it("translates d to half a dev day", () => {

 expect(translate("d")).toEqual({ Dev: 0.5 });

});

And pretty straightforwardly, the implementation could be as simple as

const translate = () => ({ Dev: 0.5 });

It ignores the input and returns a dummy {'Dev': 0.5}, but you have

to admire that it fulfills the requirement regarding the current subtask.

Quick and dirty, but it works.

�The Second Test – For Mark D

Let’s cross off the first to-do from our task list and move on:

it("translates D to one dev day", () => {

 expect(translate("D")).toEqual({ Dev: 1.0 });

});

What’s the most straightforward solution you can think of? Maybe

something like this:

const translate = (c: string) => (c === "d" ? { Dev: 0.5 } :

{ Dev: 1.0 });

I know it seems silly to write code in this way. However, as you can

see, our implementation is driven by the related tests. As long as the

tests pass – which means the requirements are met – we could call it

satisfied. After all, the only reason we write code is to fulfill some business

requirement, right?

Chapter 4 Test-Driven Development Essentials

76

As the tests are now passing, you can do some refactoring if you find

something could be improved, for example, magic numbers, or the method

body is too long. For now, I think we’re OK to continue.

�The Combination of Notes d and D

The third test could be

it("translates dD to one and a half dev days", () => {

 expect(translate("dD")).toEqual({ Dev: 1.5 });

});

Hmm, things become more complicated now; we have to parse the

string of characters individually and sum up the result. The following code

snippet should do the trick:

const translate = (input: string) => {

 let sum: number = 0;

 �input.split("").forEach((c: string) => (sum += c === "d" ?

0.5 : 1.0));

 return { Dev: sum };

};

Now our program can handle all the d or D combination sequences like

ddd or DDdDd without a problem. Then comes task four:

it("translates q to half a qa day", () => {

 expect(translate("q")).toEqual({ QA: 0.5 });

});

It seems we need a sum function for each status, for example, sum in

Dev, sum in QA. It would be more convenient if we can refactor the code

a little to make that change easier. And thus, the most beautiful part of

TDD emerges – you don’t have to worry about breaking any of the existing

functionalities by accident since you have the tests to cover them.

Chapter 4 Test-Driven Development Essentials

77

�Refactoring – Extract Functions

Let’s extract the parsing part out as a function itself and use that function

in translate.

The translate function could then be something like this after the

refactoring:

const parse = (c: string) => {

 switch(c) {

 case 'd': return {status: 'Dev', effort: 0.5};

 case 'D': return {status: 'Dev', effort: 1};

 }

};

const translate = (input: string) => {

 const state: {[key: string]: number} = {

 'Dev': 0,

 'QA': 0

 };

 input.split('').forEach((c: string) => {

 const {status, effort} = parse(c);

 state[status] = state[status] + effort;

 });

 return state;

};

Now it should be effortless to make the new test pass. We can add one

new case in parse:

const parse = (c: string) => {

 switch (c) {

 case "d":

 return { status: "Dev", effort: 0.5 };

Chapter 4 Test-Driven Development Essentials

78

 case "D":

 return { status: "Dev", effort: 1 };

 case "q":

 return { status: "QA", effort: 0.5 };

 }

};

�Keep Refactoring – Extract Functions to Files
For the task that contains different characters, there is no change required

in the code at all. However, as a responsible programmer, we could keep

cleaning the code up to an ideal status. For example, we could extract the

parse to a lookup dictionary:

const dict = {

 d: {

 status: "Dev",

 effort: 0.5,

 },

 D: {

 status: "Dev",

 effort: 1.0,

 },

 q: {

 status: "QA",

 effort: 0.5,

 },

 Q: {

 status: "QA",

 effort: 1.0,

 },

};

Chapter 4 Test-Driven Development Essentials

79

and that would simplify the parse function to something like

const parse = (c: string) => dict[c];

You can even extract the dict as data into a separate file named

constants and import it into translator.js for the sake of clarity. For

the forEach function in translate, we could use Array.reduce to make it

even shorter:

const translate = (input: string) => {

 const items = input.split("");

 return items.reduce((accumulator, current) => {

 const { status, effort } = parse(current);

 accumulator[status] = (accumulator[status] || 0) + effort;

 return accumulator;

 }, {});

};

As we can see from the test cases in Figure 4-1, our translator code is

now passing all tests and is both nice and clean.

Figure 4-1.  All test cases for translator are passing

Chapter 4 Test-Driven Development Essentials

80

It’s important to note that the refactoring process can be an ongoing

one, and you should continue to refactor until you feel comfortable with

the code. However, be careful not to overengineer the code by making too

many assumptions about potential changes or abstracting the code to a

level beyond what is actually helpful.

�Summary
In this chapter, we have learned about the three fundamental steps of

effective test writing and discovered how to use Triangulation to explore

various paths in our tests. We also familiarized ourselves with tasking as a

way to structure our test writing process. We then applied these concepts

to a small program and followed the TDD methodology step by step. As a

result, we’ve developed a practical understanding of how TDD can lead

to the creation of more robust and maintainable code, even in complex

projects.

Chapter 4 Test-Driven Development Essentials

81

CHAPTER 5

Project Setup
Before delving into the core content of this book, it is crucial to establish

the necessary infrastructures. In this chapter, we will focus on setting up

key components to lay the groundwork for our project. Firstly, we will

create the project codebase and skeleton structure using create-react-

app. Next, we will incorporate the Material UI framework to streamline

the development of the user interface. Lastly, we will configure the Cypress

end-to-end UI testing framework.

These setups are essential to ensure a solid foundation for our

subsequent discussions and enable efficient development and testing

processes. Let’s begin by establishing these fundamental infrastructures

and set ourselves up for success in the chapters ahead.

�Application Requirements
In this book, we are going to develop a web application from scratch. We will

call it Bookish; it’s a simple application about books – as the name implies.

In the application, a user could have a book list and can search books by

keywords, and users are allowed to navigate to a book detail page and review

the description, review, and ranking of the book. We will complete some

of the features in an iterative manner, applying ATDD (Acceptance Test-

Driven Development) along the way.

In the application, we will develop several typical features including

the book list and book detail pages, as well as the searching and reviewing

functionalities.

© Juntao Qiu 2023
J. Qiu, Test-Driven Development with React and TypeScript,
https://doi.org/10.1007/978-1-4842-9648-6_5

https://doi.org/10.1007/978-1-4842-9648-6_5

82

�Feature 1 – Book List
In the real world, the granularity of a feature would be much bigger

than the ones we’re describing in this book. Typically, there would be

many user stories within a feature, such as a book list, pagination, the

styling of the book list, and so on. Let’s assume there is only one story per

feature here.

We can describe the user story in this form:

As a user I want to see a list of books So that I can learn some-
thing new

This format for describing a user story is widely used and has several

advantages. By beginning with “As a ”, it emphasizes the user who would

benefit from the feature, while “I want to ” explains how they will interact

with the system. The final sentence, “So that ”, describes the business value

of the feature.

By following this format, we are compelled to view the story from the

stakeholder’s perspective and to convey to both business analysts and

developers the most important and valuable aspect of the user story.

The acceptance criteria are

•	 Given there are 10 books in the system, a user should

see 10 items on the page.

•	 In each item, the following information should be

displayed: book name, author, price, rating.

Acceptance criteria can sometimes be written in the following format:

Given there are `10` books in the library

When a user visits the homepage

Then he/she would see `10` books on the page

And each book would contain at least `name`, `author`, `price`

and `rating`

Chapter 5 Project Setup

83

The given clause explains the current status of the application;

when means the user triggers some action, for example, clicks a button

or navigates to a page; and then is an assertion that states the expected

performance of the application.

�Feature 2 – Book Detail
Our second feature would be to implement the book detail page:

As a user I want to see the details of a book So that I can
quickly get an understanding of what it’s about

And the acceptance criteria are

•	 A user clicks an item in the book list and is redirected to

the detail page.

•	 The detail page displays the book name, author, price,

description, and any reviews.

�Feature 3 – Searching
The third feature is to implement searching by name; it can be described

as follows:

As a user I want to search for a book by its name So that I can
quickly find what I’m interested in

And the acceptance criteria are

•	 The user types Refactoring as a search word.

•	 Only books with Refactoring in their name are

displayed in the book list.

Chapter 5 Project Setup

84

�Feature 4 – Book Reviews
And then we need to show review information besides the other sections

on the detail page:

As a user I want to be able to add a review to a book I have
read previously So that people who have the same interests
could decide if it is worthwhile to read

And the corresponding acceptance criteria are

•	 A user can read the reviews on the detail page.

•	 A user can post a review to a particular book.

•	 A user can edit the review they have posted.

With all those requirements well defined, we can start with project

setting up.

�Create the Project
Let’s get started with some essential package installation and configuration

first. Make sure you have node (at least node >= 8.10 and npm >= 5.6 are

required) installed locally. After that, you can use npm to install the tools we

need to build our Bookish application (we have already covered that part

in the previous chapter, check it out in case you haven’t).

�Using create-react-app
After the installation is complete, we can use the create-react-app

package to create our project:

npx create-react-app bookish-react --template typescript

Chapter 5 Project Setup

85

create-react-app will install react, react-dom, and a command-line

tool named react-scripts by default. Moreover, it will download those

libraries and their dependencies automatically, including webpack, babel,

and others. By using create-react-app, we don’t need any config to get

the application up and running.

After the creation process, as the console log suggests, we can jump

into the bookish-react folder and run npm start and you should be able

to see a screen like Figure 5-1

cd bookish-react

npm start

There will be a new browser tab opened automatically at this address:

http://localhost:3000. And the UI should look like Figure 5-2.

Figure 5-1.  Launching your application in the terminal

Chapter 5 Project Setup

86

Figure 5-2.  The application running in a browser

�Project File Structure

We don’t need all of the files generated by create-react-app, so let’s do

some cleanup first. We can remove all the irrelevant files in the src folder,

leaving us with the following files:

src

├── App.css
├── App.test.tsx
├── App.tsx
├── index.css
├── index.tsx
└── setupTests.ts

Modify the App.tsx file content so it looks as follows:

 import React from 'react';

 import './App.css';

 function App() {

 return (

Chapter 5 Project Setup

87

 <div className='App'>

 <h1>Hello world</h1>

 </div>

);

 }

 export default App;

and the index.tsx like this:

import React from 'react';

import ReactDOM from 'react-dom/client';

import './index.css';

import App from './App';

const root = ReactDOM.createRoot(

 document.getElementById('root') as HTMLElement

);

root.render(<App />);

Then our UI should look something like Figure 5-3.

Figure 5-3.  After cleanup

Chapter 5 Project Setup

88

�Material UI Library
To make the application we’re demonstrating here look more realistic,

as well as reduce the css tricks in the code snippets, we will use Material

UI. Material UI is a library of React UI components that implements

Google’s Material Design.

It contains many reusable components that are ready to be used out of

the box, such as Tabs, ExpandablePanel, and others. It will help us to build

our bookish app faster and more easily.

The installation is pretty straightforward; another npm install will do:

npm install @mui/material @emotion/react @emotion/styled @mui/

icons-material --save

After that, let’s put some fonts in our public/index.html to improve

the look and feel.

�Font and Icons

Note the second line is for svg icons:

<link rel='stylesheet' href='https://fonts.googleapis.com/css?f

amily=Roboto:300,400,500,700&display=swap' />

<link rel='stylesheet' href='https://fonts.googleapis.com/

icon?family=Material+Icons' />

That’s all what we need for now.

�Using Typography As an Example

We can use a Component from Material UI in our code, importing the

module like this in App.js:

import Typography from '@mui/material/Typography';

Chapter 5 Project Setup

89

And then change the h1 to <Typography>:

function App() {

 return (

 �<Typography variant='h2' component='h2' data-

test='heading'>

 Bookish

 </Typography>

);

}

By using Material UI, we don’t need a separate file for css anymore, as

it utilizes the css-in-js approach to make the component encapsulated

and independent. We can then remove all the .css files, making sure to

also remove any references to them.

Now the project structure has just two files left:

src

├── App.tsx
└── index.tsx

index.tsx should look like this:

import React from 'react';

import ReactDOM from 'react-dom/client';

import './index.css';

import App from './App';

const root = ReactDOM.createRoot(

 document.getElementById('root') as HTMLElement

);

root.render(<App />);

Chapter 5 Project Setup

90

and App.tsx like this:

import React from "react";

import Typography from "@mui/material/Typography";

function App() {

 return (

 �<Typography variant="h2" component="h2" data-

test="heading">

 Bookish

 </Typography>

);

}

export default App;

All right, now we have the basic application set up. You should be able

to see the result on your browser like Figure 5-4.

Figure 5-4.  Launch the application in a browser

And next, let’s install the end-to-end testing framework we’re going to

use in the rest of the book.

Chapter 5 Project Setup

91

�Install Cypress
In the first edition of this book, I used puppeteer as the engine for UI

functional tests, and it’s a great tool for that purpose. However, I found its

API is too low level from most beginners. From the end-user perspective,

you have to remember a lot of unnecessary details such as async/await

pairs when querying elements on the page. And it does not provide basic

helpers, such as fixtures or stubs, which are widely used in TDD.

So this time, I will use Cypress instead – the idea is pretty much the

same; Cypress gives us more options and better mechanisms to reduce the

effort of writing tests. Features such as fixture and route are shipped with

the tool that can make our life much easier.

The good news is that installation is simple, and you don’t have to

configure it at all.

�Set Up Cypress

Let’s run the following command to start:

npm install cypress --save-dev

After the installation, make sure the app is running, and then we can

run the cypress command to launch the GUI (as shown in Figure 5-5) to

create our first test suite:

npx cypress open

Chapter 5 Project Setup

https://github.com/puppeteer/puppeteer
https://www.cypress.io/

92

Figure 5-5.  Launch cypress from the terminal

This will create a new folder called cypress outside of our project code.

Following the cypress configure wizard, we can create a new specification

file (just a fancy word for test file here), called bookish.spec.cy.ts. The

file will be under the cypress/e2e folder under our project:

cypress

├── downloads
├── e2e
│  └── bookish.spec.cy.ts
├── fixtures
│  └── example.json
└── support
 ├── commands.ts
 └── e2e.ts

For now, the only thing we need to care about is bookish.spec.cy.ts.

We will examine fixtures in the coming chapters.

Chapter 5 Project Setup

93

�Our First End-to-End Test

Do you remember when we talked about how the most challenging part of

TDD might be where to start and how to write the very first test?

A feasible option for our first test could be

•	 Make sure there is a Heading element on the page, and

the content is Bookish.

This test might look like pointless at first glance, but actually it can

make sure that

•	 Frontend code can compile and translate.

•	 The browser can render our page correctly (without

any script errors).

So, in our bookish.spec.cy.ts, simply put

describe('Bookish application', function() {

 it('Visits the bookish', function() {

 cy.visit('http://localhost:3000/');

 cy.get('h2[data-test="heading"]').contains('Bookish')

 })

})

cy is the global object in cypress. It contains almost everything we

need to write tests: navigating to the browser, querying an element on

the page, and doing the assertions. The test we just wrote is trying to visit

http://localhost:3000/, and then make sure the h2 with the data-test

attribute as heading has content equal to the string: Bookish (Figure 5-6).

Chapter 5 Project Setup

94

Figure 5-6.  Our first end-to-end test in Cypress

In the daily development workflow, especially when there are several

end-to-end tests running, you might not want to see all the details (fill out

form fields, scroll the pages, or some notifications), so you can configure it

to run in headless mode:

npx cypress run

�Define a Shortcut Command

Just define a new task under the scripts section in package.json:

"scripts": {

 "start": "react-scripts start",

 "build": "react-scripts build",

 "test": "react-scripts test",

 "eject": "react-scripts eject",

 "e2e": "cypress run"

},

Chapter 5 Project Setup

95

Make sure the app is running (npm start), then run npm run e2e from

another terminal. This will do all the dirty work for you and give you a

detailed report after all tests are complete.

�Commit Code to Version Control
Beautiful! We now have an acceptance test and its corresponding

implementation, and we can commit the code to version control just in

case we need to look back in the future. I’m going to use git in this book

since it’s the most popular one and you will find it installed in almost every

developer’s computer nowadays.

Running the following command will initialize the current folder as a

git repository:

git init

Then commit it locally. Of course, you may want to also push it to some

remote repository like GitHub or GitLab to share it with colleagues:

git add .

git commit -m "make the first e2e test pass"

�Files to Ignore

If you have something you don’t want to be published or shared with

others, create a .gitignore text file in the root directory, and put the file

name you don’t want to be shared in it, like so:

*.log

.idea/

debug/

The preceding list will ignore any files with log extension and folder

.idea (it’s autogenerated by JetBrains IDEs like WebStorm).

Chapter 5 Project Setup

96

�Summary
In this chapter, we made significant progress in setting up our project

and conducting our first end-to-end test. Using create-react-app, we

established the initial project structure, providing a solid foundation for

development. To enhance the user interface, we integrated Material UI

and leveraged its customizable components.

We introduced and configured Cypress, a powerful testing tool,

allowing us to conduct end-to-end tests. Taking the first step, we created

our inaugural end-to-end test, verifying the application’s functionality.

These achievements establish a robust testing framework and lay

the groundwork for further development. With project setup complete,

Material UI integrated, and an initial end-to-end test executed

successfully, we’re ready to focus on implementing core functionality.

Building upon this foundation, we’ll tackle upcoming challenges with

confidence. Our solid project structure and testing capabilities ensure we

can create a healthy application, meeting the desired features.

Chapter 5 Project Setup

97

CHAPTER 6

Implement the
Book List
Our first requirement is to implement a book list. From the perspective

of the acceptance tests, all we have to do is to make sure that the page

contains a list of books – we don’t need to worry about what technology

will be used to implement the page. And it doesn’t matter if the page is

dynamically generated or just static HTML, as long as there is a list of

books on the page.

Taking baby steps is crucial at this stage. Initially, we can fake the

functionality to make the acceptance tests pass and then gradually replace

the static content with dynamic code.

�Acceptance Tests for Book List
�A List (of Books)
First things first, let’s add a test case in bookish.spec.js within the

describe block:

it('Shows a book list', () => {

 cy.visit('http://localhost:3000/');

 cy.get('div[data-test="book-list"]').should('exist');

 cy.get('div.book-item').should('have.length', 2);

})

© Juntao Qiu 2023
J. Qiu, Test-Driven Development with React and TypeScript,
https://doi.org/10.1007/978-1-4842-9648-6_6

https://doi.org/10.1007/978-1-4842-9648-6_6

98

We expect that there is a container that has the data-test attribute

of book-list and that this container has several .book-item elements.

If we run the test now (npm run e2e), it will fail miserably, as shown in

Figure 6-1.

Figure 6-1.  Failed end-to-end test

Following the steps of TDD, we need to implement the simplest possible

code to make the test pass. We can add the HTML structure of the book

into App.tsx:

function App() {

 return (

 �<>

 �<Typography variant="h2" component="h2" data-

test="heading">

 Bookish

 </Typography>

 <div data-test="book-list">

 <div className="book-item"></div>

Chapter 6 Implement the Book List

99

 <div className="book-item"></div>

 </div>

 </>

);

}

Excellent, the test has passed successfully. As a result, we have driven

the HTML structure through the test, which is a great accomplishment.

Note that we hard-coded two book-item divs inside a container div.

�Verify Book Name
Let’s move on to the next step and add another expectation to the test:

it('Shows a book list', () => {

 cy.visit('http://localhost:3000/');

 cy.get('div[data-test="book-list"]').should('exist');

 cy.get('div.book-item').should((books) => {

 expect(books).to.have.length(2);

 �const titles = [...books].map(x => x.querySelector('h2').

innerHTML);

 expect(titles).to.deep.equal(

 ['Refactoring', 'Domain-driven design']

)

 })

})

To make this test pass, we can again hard-code the HTML we expect in

App.tsx:

<div data-test='book-list'>

 <div className='book-item'>

 <h2 className='title'>Refactoring</h2>

Chapter 6 Implement the Book List

100

 </div>

 <div className='book-item'>

 <h2 className='title'>Domain-driven design</h2>

 </div>

</div>

Awesome! Our tests pass again (Figure 6-2).

Figure 6-2.  UI tests are now passing

Now it’s time to review the code to check if there are any code smells

and then undertake any necessary refactoring.

�Refactoring – Extract Function
Firstly, putting all the .book-item elements in the render method might

not be ideal. Instead, we can use a for loop to generate the HTML

content.

Chapter 6 Implement the Book List

101

As developers who strive for clean code, we understand that static

repetition is undesirable. To address this, we can extract the repetitive

portion as a variable called books and utilize the map function instead.

This approach allows for more efficient and concise code, promoting

maintainability and readability.

 Function App() {

+ const books = [{ name: 'Refactoring' }, { name: 'Domain-

driven design' }];

+

 return (

 <div>

 �<Typography variant='h2' component='h2' data-

test='heading'>

 Bookish

 </Typography>

 <div data-test='book-list'>

- <div className='book-item'>

- <h2 className='title'>Refactoring</h2>

- </div>

- <div className='book-item'>

- <h2 className='title'>Domain-driven design</h2>

- </div>

+ {

+ books.map(book => (<div className='book-item'>

+ <h2 className='title'>{book.name}</h2>

+ </div>))

+ }

 </div>

 </div>

);

Chapter 6 Implement the Book List

102

The preceding code snippet shows a diff format commonly used

to represent changes made to a codebase. Here’s a breakdown of the

different parts:

•	 Lines starting with a – sign indicate code that has been

removed or deleted.

•	 Lines starting with a + sign indicate code that has been

added or inserted.

•	 Unchanged lines are displayed without any prefix.

In the given code snippet, the changes are represented using the diff

format to clearly show what has been modified. The – lines indicate the

previous code that has been removed, while the + lines indicate the new

code that has been added.

After that, we can use Extract Function to map the block into a function

that is in charge of rendering books by any number of given book objects.

For all public type definitions, we can create a new file types.ts and

define all types in the file. Let’s define a new type called Book in file

types.ts, with the content:

type Book = {

 name: string;

}

And we can import and use the type like

import type {Book} from "./types";

const renderBooks = (books: Book[]) => {

 return <div data-test='book-list'>

 {

 books.map(book => (<div className='book-item'>

 <h2 className='title'>{book.name}</h2>

 </div>))

Chapter 6 Implement the Book List

https://refactoring.com/catalog/extractFunction.html

103

 }

 </div>;

}

Whenever the method is invoked, we can pass an array of books like so:

 �<Typography variant='h2' component='h2' data-

test='heading'>

 Bookish

 </Typography>

- <div data-test='book-list'>

- {

- books.map(book => (<div className='book-item'>

- <h2 className='title'>{book.name}</h2>

- </div>))

- }

- </div>

+ {renderBooks(books)}

 </div>

);

Our tests are still passing. We improved our internal implementation

without modifying the external behavior. This is a good demonstration of

just one of the benefits TDD provides: easier and safer cleanup.

�Refactoring – Extract Component
Now the code is much more clean and compact, but it could be better.

One possible change is to modularize the code further; the granularity of

abstraction should be based on component, rather than on function. For

instance, we are using the function renderBooks to render a parsed array as a

booklist, and we can abstract a component named BookList to do the same

thing. Create a file BookList.ts and move the function renderBooks into it.

Chapter 6 Implement the Book List

104

From React 16 onward, in most cases we don’t need a class when

creating a component. By using a pure function, it can be done much more

easily (and with less code):

Import React from 'react';

import type {Book} from "./types";

const BookList = ({books}: {books: Book[]}) => {

 return <div data-test='book-list'>

 {

 books.map(book => (<div className='book-item'>

 <h2 className='title'>{book.name}</h2>

 </div>))

 }

 </div>;

}

export default BookList;

Now we can use this customized component just as we would any

React built-in component (e.g., div or h1):

function App() {

 const books = [

 { name: 'Refactoring' },

 { name: 'Domain-driven design' }

];

 return (

 <div>

 �<Typography variant='h2' component='h2' data-

test='heading'>

 Bookish

 </Typography>

Chapter 6 Implement the Book List

105

 <BookList books={books} />

 </div>

);

}

With this refactoring, our code becomes more declarative and also

easier to understand. Additionally, our tests remain green. You can

fearlessly change the code without worrying about breaking existing

functionalities. It gives you confidence to change existing code and

improve the internal quality.

�Talk to the Backend Server
Here’s a possible revision.

Typically, the book list data should not be hard-coded in the

application. In most real-life projects, this data is stored remotely on a

server and needs to be fetched when the application starts up. To achieve

this, we need to take the following steps:

•	 Configure a stub server to provide the necessary

book data

•	 Use the axios network library to fetch the data from

the server

•	 Use the fetched data to render our component

While we can use the native fetch API to communicate with the server,

axios is a preferable option as it provides a semantic API (axios.get,

axios.put, etc.) and abstractions to handle browser differences, including

variations between different versions of the same browser.

Now let’s examine the stub server.

Chapter 6 Implement the Book List

https://axios-http.com/

106

�Stub Server
A stub server is a commonly used tool in the development process. We’ll

be using a package called json-server. It is a node package that allows

you to quickly spin up a RESTful API server with a simple JSON file as

the data source. It is an easy-to-use tool that provides CRUD operations,

pagination, sorting, filtering, and other features of a typical RESTful

API. Json-server is an excellent tool for rapid prototyping, mocking, and

testing of web applications.

�Set Up json-server

Firstly, we need to install it into global space just as we did other tools:

npm install json-server –global

Then we will create an empty folder named stub-server:

mkdir -p stub-server

cd stub-server

After that, we create a db.json file with the following content:

{

 "books": [

 { "name": "Refactoring" },

 { "name": "Domain-driven design" }

]

}

This file defines a route and data for that route. Now we can launch

the server with the following command:

json-server –watch db.json –port 8080

Chapter 6 Implement the Book List

https://github.com/typicode/json-server

107

If you open your browser and navigate to http://localhost:8080/

books, you should be able to see something like this:

[

 {

 "name": "Refactoring"

 },

 {

 "name": "Domain-driven design"

 }

]

Of course, you can use curl to fetch it from the command line.

�Make Sure the Stub Server Is Working

$ curl http://localhost:8080/books

[

 {

 "name": "Refactoring"

 },

 {

 "name": "Domain-driven design"

 }

]

Let’s add a script to make life a little easier. Under scripts folder, in

the package.json add in scripts section:

"scripts": {

 "stub-server": "json-server –watch db.json –port 8080"

},

Chapter 6 Implement the Book List

108

We can run npm run stub-server from our root directory to get our

stub server up and running. Sweet! Let’s try to make some changes to the

bookish application to fetch this data via HTTP calls.

�Async Request in Application
Back to the application folder: bookish-react. We’ll use axios for fetching

data from remote service.

Installing axios in our project is easy:

npm install axios –save

Then we can use it to fetch data in our App.ts like so:

import React, {useEffect, useState} from 'react';

import Typography from '@mui/material/Typography';

import axios from 'axios';

import BookList from './BookList';

function App() {

 const [books, setBooks] = useState<Book[]>([]);

 useEffect(() => {

 �axios.get('http://localhost:8080/books').then(res =>

setBooks(res.data));

 }, [])

 return (

 <div>

 �<Typography variant='h2' component='h2' data-

test='heading'>

 Bookish

 </Typography>

 <BookList books={books} />

Chapter 6 Implement the Book List

109

 </div>

);

}

We use the React hook APIs, useState and useEffect, to manage

the initial states. The useState is analogous to the this.setState API,

while useEffect is used for side effects such as setTimeout or async

remote calls. In the callback, we define an effect that sends an async call

to localhost:8080/books, and once the data is fetched, setBooks will

be called with that data, and finally BookList will be called with books

from state.

You can see some output in the console from the stub server when the

books API is reached when we run our application now (Figure 6-3).

Figure 6-3.  Stub server in the command line

Chapter 6 Implement the Book List

110

�Setup and Teardown
Let’s take a closer look at our code and tests. As you can see, an implicit

assumption here is that the tests know that the implementation will

return two books. The problem with this assumption is that it makes the

tests a little mysterious: Why are we expecting expect(books.length).

toEqual(2), why not 3? And why are those two books Refactoring and

Domain-driven design? That kind of assumption should be avoided or

should be clearly explained somewhere in the tests.

One way to do this is to create some fixture data that will be set before

each test and cleaned up after each test finishes.

The json-server provides a programmatic way to do it. We can define

the behaviors of the stub server with some code.

�Extend Stub Book Service with middleware

To customize json-server with custom logic (the setup and cleanups),

we will need to install json-server locally. So run npm install json-

server --save-dev from your command line in the stub-server folder;

create a file named server.js.

And then we will need to add a middleware to accept http DELETE

action with a special query string "_cleanup":

const jsonServer = require('json-server')

const server = jsonServer.create()

const router = jsonServer.router('db.json')

const middlewares = jsonServer.defaults()

server.use((req, res, next) => {

 if (req.method === 'DELETE' && req.query['_cleanup']) {

 const db = router.db

 db.set('books', []).write()

 res.sendStatus(204)

Chapter 6 Implement the Book List

111

 } else {

 next()

 }

})

server.use(middlewares)

server.use(router)

server.listen(8080, () => {

 console.log('JSON Server is running')

})

This function will perform some actions based on the request method

and query strings received. If the request is a DELETE request and there is a

_cleanup parameter in the query string, we will clean the entity by setting

the req.entity to an empty array. So when you send a DELETE to http://

localhost:8080/books?_cleanup=true, this function will set the books

array to empty.

With this code in place, you can launch the server with the following

command:

node server.js

The complete version of the stub server code is hosted here

(https://github.com/abruzzi/stub-server-for-bookish).

Once we have this middleware in place, we can use it in our test setup

and teardown hooks. At the top of bookish.spec.ts, inside the describe

block, add the following logic to the setup and teardown for our tests:

before(() => {

 return axios

 .delete('http://localhost:8080/books?_cleanup=true')

 .catch((err) => err);

});

Chapter 6 Implement the Book List

https://github.com/abruzzi/stub-server-for-bookish
https://github.com/abruzzi/stub-server-for-bookish

112

afterEach(() => {

 return axios

 .delete('http://localhost:8080/books?_cleanup=true')

 .catch(err => err)

})

beforeEach(() => {

 const books = [

 { 'name': 'Refactoring', 'id': 1 },

 { 'name': 'Domain-driven design', 'id': 2 }

]

 return books.map(item =>

 axios.post('http://localhost:8080/books', item,

 { headers: { 'Content-Type': 'application/json' } }

)

)

})

Make sure to also import axios at the top of the file.

Before all of the tests run, we’ll delete anything from the database by

sending a DELETE request to this endpoint 'http://localhost:8080/

books?_cleanup=true'. Then before each test is run, we insert two

books into the stub server with a POST request to the URL: http://

localhost:8080/books. Finally, after each test, we will clean them up.

With the stub server running, run the tests and observe what happens

in the console.

�beforeEach and afterEach Hook

Now we can modify the data in the setup however we want. For example,

we could add another book called Building Microservices:

Chapter 6 Implement the Book List

113

beforeEach(() => {

 const books = [

 { 'name': 'Refactoring', 'id': 1 },

 { 'name': 'Domain-driven design', 'id': 2 },

 { 'name': 'Building Microservices', 'id': 3 }

]

 return books.map(item =>

 axios.post('http://localhost:8080/books', item,

 { headers: { 'Content-Type': 'application/json' } }

)

)

})

And expect three books in the test:

it('Shows a book list', () => {

 cy.visit('http://localhost:3000/');

 cy.get('div[data-test="book-list"]').should('exist');

 cy.get('div.book-item').should((books) => {

 expect(books).to.have.length(3);

 �const titles = [...books].map(x => x.querySelector('h2').

innerHTML);

 expect(titles).to.deep.equal(

 �['Refactoring', 'Domain-driven design', 'Building

Microservices']

)

 })

});

Chapter 6 Implement the Book List

114

Great! Let’s take a look at what we have accomplished. Our React

application is now communicating with the stub server, fetching the data,

rendering it, and constructing a list. Additionally, the Cypress tests are

successfully reading and writing to the stub server during the setup and

teardown stages, and we’ve updated the end-to-end tests accordingly.

�Adding a Loading Indicator
Our application is fetching data remotely, and there is no guarantee that

the data will return immediately. We would like there to be some indicator

of loading time to improve the user experience. Additionally, when there

is no network connection at all (or a timeout), we need to show some error

message.

Before we add this to the code, let’s imagine how we can simulate

those two scenarios:

•	 Slow request

•	 Request that failed

Unfortunately, neither of those two scenarios is easy to simulate,

and even if we can, we have to couple our test with the code very tightly.

Let’s rethink what we want to do carefully: there are three statuses of the

component (loading, error, success), so if we can test the behaviors of

those three statuses in an isolated manner, then we can make sure our

component is functional.

�Refactor First
To make the test easy to write, we need to refactor a little first. Take a look

at App.ts:

import type {Book} from "./types";

import BookList from "./BookList";

Chapter 6 Implement the Book List

115

function App() {

 const [books, setBooks] = useState<Book[]>([]);

 useEffect(() => {

 �axios.get('http://localhost:8080/books').then(res =>

setBooks(res.data));

 }, [])

 return (

 <div>

 �<Typography variant='h2' component='h2' data-

test='heading'>

 Bookish

 </Typography>

 <BookList books={books}/>

 </div>

);

}

The purpose seems clear for now, but if we want to add more states the

responsibility might be mixed.

�Adding More States

If we want to handle cases when we have a loading or error status, we

need to introduce more states to the component:

 const App = () => {

 const [books, setBooks] = useState<Book[]>([]);

 const [loading, setLoading] = useState<boolean>(false);

 const [error, setError] = useState<boolean>(false);

 useEffect(() => {

 const fetchBooks = async () => {

 setError(false);

 setLoading(true);

Chapter 6 Implement the Book List

116

 try {

 �const response = await axios.get('http://

localhost:8080/books');

 setBooks(response.data);

 } catch (e) {

 setError(true);

 } finally {

 setLoading(false);

 }

 }

 fetchBooks();

 }, [])

 //...

As it’s not always necessary to show the loading and error

for the entire page, we can move it into its own component,

BookListContainer.ts.

�Refactor: Extract Component

A simple refactoring we can do is to move the logic out of App.ts and

create a new component called BookListContainer:

import React, {useEffect, useState} from 'react';

import axios from 'axios';

import BookList from './BookList';

const BookListContainer = () => {

 const [books, setBooks] = useState([]);

 const [loading, setLoading] = useState(false);

 const [error, setError] = useState(false);

Chapter 6 Implement the Book List

117

 useEffect(() => {

 const fetchBooks = async () => {

 setError(false);

 setLoading(true);

 try {

 �const res = await axios.get('http://localhost:8080/

books');

 setBooks(res.data);

 } catch (e) {

 setError(true);

 } finally {

 setLoading(false);

 }

 };

 fetchBooks();

 }, []);

 return <BookList books={books} />

}

export default BookListContainer;

Then the app becomes

const App = () => {

 return (

 <div>

 �<Typography variant='h2' component='h2' data-

test='heading'>

 Bookish

 </Typography>

Chapter 6 Implement the Book List

118

 <BookListContainer/>

 </div>

);

}

That’s a good start, but it has the disadvantage of coupling the network

request with the rendering process, which can complicate unit tests. To

simplify our testing, we’ll need to separate the network request from the

rendering process.

�Define a React Hook
Luckily, React allows us to define our hooks in a very flexible way – using

hooks. React hooks are a new addition to the React library that allows

developers to use state and other React features without writing a class

component. It provides a simpler and more intuitive way to manage state

and lifecycle methods in functional components.

We can extract the network part out into a function called hook in

useBooks.ts file:

const useBooks = () => {

 const [books, setBooks] = useState<Book[]>([]);

 const [loading, setLoading] = useState<boolean>(false);

 const [error, setError] = useState<boolean>(false);

 useEffect(() => {

 const fetchBooks = async () => {

 setError(false);

 setLoading(true);

 try {

 �const response = await axios.get('http://

localhost:8080/books');

 setBooks(response.data);

Chapter 6 Implement the Book List

119

 } catch (e) {

 setError(true);

 } finally {

 setLoading(false);

 }

 }

 fetchBooks();

 }, [])

 return {

 loading,

 error,

 books

 }

}

Here, we split all the network-related code out into a hook. In the

BookListContainer, we can invoke it like this:

const BookListContainer = () => {

 const {loading, error, books} = useBooks();;

 // if(loading) {

 // return <p>Loading...</p>

 // }

 // if(error) {

 // return <p>Error...</p>

 // }

 return <BookList books={books} />

}

Chapter 6 Implement the Book List

120

Looks pretty cool, right? The only parameter required by useBooks is

the default value for BookList to render. The code is nice and clean now,

and most importantly, the functional tests are still passing.

Before we jump directly into the implementation (about loading and

error), let’s write some unit tests for those scenarios.

�Unit Tests of the Bookish Application
It’s important to differentiate between end-to-end tests and unit tests.

End-to-end tests simulate a user’s interaction with the entire application,

while unit tests isolate and test individual functions or components

of the application. Although end-to-end tests are great for testing the

overall functionality and flow of the application, they can be slow and

cumbersome to run. Unit tests, on the other hand, are faster, more focused,

and can catch bugs before they make it into the codebase.

And in this book, we’ll use the React Testing Library for all the

unit tests. By using the React Testing Library, we can ensure that each

component is working as expected and catching errors early in the

development process.

In the appendix, there is an additional chapter that covers the various

types of tests and why it’s important to structure them in a certain way.

It provides a comprehensive overview of the testing pyramid, which

distinguishes between end-to-end tests and unit tests, and explains the

benefits and drawbacks of each type. By following the best practices

and guidelines outlined in this chapter, you can ensure that your testing

strategy is effective and efficient and that your code is reliable and

maintainable.

�Unit Test with the React Testing Library
The React Testing Library has already been included in create-react-app,

so we can just write a few lines of code to verify the component.

Chapter 6 Implement the Book List

121

�Test Loading State

Now create a test file inside src called BookList.test.ts:

import React from 'react';

import {render, screen, within} from '@testing-library/react';

import BookList from './BookList';

describe('BookList', () => {

 it('render books', async () => {

 const props = {

 books: [

 { 'name': 'Refactoring', 'id': 1 },

 { 'name': 'Domain-driven design', 'id': 2 },

]

 };

 render(<BookList {...props} />);

 const headings = await screen.findAllByRole('heading')

 headings.forEach((heading, index) => {

 �expect(heading).toHaveTextContent(props.

books[index].name);

 });

 })

});

This is a test case that verifies the rendering of the BookList

component. It creates a mock props object with an array of two book

objects, and then it renders the BookList component using render() from

the React Testing Library.

After that, it uses screen.findAllByRole('heading') to

asynchronously find all the heading elements (which should correspond

to the book titles) in the rendered component. Once all headings are

Chapter 6 Implement the Book List

122

found, it uses .forEach() to loop through them and verify that each

heading has the expected book name by using expect(heading).

toHaveTextContent(props.books[index].name).

This test case ensures that the BookList component correctly renders

all the book titles provided through props.

You may be wondering if this is a duplication – haven’t we already

tested this case in the acceptance test? Well, yes and no. The cases in the

unit tests can be used as documentation; it specifies what arguments the

component requires, field names, and types. For example, in the props, we

explicitly show that BookList requires an object with a books field, which

is an array.

When running the tests, we will see a warning in the console:

 console.error node_modules/react/cjs/react.development.js:172

 �Warning: Each child in a list should have a unique

'key' prop.

 �Check the render method of `BookList`. See https://fb.me/

react-warning-keys for more information.

 in div (at BookList.jsx:14)

 in BookList (at BookList.test.jsx:32)

This is telling us that when rendering a list, React requires a unique

key for each of the items, such as id. We can quickly fix it by adding a key

for each item in the loop. In our case, as each book has a unique ISBN (the

International Standard Book Number), we can use it in the stub server.

Now, our final version of BookList looks like this:

import React from 'react';

const BookList = ({books}) => {

 return <div data-test='book-list'>

 {

Chapter 6 Implement the Book List

123

 �books.map(book => (<div className='book-item'

key={book.id}>

 <h2 className='title'>{book.name}</h2>

 </div>))

 }

 </div>;

}

export default BookList;

All unit tests (as shown in Figure 6-4) are passing, cool!

�Summary
When we write tests for code, it is important to ensure that the tests are

robust, reliable, and maintainable. However, sometimes the code we

need to test may have a lot of external dependencies or tightly coupled

dependencies that are hard to mock or test in isolation. In such cases,

it can be challenging to write good tests for the code without first

refactoring it.

Figure 6-4.  All unit tests are passing too

Chapter 6 Implement the Book List

124

Refactoring allows us to extract the dependencies out of the code,

making it more modular and easier to test. By decoupling the code from

its dependencies, we can create mock versions of those dependencies

and test the code in isolation. This can help us to write more effective

and efficient tests, as well as making the code more maintainable and

extensible in the long run. So, when we encounter complicated code with

lots of external dependencies, it’s important to consider refactoring it first

before writing tests.

And in the next chapter, we’ll start to look into the implementation of

the book detail page.

Chapter 6 Implement the Book List

125

CHAPTER 7

Implementing
the Book Detail View
In this chapter, we will focus on implementing book details using React.

Our goal is to create a hyperlink for each book in the book list, allowing

users to click the book’s name and navigate to its dedicated detail page.

This detail page will provide comprehensive information about the book,

such as its title, cover image, description, reviews, and more. By developing

this functionality, we aim to enhance the user experience by enabling

seamless navigation and delivering specific content for each book. Let’s

dive into the implementation of book details and create a dynamic and

engaging browsing experience for our users.

�Acceptance Tests
To ensure the fulfillment of this requirement, we will begin by writing an

acceptance test in our bookish.spec.ts file. This acceptance test will

serve as a description of the desired functionality, outlining the expected

behavior and verifying that the implementation meets the specified

requirements. By incorporating acceptance tests into our testing suite,

we can validate the functionality of the application from the user’s

perspective, ensuring that it aligns with the desired outcomes.

© Juntao Qiu 2023
J. Qiu, Test-Driven Development with React and TypeScript,
https://doi.org/10.1007/978-1-4842-9648-6_7

https://doi.org/10.1007/978-1-4842-9648-6_7

126

Let’s dive into writing this acceptance test and solidify our

understanding of the requirement at hand:

it('Goes to the detail page', () => {

 cy.visit('http://localhost:3000/');

 �cy.get('div.book-item').contains('View Details').eq(0).

click();

 cy.url().should('include', "/books/1")

});

Run the test, and it will fail.

�Link to Detail Page
That is because we don’t have a /books route yet, and we don’t have

the link either. To make the test pass, add a hyperlink in the BookList

component:

 {

 �books.map(book => (<div className='book-item'

key={book.id}>

 <h2 className='title'>{book.name}</h2>

+ View Details

 </div>))

 }

�Verify Book Title on Detail Page
Then, to make sure the page shows the expected content after navigation,

we need to add a line to bookish.spec.js:

 it('Goes to the detail page', () => {

 cy.visit('http://localhost:3000/');

Chapter 7 Implementing the Book Detail View

127

 �cy.get('div.book-item').contains('View Details').eq(0).

click();

 cy.url().should('include', '/books/1');

+ cy.get('h2.book-title').contains('Refactoring');

 });

That checks the page has a .book-title section and its content is

Refactoring. The test fails again; let’s fix it by adding client-side routing to

our application.

As you can see, there is a page navigation here: the user will be able

to jump to the detail page when clicking a button. That means we need

some mechanism to maintain the router.

�Frontend Routing
We need to add react-router and react-router-dom as dependencies.

react-router and react-router-dom are essential libraries for managing

routing in React applications.

react-router is the core library that provides the routing functionality,

allowing you to define routes and navigate between different views or

components in your application. It provides a flexible and declarative

approach to handling routing, enabling you to create dynamic and

seamless user experiences.

react-router-dom is a companion library that builds upon react-

router by providing specific routing components designed for web

applications. It includes components like BrowserRouter and Link that are

tailored for browser-based routing.

Together, react-router and react-router-dom offer a powerful and

intuitive routing solution for React applications. They enable you to handle

complex routing scenarios, including nested routes, route parameters,

and query parameters. With these libraries, you can create single-

page applications (SPAs) with multiple views and seamless navigation

between them.

Chapter 7 Implementing the Book Detail View

128

Whether you’re building a simple portfolio website or a sophisticated

web application, react-router and react-router-dom are indispensable

tools for managing navigation and creating a smooth user experience.

By incorporating these libraries into your React projects, you can easily

handle routing and ensure that your application responds to user

interactions in a seamless and intuitive manner:

npm install react-router react-router-dom --save

In index.tsx, we import BrowserRouter and wrap it around <App />.

This means the whole application can share the global Router

configurations:

import { BrowserRouter as Router } from "react-router-dom";

import App from "./App";

const root = ReactDOM.createRoot(

 document.getElementById("root") as HTMLElement

);

root.render(

 <Router>

 <App />

 </Router>

);

We then define two routes in App.tsx:

import Typography from "@mui/material/Typography";

import BookListContainer from "./BookListContainer";

import BookDetailContainer from "./BookDetailContainer";

import { Routes, Route } from "react-router-dom";

function App() {

 return (

Chapter 7 Implementing the Book Detail View

129

 <div>

 <Typography variant="h2" component="h2" data-test="heading">

 Bookish

 </Typography>

 <Routes>

 <Route path="/" element={<BookListContainer />} />

 �<Route path="/books/:id"

element={<BookDetailContainer />} />

 </Routes>

 </div>

);

}

With those routes, when the user accesses root path /, the component

BookListContainer will be rendered. When /books/123 is visited,

BookDetailContainer will be displayed.

�BookDetailContainer Component

Finally, we need to create a new file BookDetailContainer.tsx. It will

be pretty similar to the first version of BookListContainer.tsx, except

that the id of the book will be extracted by a hook useParams from react-

router. Once we have the book id, we can send an HTTP request to fetch

the book details from the server side:

import React, { useEffect, useState } from "react";

import axios from "axios";

import { useParams } from "react-router";

import { Book } from "./types";

const BookDetailContainer = () => {

 const { id } = useParams<string>();

 const [book, setBook] = useState<Book>();

Chapter 7 Implementing the Book Detail View

130

 useEffect(() => {

 const fetchBook = async () => {

 �const book = await axios.get(`http://localhost:8080/

books/${id}`);

 setBook(book.data);

 };

 fetchBook();

 }, [id]);

 return (

 <div className="detail">

 <h2 className="book-title">{book && book.name}</h2>

 </div>

);

};

export default BookDetailContainer;

Great, the functional tests are now passing, as shown in Figure 7-1.

Figure 7-1.  Redirect to the detail page

Chapter 7 Implementing the Book Detail View

131

�Extract useBook Hook

However, the data fetching process could be improved. It’s time for us to

refactor the useBook to fit the new requirement. Because we have higher-

level tests ready, we can confidently make some changes:

export const useBook = () => {

 const { id } = useParams<string>();

 const [book, setBook] = useState<Book>({ id: 0, name: "" });

 const [loading, setLoading] = useState<boolean>(false);

 const [error, setError] = useState<boolean>(false);

 useEffect(() => {

 const fetchBook = async () => {

 try {

 �const book = await axios.get(`http://localhost:8080/

books/${id}`);

 setBook(book.data);

 } catch (e) {

 setError(true);

 } finally {

 setLoading(false);

 }

 };

 fetchBook();

 }, [id]);

 return {

 book,

 loading,

 error,

 };

};

Chapter 7 Implementing the Book Detail View

132

We defined a new hook called useBook to manage the data fetching

and state management. And in the calling place, we can simply put

const {book, loading, error} = useBook();

�Simplify BookDetailContainer with the New Hook

And for BookDetailContainer, it then can be simplified as

import React from "react";

import { useBook } from "./useBook";

const BookDetailContainer = () => {

 const { book } = useBook();

 return (

 <div className="detail">

 <h2 className="book-title">{book && book.name}</h2>

 </div>

);

};

export default BookDetailContainer;

The code now looks much cleaner.

�Unit Tests
In the end-to-end test, we just make sure there is a title in the detail page.

If we add more details to the page, such as description, and book cover,

we check for them in the lower-level test – the unit test. Unit tests run fast

and check more for specific details than end-to-end tests, making it easier

for developers to debug if something goes wrong.

Chapter 7 Implementing the Book Detail View

133

�Refactoring
�Extract Presentational Component BookDetail

Even though in BookDetailContainer there is only a single line to

render the details, it’s a good idea to extract that line out to a separate

component – we’ll call it BookDetail:

const BookDetail = ({ book }: { book: Book }) => {

 return (

 <div className="detail">

 <h2 className="book-title">{book.name}</h2>

 </div>

);

};

export default BookDetail;

BookDetailContainer can then be simplified as

const BookDetailContainer = () => {

 const { book } = useBook();

 return <BookDetail book={book} />;

};

Let’s check all the tests now: the Cypress tests are all passing, but your

unit tests may be red with the following error message:

 console.error

 �Error: Uncaught [Error: useRoutes() may be used only in

the context of a <Router> component.]

The error message is stating that the useRoutes hook from React

Router is being used outside the context of a <Router> component.

Chapter 7 Implementing the Book Detail View

134

The useRoutes hook is part of the React Router library, which is

used to manage and create navigation in React applications. Hooks

like useRoutes must be used within components that are children of a

<Router> component. This is because they rely on the context provided by

the <Router> to function correctly.

And also if you are using react-router version 6 or higher, you will get

the following errors:

● BookList › render books

Invariant failed: You should not use <Link> outside a <Router>

The <Link> component is used to create links in your application, and

it must be used within a <Router> component because it uses the router’s

context to function.

In addition, you will see something wrong with axios with jest at

the moment:

Jest encountered an unexpected token

 SyntaxError: Cannot use import statement outside a module

 1 | import {useEffect, useState} from "react";

 2 | import {Book} from "./types";

 > 3 | import axios from "axios";

Let’s fix the axios issue very quickly and then look into the react-router in

test. You will need to modify the package.json and add a new section for jest:

"jest": {

 "moduleNameMapper": {

 "axios": "axios/dist/node/axios.cjs"

 }

},

Now let’s look into the router problem.

Chapter 7 Implementing the Book Detail View

135

�MemoryRouter for Testing

To fix that, we need to modify BookList.test.ts a little by providing a

<MemoryRouter>. In React Router, the MemoryRouter is a specialized router

component that allows you to manage routing within the memory of your

application, rather than relying on the browser’s URL history.

The MemoryRouter provides a router implementation that stores the

current location and history in memory, making it useful for scenarios

where you don’t need to update the browser’s URL or navigate between

pages in a traditional sense.

This component is particularly handy for testing or scenarios where

you want to manage routing programmatically without affecting the

browser’s URL. It allows you to simulate navigation and track location

changes within the memory of your application.

With MemoryRouter, you can define routes, render components

based on those routes, and programmatically manipulate the current

location and history stack. This provides greater control and flexibility for

scenarios where you need to manage routing within the context of your

application’s memory.

Whether you’re writing tests, creating custom navigation logic, or

handling nontraditional routing scenarios, the MemoryRouter component

in React Router offers a valuable tool for managing routing within the

memory of your application.

We add a wrapper inside the render. This will wrap whatever

component you passed in inside a MemoryRouter. Then we can invoke

the renderWithRouter instead of render in all the tests that need to

render a Link.

In the React Testing Library, using a custom render function is a

common practice that offers several benefits. By leveraging custom render

functions, you can enhance code organization, reduce duplication, and

promote consistency in your testing approach.

Chapter 7 Implementing the Book Detail View

136

To use a custom render function properly, follow these steps:

	 1.	 Create a helper function, such as renderWithRouter,

that wraps the render function from the React

Testing Library.

	 2.	 In the helper function, apply any default

configurations or set up logic you want to use

consistently across tests.

	 3.	 Return the result of calling the original render

function with the provided component and any

additional options.

	 4.	 Export the custom render function for use in your

test files.

Let’s define our custom render function renderWithRouter:

import { MemoryRouter as Router } from "react-router-dom";

const renderWithRouter = (component: JSX.Element) => {

 return {

 ...render(<Router>{component}</Router>),

 };

};

In your test files, you can then import and use the renderWithRouter

function instead of the default render function from the React Testing

Library. This allows you to benefit from the additional setup or

configuration provided by your custom render function.

it("render books", async () => {

 const props = {

 books: [

 { name: "Refactoring", id: 1 },

 { name: "Domain-driven design", id: 2 },

Chapter 7 Implementing the Book Detail View

137

],

 };

 renderWithRouter(<BookList {...props} />);

 const headings = await screen.findAllByRole("heading");

 headings.forEach((heading, index) => {

 expect(heading).toHaveTextContent(props.books[index].name);

 });

});

�Book Detail Page
�Book Title

Now we can quickly add unit tests in file BookDetail.test.ts in order to

drive the implementation:

describe("BookDetail", () => {

 it("renders title", () => {

 const props = {

 book: {

 id: 1,

 name: "Refactoring",

 },

 };

 render(<BookDetail {...props} />);

 const title = screen.getByRole("heading");

 expect(title.innerHTML).toEqual(props.book.name);

 });

});

This test will pass because we already render the name field.

Chapter 7 Implementing the Book Detail View

138

�Book Description

Let’s add some more fields. We’ll start from a unit test this time and use

that to drive out the implementation:

it("renders description", () => {

 const props = {

 book: {

 id: 1,

 name: "Refactoring",

 description:

 �"Martin Fowler's Refactoring defined core ideas and

techniques " +

 �"that hundreds of thousands of developers have used to

improve " +

 "their software.",

 },

 };

 render(<BookDetail {...props} />);

 const description = screen.getByText(props.book.description);

 expect(description).toBeInTheDocument();

});

But as we’ve changed the interface of Book type, we will need to update

the type definition first:

export type Book = {

 id: number;

 name: string;

 description?: string;

}

Chapter 7 Implementing the Book Detail View

139

A straightforward implementation could look like this:

const BookDetail = ({ book }: { book: Book }) => {

 return (

 <div className="detail">

 <h2 className="book-title">{book.name}</h2>

 <p className="book-description">{book.description}</p>

 </div>

);

};

With all tests now successfully passing, the codebase is adorned

with a delightful shade of green. However, it’s time to take a step back

and consider ways to improve the overall structure of the project. One

observation that has caught my attention is the burgeoning size of the

project structure as more files were created. It seems to be expanding

beyond desirable boundaries, warranting a closer examination and

potential restructuring to enhance organization and maintainability. Let’s

explore strategies to address this issue and ensure a more streamlined and

manageable codebase.

�File Structure
Our current file structure lacks hierarchy, with all the files residing in a

single folder. This flat structure is considered a code smell and can lead to

difficulties in locating specific files. To address this issue, let’s embark on

a restructuring endeavor that promotes better organization and ease of

navigation.

Chapter 7 Implementing the Book Detail View

140

Currently, our files look like this:

src

├── App.tsx
├── BookDetail.tsx
├── BookDetail.test.tsx
├── BookDetailContainer.tsx
├── BookList.tsx
├── BookList.test.tsx
├── BookListContainer.tsx
├── hooks.ts
├── types.ts
└── index.tsx

There are multiple ways to split an application into modules and

organize them. I have found splitting the application by feature makes the

most sense to me after having tried all of the different combinations across

various projects.

�Modularize

So for now, let’s define two separate folders: BookDetail and BookList for

feature one and feature two, respectively.

src

├── App.ts
├── BookDetail
│ ├── BookDetail.tsx
│ ├── BookDetail.test.tsx
│ └── BookDetailContainer.tsx
├── BookList
│ ├── BookList.tsx
│ ├── BookList.test.tsx
│ └── BookListContainer.tsx

Chapter 7 Implementing the Book Detail View

141

├── hooks.ts
├── types.ts
└── index.tsx

This organized folder structure significantly improves the ability

to locate specific components that need to be modified. It enhances

readability and makes it easier for developers to navigate through the

project, fostering a more efficient and seamless development experience.

�Testing Data
You may find it a little tricky to clean up all the data for functional tests.

And when you want to check how the application looks in the browser

manually, there is no data at all.

Let’s fix this problem by introducing another database file for

json-server:

{

 "books": [

 {

 "name": "Refactoring",

 "id": 1,

 �"description": "Martin Fowler's Refactoring defined core

ideas and techniques ..."

 },

 {

 "name": "Domain-driven design",

 "id": 2,

 �"description": "Explains how to incorporate effective

domain modeling into the software development process."

 },

 {

Chapter 7 Implementing the Book Detail View

142

 "name": "Building Microservices",

 "id": 3,

 �"description": "Author Sam Newman provides you with a

firm grounding in the concepts while ..."

 },

 {

 "name": "Acceptance Test Driven Development with React",

 "id": 4,

 �"description": "This book describes how to apply the

Acceptance Test Driven Development ..."

 }

]

}

and save the content as books.json in the stub-server folder. Now

update the stub-server script in package.json:

json-server --watch books.json --port 8080

And run the server: npm run stub-server (Figure 7-2).

Figure 7-2.  Start stub server

Chapter 7 Implementing the Book Detail View

143

Remember to run the end-to-end tests here as well. As we’re changing

the data expected in the book list, we’ll also need to change what the tests

expect. As the server is doing the job of mocking out all the data, you’ll

notice we don’t need the beforeEach and afterEach at this point.

�User Interface Refinement
After successfully completing two thrilling and demanding features, it’s

time to turn our attention to the user interface (as you can tell in Figure 7-3,

it doesn’t look really impressive), which is currently lacking visual appeal.

To address this, we will embark on a journey to enhance the styling and

aesthetics of our application.

Within the realm of Material UI, an extensive collection of UI

components awaits, offering both fundamental and advanced

functionalities. Among these offerings is a remarkable addition called the

Figure 7-3.  The UI is not appealing

Chapter 7 Implementing the Book Detail View

144

responsive grid system. This grid system provides valuable assistance

in creating flexible and adaptable layouts for your application. With

Material UI’s arsenal at our disposal, we gain access to a wide range of UI

components and convenient tools, empowering us to design intricate and

visually appealing user interfaces.

�Using Grid System
In our case, let’s implement the Grid and Card components to our

BookList:

const BookList = ({ books }: { books: Book[] }) => {

 return (

 <div data-test="book-list">

 <Grid container spacing={3}>

 {books.map((book) => (

 �<Grid item xs={4} sm={4} key={book.id}

className="book-item">

 <Card>

 <CardActionArea>

 <CardContent>

 �<Typography gutterBottom variant="h5"

component="h2">

 {book.name}

 </Typography>

 <Typography

 variant="body2"

 color="textSecondary"

 component="p"

 >

 {book.description}

 </Typography>

Chapter 7 Implementing the Book Detail View

145

 </CardContent>

 </CardActionArea>

 <CardActions>

 <Button size="small" color="primary">

 �<Link to={`/books/${book.id}`}>View

Details</Link>

 </Button>

 </CardActions>

 </Card>

 </Grid>

))}

 </Grid>

 </div>

);

};

There are a few things going on here:

	 1.	 The Grid component from Material UI is used to

create the grid layout. It has a container property to

specify that it acts as the container for the grid items.

The spacing property defines the space between the

grid items.

	 2.	 Within the Grid component, the books array is

mapped using the map function. For each book in

the array, a Grid item is rendered.

	 3.	 Each Grid item has a fixed size based on the xs

(extra small) and sm (small) screen breakpoints. In

this case, each item spans four columns on extra

small and small screens.

Chapter 7 Implementing the Book Detail View

146

	 4.	 Inside each Grid item, a Card component from

Material UI is used to display book information. It

consists of a CardActionArea, CardContent, and

CardActions.

	 5.	 The book’s name and description are displayed

using Typography components from Material UI.

	 6.	 The CardActions component contains a Button

component with a link to view more details

about the book. The link is wrapped inside a Link

component from React Router and is generated

dynamically based on the book’s id.

�Handling Default Value
We have a new requirement to address: the backend service’s data may

occasionally include unexpected null values in certain fields. To ensure

a seamless user experience, we must handle these cases gracefully. For

instance, the description field might not always be present and could

contain an empty string or null value.

In such situations, we should gracefully handle this scenario by using

the book’s name as a fallback for the description. By implementing this

fallback mechanism, we can ensure consistent and informative content

presentation, even when unexpected null values arise in the backend data.

A Failing Test with undefined
We can add a test to describe this case, noting the props object doesn’t

contain a description field at all:

Chapter 7 Implementing the Book Detail View

147

it("displays the book name when no description was

given", () => {

 const props = {

 book: {

 id: 1,

 name: "Refactoring",

 },

 };

 render(<BookDetail {...props} />);

 const description = screen.getByTestId("book-description");

 expect(description).toHaveTextContent(props.book.name);

});

Then our test failed again, as you can see in Figure 7-4.

Figure 7-4.  Book description cannot be found

Chapter 7 Implementing the Book Detail View

148

We can fix that with a conditional operator:

const BookDetail = ({ book }: { book: Book }) => {

 return (

 <div className="detail">

 <h2 className="book-title">{book.name}</h2>

 �<p className="book-description" data-testid="book-

description">

 {book.description ? book.description : book.name}

 </p>

 </div>

);

};

It’s worth noting the conditional operator here. It’s pretty

straightforward for now. But it could go complicated very fast. A better

option is to extract that expression out as a separate function. For instance,

we can use an extract function to isolate that potential change into a pure

computing function:

const getDescriptionFor = (book: Book) => {

 return book.description ? book.description : book.name;

};

const BookDetail = ({ book }: { book: Book }) => {

 return (

 <div className="detail">

 <h2 className="book-title">{book.name}</h2>

 �<p className="book-description" data-testid="book-

description">

 {getDescriptionFor(book)}

Chapter 7 Implementing the Book Detail View

149

 </p>

 </div>

);

};

In this particular case, there is no requirement to extract a function.

However, it is important to be cautious and mindful of scenarios like

this. When performing calculations within the rendering process, it is

advisable to exercise extra caution as it requires more attention. The goal

is to keep the rendering logic as simple and straightforward as possible.

By being vigilant and mindful of such cases, we can maintain a clean and

efficient rendering process, contributing to the overall performance and

maintainability of our code.

�One Last Change?
Now let’s consider another change: if the length of description is greater

than 300 characters, we need to truncate the content at 300 characters and

show a Show more... link. When a user clicks the link, the full content will

be displayed.

We can add a new test for this case:

it('Shows *more* link when description is too long', () => {

 const props = {

 book: {

 id: 1,

 name: 'Refactoring',

 description: 'The book about how to do refactoring'

 }

 };

 render(<BookDetail {...props} />);

Chapter 7 Implementing the Book Detail View

150

 const link = screen.getByText('Show more...');

 expect(link).toBeInTheDocument();

 const description = screen.getByTestId("book-description");

 �expect(description).toHaveTextContent('The book about how to

do refactoring');

})

This compels us to write or modify the code to fulfill the requirement.

After ensuring that all tests pass successfully, we can proceed with

refactoring. This entails extracting methods, creating new files,

reorganizing methods or classes, renaming variables, adjusting folder

structures, and more.

Refactoring is an ongoing and iterative process. It provides us with

endless opportunities to enhance the codebase. Whenever time allows, we

can repeat this process multiple times, continuously improving the code

until we achieve a clean and self-documenting state.

By dedicating effort to refactoring, we can optimize code readability,

maintainability, and overall quality. Through consistent iterations, we

strive to create code that is not only functional but also clear, expressive,

and easy to understand.

�Summary
In this chapter, we embarked on the journey of implementing the book

detail section, ensuring a seamless user experience. We began by writing

a Cypress test to verify the functionality at a high level. This test served as

our guiding requirement throughout the implementation process.

Next, we utilized the power of the React Testing Library to define

additional edge cases, validating the behavior at a lower level. By

thoroughly testing different scenarios, we ensured robust functionality and

caught any potential issues.

Chapter 7 Implementing the Book Detail View

151

To enhance the visual appeal of the user interface, we incorporated

Material UI, leveraging its rich library of components and styling

capabilities. This allowed us to create an appealing and cohesive design for

displaying book details.

Furthermore, we recognized the importance of maintaining an

organized and navigable project structure. To address this, we undertook

the restructuring of the folder hierarchy, promoting ease of navigation and

improving code discoverability. This reorganization facilitated efficient

collaboration and enhanced the overall maintainability of the project.

Throughout this chapter, we focused on delivering a polished and

comprehensive book detail section, aligning with user expectations and

providing an enhanced reading experience. By combining Cypress tests,

the React Testing Library, Material UI, and improved folder structure, we

created a visually pleasing book detail section. Let’s move forward with

confidence, knowing that our implementation is both functional and

visually appealing.

Chapter 7 Implementing the Book Detail View

153

CHAPTER 8

Searching by Keyword
Welcome to the third feature of our journey, where we dive into the

implementation of search functionality by book name. This feature plays

a crucial role in enhancing user experience, particularly when dealing

with extensive book lists. As the list grows beyond a single screen or page,

it becomes increasingly challenging for users to locate specific books.

Therefore, enabling users to effortlessly search for books by name becomes

an invaluable addition to our application.

In this chapter, we will focus on implementing the search feature,

empowering users to quickly find desired books by simply entering their

names. By incorporating this functionality, we aim to streamline the

book discovery process and provide users with a seamless and efficient

browsing experience.

With the search feature in place, users will no longer need to scroll

through lengthy book lists, trying to spot the books they are seeking.

Instead, they can easily input the book’s name and have the relevant

results instantly displayed, saving time and improving overall satisfaction.

�Acceptance Test
As previously, we start by writing an acceptance test:

 it('Searches for a title', () => {

 cy.visit('http://localhost:3000/');

 cy.get('div.book-item').should('have.length', 4);

© Juntao Qiu 2023
J. Qiu, Test-Driven Development with React and TypeScript,
https://doi.org/10.1007/978-1-4842-9648-6_8

https://doi.org/10.1007/978-1-4842-9648-6_8

154

 cy.get('[data-test="search"] input').type('design');

 cy.get('div.book-item').should('have.length', 1);

 �cy.get('div.book-item').eq(0).contains('Domain-driven

design');

 });

In this test scenario, we simulate the action of entering the keyword

“design” into the search input box and verify that the book list only

displays the book titled “Domain-driven design.” By executing this test,

we aim to ensure that the search functionality accurately filters the book

list based on the provided keyword, displaying only the relevant results.

Let’s proceed with this test, validating the expected behavior of the search

feature and ensuring its effectiveness in delivering precise search results to

the user.

The simplest way to implement this feature is to modify the

BookListContainer by adding a TextField from Material UI to it:

 return (<>

 <TextField

 label='Search'

 value={term}

 data-test='search'

 onChange={(e) => setTerm(e.target.value)}

 margin='normal'

 variant='outlined'

 />

 <BookList books={data} loading={loading} error={error}/>

 </>);

We’ll need to introduce state to the component – before the return

statement, add the following line, remembering to import useState

from react:

const [term, setTerm] = useState('');

Chapter 8 Searching by Keyword

155

When the term (the search term) changes, we want to trigger a new

search. We can make use of the useEffect hook, something like

 useEffect(() => {

 performSearch(`http://localhost:8080/books?q=${term}`)

 }, [term]);

Wait a minute, this logic looks familiar. We have similar logic in

useBooks already, right? It would be much easier for us to modify the

useBooks to make it more generic to support search as well.

The useBooks is defined as follows:

const useBooks = () => {

 const [books, setBooks] = useState<Book[]>([]);

 const [loading, setLoading] = useState<boolean>(false);

 const [error, setError] = useState<boolean>(false);

 useEffect(() => {

 const fetchBooks = async () => {

 setError(false);

 setLoading(true);

 try {

 const response = await axios.get(

 "http://localhost:8080/books?_sort=id"

);

 setBooks(response.data);

 } catch (e) {

 setError(true);

 } finally {

 setLoading(false);

 }

 };

Chapter 8 Searching by Keyword

156

 fetchBooks();

 }, []);

 return {

 loading,

 error,

 books,

 };

};

So we need to introduce the term or keyword state into the hook and

expose the setter so that whenever a user typed something, we can trigger

a refetch:

const [term, setTerm] = useState<string>('');

useEffect(() => {

 const fetchBooks = async (term: string) => {

 setError(false);

 setLoading(true);

 try {

 �const response = await axios.get(`http://localhost:8080/

books?q=${term}&_sort=id`);

 setBooks(response.data);

 } catch (e) {

 setError(true);

 } finally {

 setLoading(false);

 }

 }

 fetchBooks(term);

}, [term])

Chapter 8 Searching by Keyword

157

Note that we are using books?q=${e.target.value} as the URL to

fetch data. There is a full-text searching API provided by json-server; you

can send books?q=domain to the backend, and it will return all the content

that contains the domain.

You can verify the API on the command line like this:

curl http://localhost:8080/books?q=domain

So the only change in BookListContainer is that we use the term and

setTerm from the useBooks hook:

const BookListContainer = () => {

 const { books, term, setTerm } = useBooks();

 return <>

 <TextField

 label='Search'

 value={term}

 data-test='search'

 onChange={(e) => setTerm(e.target.value)}

 margin='normal'

 variant='outlined'

 />

 <BookList books={books} />

 </>;

};

Now our tests are green again (as shown in Figure 8-1). Let’s jump to

the next step of the Red-Green-Refactor cycle.

Chapter 8 Searching by Keyword

158

Figure 8-1.  Search by book title

�One Step Further
Let’s say someone else wants to use the search box we just finished on this

page, how can we reuse it? It’s tough because currently the search box is

very tightly coupled with the rest of the code in BookListContainer, but

we can extract it into another component, called SearchBox:

import { TextField } from "@mui/material";

const SearchBox = ({

 term,

 onSearch,

}: {

 term: string;

 onSearch: (term: string) => void;

}) => {

 return (

Chapter 8 Searching by Keyword

159

 <TextField

 label="Search"

 value={term}

 data-test="search"

 onChange={(e) => onSearch(e.target.value)}

 margin="normal"

 variant="outlined"

 />

);

};

export default SearchBox;

After that extraction, BookListContainer becomes

const BookListContainer = () => {

 const { books, term, setTerm } = useBooks();

 return (

 <>

 <SearchBox term={term} onSearch={setTerm} />

 <BookList books={books} />

 </>

);

};

Now let’s add a unit test:

describe("SearchBox", () => {

 it("renders input", () => {

 const props = {

 term: "",

 onSearch: jest.fn(),

 };

Chapter 8 Searching by Keyword

160

 render(<SearchBox {...props} />);

 const input = screen.getByRole("textbox");

 userEvent.type(input, "domain");

 expect(props.onSearch).toHaveBeenCalled();

 });

});

We are using jest.fn() to create a spy object that can record the trace

of invocations. We use a userEvent.type API to simulate a change event

with domain as it’s the payload. We can then expect that the onChange

method has been called.

Let’s add one more requirement here: when performing a search, we

don’t want white-space to be part of the request. So we trim the string

before it’s sent to service. Let’s write a test first:

 it('trim empty strings', () => {

 const props = {

 term: '',

 onSearch: jest.fn()

 }

 render(<SearchBox {...props} />);

 const input = screen.getByRole("textbox");

 userEvent.type(input, ' ');

 expect(props.onSearch).not.toHaveBeenCalled();

 })

It will fail because we currently send any and all values to the books

API. To fix it, we can define a function in SearchBox that will intercept the

event before it reaches the upper level:

const performSearch = (event: any) => {

 const value = event.target.value;

Chapter 8 Searching by Keyword

161

 if(value && value.trim().length === 0) {

 return;

 }

 onSearch(value);

}

and use the function as onChange instead of calling onSearch directly:

 return (

 <TextField

 label="Search"

 value={term}

 data-test="search"

 onChange={performSearch}

 margin="normal"

 variant="outlined"

 />

);

The successful results are shown in Figure 8-2.

Figure 8-2.  Searching is working as expected

Chapter 8 Searching by Keyword

162

Throughout our development process, we adopted a comprehensive

testing approach that encompassed both end-to-end and lower-level

tests. We initiated the testing phase with an end-to-end test, focusing on

the successful execution of the happy path scenario. This test allowed

us to ensure that our application’s key functionality was functioning as

intended, providing a seamless user experience.

From the foundation, we carefully constructed lower-level tests that

covered various scenarios and edge cases to confirm our components

worked as intended, even under difficult conditions. These tests increased

our coverage depth and helped us spot and fix unexpected issues. By

mixing end-to-end and lower-level tests, we created a thorough testing

environment that handled both typical and unusual scenarios, ensuring

our application's performance and enhancing its resilience against

unexpected challenges.

Our testing efforts served as a valuable tool for quality assurance,

facilitating the identification of potential weaknesses and areas for

improvement. With a thorough testing suite in place, we can confidently

deploy our application, knowing that it has undergone rigorous evaluation

and can deliver a reliable and satisfying user experience.

�What Have We Done?
Fantastic! We have successfully completed all three features, and it’s time

for a quick review of our accomplishments:

•	 We have developed three pure components, namely,

BookDetail, BookList, and SearchBox, along with their

corresponding unit tests. These components form

the foundation of our application, providing essential

functionality and ensuring code quality through

thorough testing.

Chapter 8 Searching by Keyword

163

•	 Additionally, we have implemented two

container components, BookDetailContainer and

BookListContainer. These container components

bridge the gap between the pure components and

the data layer, facilitating data management and state

manipulation.

•	 To handle data fetching efficiently, we have created

a custom hook dedicated to this purpose. This hook

streamlines the process of retrieving data, promoting

code reusability and maintainability.

•	 To ensure the overall functionality of our application,

we have devised four acceptance tests. These tests

cover the most valuable paths, including list viewing,

detailed book information, and searching. By

encompassing these critical areas, we have provided

comprehensive test coverage, assuring the reliability

and accuracy of our application.

By accomplishing these milestones, we have laid a solid foundation

for our application’s success. We can confidently proceed, knowing that

we have created a set of robust components, incorporated effective data

fetching mechanisms, and validated our features through rigorous testing.

Let’s celebrate our achievements and move forward with pride as we

continue to build upon this strong framework.

�Moving Forward – The Test Code Is
As Important
Maybe you have already noticed some code smells in our end-to-end tests.

We’re utilizing many fancy commands without expressing exactly what we

are doing in terms of business value:

Chapter 8 Searching by Keyword

164

it("Shows a book list", () => {

 cy.visit("http://localhost:3000/");

 cy.get('div[data-test="book-list"]').should("exist");

 cy.get("div.book-item").should((books) => {

 expect(books).to.have.length(4);

 �const titles = [...books].map((x) => x.querySelector("h2").

innerHTML);

 expect(titles).to.eql([

 "Refactoring",

 "Domain-driven design",

 "Building Microservices",

 "Acceptance Test Driven Development with React",

]);

 });

});

By introducing a few functions, we can improve the readability

significantly:

const gotoApp = () => {

 cy.visit('http://localhost:3000/');

}

const checkAppTitle = () => {

 cy.get('h2[data-test="heading"]').contains('Bookish');

}

And in the test cases, we can make use of them like this:

it('Visits the bookish', () => {

 gotoApp();

 checkAppTitle();

});

Chapter 8 Searching by Keyword

165

For complicated functions, we can abstract even more:

const checkBookListWith = (expectation = []) => {

 cy.get('div[data-test="book-list"]').should('exist');

 cy.get('div.book-item').should((books) => {

 expect(books).to.have.length(expectation.length);

 �const titles = [...books].map(x => x.querySelector('h2').

innerHTML);

 expect(titles).to.deep.equal(expectation)

 })

}

And use it like this:

checkBookListWith([

 "Refactoring",

 "Domain-driven design",

 "Building Microservices",

 "Acceptance Test Driven Development with React",

]);

or

const checkSearchedResult = () => {

 checkBookListWith(['Domain-driven design'])

}

After we have extracted a few functions, some patterns emerge. We can

do some further refactoring:

describe('Bookish application', () => {

 beforeEach(() => {

 feedStubBooks();

 gotoApp();

 });

Chapter 8 Searching by Keyword

166

 afterEach(() => {

 cleanUpStubBooks();

 });

 it('Visits the bookish', () => {

 checkAppTitle();

 });

 it('Shows a book list', () => {

 �checkBookListWith(['Refactoring', 'Domain-driven design',

'Building Microservices']);

 });

 it('Goes to the detail page', () => {

 gotoNthBookInTheList(0);

 checkBookDetail();

 });

 it('Search for a title', () => {

 checkBookListWith(['Refactoring',

 'Domain-driven design',

 'Building Microservices',

 'Acceptance Test Driven Development with React']);

 performSearch('design');

 checkBookListWith(['Domain-driven design']);

 });

});

The result is not only visually appealing but also demonstrates a

significant separation between the business value and implementation

details. This separation holds potential benefits for future endeavors, such

as the possibility of migrating to another testing framework or rewriting

specific components.

Chapter 8 Searching by Keyword

167

With a clear distinction between these aspects, it becomes evident to

any reader or developer, making future modifications and adaptations

more straightforward. This deliberate approach of separating concerns not

only contributes to the overall cleanliness of the codebase but also ensures

its long-term maintainability and adaptability.

�Summary
In the preceding three chapters, we embarked on an immersive journey

of developing three essential features for our application, Bookish. Along

the way, we gained valuable insights into the practical implementation of

Acceptance Test–Driven Development (ATDD) in a real-world project.

We began by swiftly setting up the React environment, ensuring

a seamless development experience. Utilizing the mock server, we

successfully launched a mock service, enabling us to simulate various

scenarios for testing purposes.

With the aid of Cypress, we meticulously crafted acceptance tests,

forming the backbone of our testing strategy. By adhering to the classic

Red-Green-Refactor cycle, we adopted an iterative approach, ensuring

that our code passed the defined acceptance tests and refining it through

continuous refactoring. During the refactoring phase, we focused on

code smells, applying responsible code splitting, method extraction,

class renaming, and folder restructuring to improve code readability and

maintainability.

Furthermore, we explored extensions for json-server, enhancing our

testing capabilities by facilitating data preparation and cleanup before

and after test execution. This streamlined the test scenarios, making them

more readable, self-contained, and independent.

Finally, we discovered the power of refactoring Cypress commands

into meaningful functions, enhancing the overall readability and

comprehension of our test suite.

Chapter 8 Searching by Keyword

168

Through this chapter, we have not only acquired practical knowledge

of ATDD but also honed our skills in creating clean, maintainable code.

With our newfound understanding, we are equipped to tackle future

development challenges while upholding best practices in testing and

code organization.

Chapter 8 Searching by Keyword

169

CHAPTER 9

Introduction to State
Management
Welcome to the chapter on state management with Redux using @reduxjs/

toolkit. Here, we’ll explore how Redux can simplify and streamline your

React application’s state management. Throughout this chapter, we’ll

cover essential Redux concepts such as actions, reducers, and the Redux

store. We’ll focus on leveraging the features provided by @reduxjs/toolkit

to write clean and concise code.

You’ll learn how to define actions and reducers using the createSlice

function, which greatly simplifies the process. Additionally, we’ll dive into

handling asynchronous operations using createAsyncThunk, ensuring

smooth integration with APIs and data fetching.

Testing Redux slices is also a crucial part of the chapter. We’ll explore

how to write comprehensive tests using popular frameworks like Jest,

guaranteeing the reliability of your state management logic.

By the end of this chapter, you’ll have a solid understanding of state

management with Redux using @reduxjs/toolkit. You’ll be able to

efficiently handle complex state changes in your React applications,

resulting in more organized and maintainable code. Get ready to unlock

the power of Redux and elevate your state management game!

© Juntao Qiu 2023
J. Qiu, Test-Driven Development with React and TypeScript,
https://doi.org/10.1007/978-1-4842-9648-6_9

https://doi.org/10.1007/978-1-4842-9648-6_9

170

�State Management
Over time, frontend development has grappled with the intricate task

of synchronizing state across various components. Managing state in

scenarios like search boxes, tab statuses, and routing has proven to be

perplexing and demanding, despite the introduction of MVVM (Model

View View-Model) libraries like Backbone or the two-way data binding

offered by Angular. In the earlier days, the concept of “components” as we

know them today was absent, and only DOM (Document Object Model)

fragments existed within the jQuery realm.

However, in today’s web development landscape, we encounter

a whole new realm with increasingly complex interactions and data

transformations. Consequently, the approach to handling these

complexities has undergone significant transformations.

�A Typical Scenario of Building UI
Let’s take a look at the page shown in Figure 9-1 as an example.

Figure 9-1.  A network monitoring application

Chapter 9 Introduction to State Management

171

There is a graph component in the middle of the page and a tree

component on the right-hand side. When a node on the tree is clicked,

it should collapse or expand based on its previous status, and the status

change should be synchronized with the graph.

If you don’t use an external library, using customized DOM events

may cause a dead-loop – when you have to register a listener on graph to

listen to changes to the tree, also do the same thing to the tree. And when

an event is triggered, it will bounce back and forth between those two

components. And when you have more than just two components, things

will soon go south.

A more reliable method is to extract the underlying data and use the

Pub-Sub pattern: the tree and graph are all listening to changes in the data;

once the data changes, components should re-render themselves.

�Pub-Sub Pattern
The Publish-Subscribe (Pub-Sub) pattern is a messaging pattern

commonly used in software architectures to facilitate communication

between different components or modules. It provides a means for

decoupling the sender (publisher) and receiver (subscriber) of messages,

enabling them to interact without direct knowledge of each other.

In the Pub-Sub pattern, entities known as publishers generate

messages or events. These are dispatched to a centralized hub, and the

hub operates as a mediator, delivering these messages to all corresponding

subscribers that have indicated interest in these types of messages.

Subscribers, on the other hand, express their interest in specific types

of messages by subscribing to relevant topics or channels within the pub-

sub system. When a publisher sends a message to the pub-sub system, it

is then broadcasted to all subscribers who have expressed interest in that

particular topic.

Chapter 9 Introduction to State Management

172

The key advantage of the Pub-Sub pattern is its decoupling nature.

Publishers and subscribers can operate independently, without direct

dependencies on each other. This loose coupling enables better scalability,

as new publishers or subscribers can be added or removed dynamically

without affecting the overall system.

Additionally, the Pub-Sub pattern promotes flexibility and

extensibility. Publishers and subscribers can evolve independently,

making it easier to introduce new functionality or modify existing

components without disrupting the entire system.

By leveraging the Pub-Sub pattern, software architectures can

achieve loose coupling, scalability, and flexibility, enabling efficient

communication between components and enhancing the overall

resilience and maintainability of the system.

Implementations of this pattern in frontend pages are prevalent

nowadays. You can find it on almost every web page. You can implement

your own pub-sub library. However, you will likely find it tedious and hard

to maintain. Fortunately, we have other options.

When the underlying data is changed, either by a user event on the

browser, a timer, or an async service call, we need an easy way to manage

those changes and make sure the data model is always reflected to the

latest data across all the components.

�A Brief of Redux
Redux is a predictable state container for JavaScript applications. It provides

a way to manage and update the state of your application in a predictable

and centralized manner. It is often used in large-scale applications where

state management can become complex, but can be used in any application

where you want to have more control over how state is managed.

The main principle of using Redux is the separation of concerns

between the UI components and the application state. UI components

should only be concerned with rendering data, and not with managing it.

Chapter 9 Introduction to State Management

173

All state changes should be handled by Redux, and UI components should

be updated based on the changes in the state. This separation allows for a

more modular and reusable codebase and makes it easier to reason about

the state of the application.

Redux achieves this by having a single store that holds the state of the

entire application. This store can only be updated by dispatching actions,

which are objects that describe the changes to be made to the state. These

actions are handled by reducers, which are pure functions that take the

current state and an action as input and return a new state based on the

action. The updated state is then propagated to all the components that

depend on it, triggering a re-render of the UI.

It provides a simple and effective way to test and debug your

application, as well as track its state. Although it’s not specific to any

particular library or framework, it’s most commonly used in conjunction

with React.

�Three Principles of Redux

In Redux, there are three principles that form its foundation:

•	 All state is stored in a single global data source.

•	 State is immutable or read-only.

•	 Changes are made using pure functions.

Whenever a change occurs, such as a user clicking a button or

receiving data from a backend, an action is created in the form of a

JavaScript object that describes the change. This action then goes through

a reducer function, which specifies how the application state will change

in response to the action. The reducer function takes in the previous state

and the action and returns the new state. By following these principles,

testing and debugging become straightforward, as the state can be easily

tracked and traced.

Chapter 9 Introduction to State Management

174

Although Redux is not bound to any specific library or framework, it is

most used with React.

React and Redux work well together because React provides an

efficient way to render the view and Redux provides a simple and

predictable way to manage the application state. By using them together,

developers can build complex applications with ease and keep the

codebase organized and maintainable.

�Decoupling Data and View
If you take a close look at our useBooks hook, you will notice that it’s

actually doing a number of things:

const useBooks = () => {

 const [books, setBooks] = useState<Book[]>([]);

 const [loading, setLoading] = useState<boolean>(false);

 const [error, setError] = useState<boolean>(false);

 const [term, setTerm] = useState<string>('');

 useEffect(() => {

 const fetchBooks = async (term: string) => {

 setError(false);

 setLoading(true);

 try {

 �const response = await axios.get

(`http://localhost:8080/books?q=${term}&_sort=id`);

 setBooks(response.data);

 } catch (e) {

 setError(true);

 } finally {

 setLoading(false);

 }

 }

Chapter 9 Introduction to State Management

175

 fetchBooks(term);

 }, [term])

 return {

 loading,

 error,

 books,

 term,

 setTerm

 }

}

In the hook code

	 1.	 It makes a request for data to an external service.

	 2.	 It takes care of URL changes.

	 3.	 It manages several statuses, including loading

and error.

Some of those statuses will always be updated together, for example:

{

 books: [],

 loading: false,

 error: false

}

or

{

 error: true

}

Chapter 9 Introduction to State Management

176

These states undergo changes due to various factors. For instance,

network requests alter the loading and error states, user interactions on

the page determine the value of the “term” state, and the “books” state is

populated through asynchronous function calls.

By utilizing Redux, we can establish a global store that accurately

reflects the application state. Additionally, we employ reducers to handle

state modifications originating from different sources. When an action is

triggered within the UI, resulting in state modifications, the updated data is

propagated to the relevant components for re-rendering.

This is where the state management container plays a crucial

role. The container takes charge of essential tasks such as monitoring

changes, dispatching actions, reducing state, and broadcasting changes.

By abstracting these details, the container simplifies the overall state

management process, ensuring smooth synchronization and seamless

interaction between components.

�The Formula: view = f(state)
The formula view = f(state) represents the relationship between the

state and the view in a software application. It signifies that the view, or the

user interface, is determined by the current state of the application. As the

state changes, the view is updated accordingly to reflect the new state.

In this formula, f represents the function or logic that transforms the

state into the appropriate view representation. This function takes the

current state as input and produces the corresponding view output.

By adhering to this formula, developers can ensure that the user

interface accurately reflects the underlying state of the application. As

the state evolves, the view is dynamically updated, providing users with a

responsive and interactive experience.

Chapter 9 Introduction to State Management

177

The view = f(state) formula is a fundamental concept in reactive

and declarative programming paradigms, allowing for efficient and

maintainable UI development. It promotes a clear separation between

state management and view rendering, facilitating easier debugging,

testing, and future enhancements to the application.

const state = {

 books: [

 {

 'name': 'Refactoring',

 'id': 1,

 'description': 'Refactoring'

 },

 {

 'name': 'Domain-driven design',

 'id': 2,

 'description': 'Domain-driven design'

 },

 {

 'name': 'Building Microservices',

 'id': 3,

 'description': 'Building Microservices'

 }

],

 term: ''

}

When the user types Domain in the search box, the state

snapshot becomes

const state = {

 books: [

 {

Chapter 9 Introduction to State Management

178

 'name': 'Domain-driven design',

 'id': 2,

 'description': 'Domain-driven design'

 }

],

 term: 'Domain'

}

These two pieces of data (state) can represent the whole application

at a point. Since view = f(state), for any given state, the view is always

predictable, so the only thing the application developer cares about is how

to manipulate the data, as the UI will render automatically.

�Implementing State Management
�Environment Setup
Firstly, we need to add some packages to enable us to use redux:

npm install @reduxjs/toolkit react-redux --save

Historically, Redux requires very verbose and repetitive code. And then

the Redux team decided to wrap a few most common libraries together

and call it @reduxjs/toolkit.

@reduxjs/toolkit simplifies Redux development by providing

utilities, such as configureStore for easy store configuration and sensible

defaults. It introduces “slices” for concise reducer and action creation. It

handles immutable updates using immer and includes built-in support for

Redux DevTools Extension. Additional utilities like createAsyncThunk,

createSelector, and createEntityAdapter enhance functionality.

We can start with the state design.

Chapter 9 Introduction to State Management

179

Firstly, we can define a new type:

type AppStateType = {

 books: Book[];

 loading: boolean;

 error: boolean;

 term: string;

};

This type will be our application state, and initially we might have the

following data for initializing our application:

const initialState: AppStateType = {

 books: [],

 loading: false,

 error: false,

 term: "",

};

There aren’t any books in the page, both loading and error are defined

as false, and also there isn’t a keyword set. And at some point, we’ll need to

trigger an event to fetch data from the backend – and at the moment, that

is done by the useBooks hook.

�Define a Slice
With @reduxjs/toolkit, we can define a slice. A slice is a portion of the

Redux state that corresponds to a specific feature or domain within your

application. It encapsulates the state, actions, and reducers related to that

particular feature.

Chapter 9 Introduction to State Management

180

Create a file bookListSlice.ts as follows:

export const bookListSlice = createSlice({

 name: "books",

 initialState: initialState,

 reducers: {

 setTerm: (state, action) => {

 state.term = action.payload;

 },

 }

});

export const { setTerm } = bookListSlice.actions;

export default bookListSlice.reducer;

The code snippet defines a Redux slice for managing a list of

books. The slice is named “books” and has an initial state defined as

initialState.

Within the reducers object, there is a single action called “setTerm.”

This action is associated with a reducer function that takes the current

state and the action payload as parameters. When the “setTerm” action

is dispatched (being called in the UI, for example), it updates the term

property of the state to the value provided in the action payload.

The bookListSlice.actions object contains the action creators for

the defined actions. In this case, it includes the setTerm action creator. And

the bookListSlice.reducer represents the reducer function for the slice.

By exporting the setTerm action creator and the reducer function,

other parts of the application can import and use them to dispatch actions

and handle state updates related to the “books” slice.

Chapter 9 Introduction to State Management

181

�Fetching Data from Remote
There will be some changes needed in the container component.

So instead of using the useBooks hook for the book list, we will

need to define an async action in Redux. This can be done with the

createAsyncThunk API:

export const fetchBooks = createAsyncThunk<Book[], string>(

 "books/search",

 async (term: string = "") => {

 const response = await axios.get(

 `http://localhost:8080/books?q=${term}&_sort=id`

);

 return response.data;

 }

);

The function fetchBooks is using the createAsyncThunk function

provided by Redux Toolkit:

•	 It takes two generic type parameters: Book[] specifies

the type of the action payload, and string specifies the

type of the term parameter.

•	 The first argument to createAsyncThunk is the type of

the action, which is set to "books/search".

•	 The second argument is an async function that handles

the asynchronous logic. It receives the term parameter

and makes an HTTP GET request to fetch books

from the server using the provided term as a query

parameter.

•	 The response data is then returned as the fulfilled value

of the action.

Chapter 9 Introduction to State Management

182

There will be three possible results from this action: a fulfilled promise

with a book list, a rejected state when something went wrong, and a

pending state indicating the ongoing process.

We’ll need to expand the bookListSlice with a new section called

extraReducers:

export const bookListSlice = createSlice({

 //...

 extraReducers: (builder) => {

 builder.addCase(fetchBooks.fulfilled, (state, action) => {

 state.books = action.payload;

 state.loading = false;

 });

 builder.addCase(fetchBooks.pending, (state) => {

 state.loading = true;

 });

 builder.addCase(fetchBooks.rejected, (state) => {

 state.error = true;

 state.loading = false;

 });

 },

});

And for the preceding code snippet

•	 The extraReducers field allows you to define

additional reducer logic that responds to specific

action types.

•	 Within the extraReducers, builder is used to add case

reducers for different action types.

•	 The addCase function is called for each action type,

followed by the corresponding case reducer function.

Chapter 9 Introduction to State Management

183

•	 In this example, fetchBooks.fulfilled is an action

type that represents a successful completion of the

fetchBooks async action.

•	 The case reducer for fetchBooks.fulfilled updates

the state by assigning the action.payload (the

fetched books) to the books property and sets loading

to false.

•	 Similarly, there are case reducers defined for

fetchBooks.pending and fetchBooks.rejected

actions, which update the state accordingly based

on the pending and rejected states of the fetchBooks

async action.

By including these extra reducers, Redux will automatically handle

the asynchronous action defined in fetchBooks. The state updates for

different stages of the async action (such as pending, fulfilled, or rejected)

will be taken care of by Redux. This allows us to conveniently access and

utilize this state within our application.

�Define the Store
In a store, you can combine many slices together to configure the global

state (in file store.ts):

import { configureStore } from '@reduxjs/toolkit'

import bookListReducer from './bookListSlice';

const store = configureStore({

 reducer: {

 list: bookListReducer

 }

});

export default store;

Chapter 9 Introduction to State Management

184

The code snippet demonstrates the configuration and setup of a Redux

store using @reduxjs/toolkit. Let’s break down the code:

	 1.	 The configureStore function is imported from

@reduxjs/toolkit. It is used to create and configure

the Redux store.

	 2.	 The bookListReducer (imported from

'./bookListSlice') is passed as the reducer for the

"app" key in the reducer object.

	 3.	 The configureStore function is called with the

reducer configuration to create the Redux store.

By configuring the store in this way, the Redux store is set up with a

single reducer (bookListReducer) under the "app" key.

And also we’ll need to export the types for React components to

reference, allowing for type-safe usage of the Redux store and actions

throughout the application:

export type RootState = ReturnType<typeof store.getState>

export type AppDispatch = typeof store.dispatch;

Once we have the store configured, we can then use the store in the

application root. That means apart from the Router we introduced in the

previous chapter, we’ll wrap the whole application with Provider from

react-redux. And the only required prop for the provider is the store, so

that all the children nodes can access the store with hooks:

import { Provider } from "react-redux";

import store from "./store";

const root = ReactDOM.createRoot(

 document.getElementById('root') as HTMLElement

);

Chapter 9 Introduction to State Management

185

root.render(

 <Provider store={store}>

 <Router>

 <App/>

 </Router>

 </Provider>

);

Fantastic, now we have all the necessary parts ready. Our application is

still functioning at the moment, the hooks are used, and there is an empty

store defined. The tests are all passing as well.

�Migrate the Application
Before integrating Redux into our container component, we need to make

some modifications to the tests. This is necessary because the hooks used

in the component rely on accessing a provider to access the state:

import { Provider } from "react-redux";

import store from "./store";

const customRender = (component: JSX.Element) => {

 return {

 ...render(

 <Provider store={store}>

 <Router>

 {component}

 </Router>

 </Provider>

)

 }

}

Chapter 9 Introduction to State Management

186

And the App.test.tsx will be updated to

it('renders bookish', () => {

 customRender(<App />);

 const heading = screen.getByText(/Bookish/i);

 expect(heading).toBeInTheDocument();

});

�Book List Container
import { useDispatch, useSelector } from "react-redux";

import { fetchBooks } from "../bookListSlice";

import type { AppDispatch, RootState } from "../store";

const BookListContainer = () => {

 const { term, setTerm } = useBooks();

 const { books } = useSelector((state: RootState) => ({

 books: state.list.books,

 }));

 const dispatch = useDispatch<AppDispatch>();

 useEffect(() => {

 dispatch(fetchBooks(""));

 }, [dispatch]);

 return (

 <>

 <SearchBox term={term} onSearch={setTerm} />

 <BookList books={books} />

 </>

);

};

export default BookListContainer;

Chapter 9 Introduction to State Management

187

The updated code snippet shows the BookListContainer component

that utilizes Redux with React:

•	 The useSelector hook is used to select the books state

from the Redux store. The selected state is assigned to

the books variable.

•	 The useDispatch hook is used to get the dispatch

function, typed with the AppDispatch type.

•	 An effect is used with the useEffect hook to dispatch

the fetchBooks action with an empty string as the term.

This will trigger the async action to fetch books when

the component mounts.

Note here the useSelector hook from “react-redux” allows React

components to select and retrieve specific data from the Redux store. It

automatically subscribes to changes in the selected data and triggers re-

rendering when the data changes.

The preceding code mixes the useBooks hook and useSelector, which

should be avoided as we have moved the logic from hook to Redux.

�Refine the SearchBox
The change to the SearchBox component is a bit different. We need to

trigger the setTerm action from SearchBox, so it’s kind of making the

SearchBox know the existence of the outside world.

And we should consider modifying the tests first. Let’s define a

mockStore so we can dispatch action to and verify the state against:

import { configureStore } from "@reduxjs/toolkit";

import bookListReducer from "../bookListSlice";

Chapter 9 Introduction to State Management

188

const mockStore = configureStore({

 reducer: {

 list: bookListReducer,

 },

});

And then in each test, we’ll wrap our SearchBox component around a

provider with the mockStore passed in:

it("renders input", () => {

 const mockStore = configureStore({

 reducer: {

 list: bookListReducer,

 },

 });

 render(

 <Provider store={mockStore}>

 <SearchBox />

 </Provider>

);

 const input = screen.getByRole("textbox");

 act(() => {

 userEvent.type(input, "domain");

 });

 const state = mockStore.getState();

 expect(state.list.term).toEqual("domain");

});

Now let’s make sure the SearchBox is using our new Redux to trigger

reducers:

const SearchBox = () => {

 const dispatch = useDispatch<AppDispatch>();

Chapter 9 Introduction to State Management

189

 const performSearch = (event: any) => {

 const value = event.target.value;

 if (value && value.trim().length === 0) {

 return;

 }

 dispatch(setTerm(value));

 dispatch(fetchBooks(value));

 };

 return (

 <TextField

 label="Search"

 data-test="search"

 onChange={performSearch}

 margin="normal"

 variant="outlined"

 />

);

};

Note here when the keyword is not empty, we’ll dispatch two actions:

setTerm and fetchBooks. The fetchBooks is an async action, and as

mentioned earlier, Redux will handle all this and manipulate loading and

error correspondingly.

�Test Individual Reducers
You may have observed that the previous tests resemble integration tests

as they interact with various components of the application, including

state management, UI components, and reducers. However, there are

scenarios where you may prefer to focus on lower-level tests, specifically

unit tests.

Chapter 9 Introduction to State Management

190

In these cases, the emphasis is on testing the logic within reducers

without considering the UI aspect:

import bookListReducer, { setTerm } from "./bookListSlice";

describe("bookListReducer", () => {

 const initialState = {

 term: "",

 books: [],

 loading: false,

 error: false,

 };

 it("should handle setTerm action", () => {

 const action = setTerm("Refactoring");

 const newState = bookListReducer(initialState, action);

 expect(newState.term).toEqual("Refactoring");

 });

});

This test case ensures that the bookListReducer handles the setTerm

action correctly by updating the term property in the state with the

provided payload.

�Book Details Slice
Similarly to the book list slice, we can define a separate slice for book

details:

export const fetchBookDetails = createAsyncThunk<Book, string>(

 "bookDetails/fetch",

 async (id) => {

Chapter 9 Introduction to State Management

191

 �const response = await axios.get(`http://localhost:8080/

books/${id}`);

 return response.data;

 }

);

Also, we need to define the slice data type, as well as the slice itself:

type BookDetailType = {

 book: Book;

 loading: boolean;

 error: boolean;

};

const initialState: BookDetailType = {

 book: {

 id: 0,

 name: "",

 },

 loading: false,

 error: false,

};

const bookDetailsSlice = createSlice({

 name: "bookDetails",

 initialState: initialState,

 reducers: {},

 extraReducers: (builder) => {

 builder

 .addCase(fetchBookDetails.pending, (state) => {

 state.loading = true;

 state.error = false;

 })

Chapter 9 Introduction to State Management

192

 .addCase(fetchBookDetails.fulfilled, (state, action) => {

 state.book = action.payload;

 state.loading = false;

 })

 .addCase(fetchBookDetails.rejected, (state, action) => {

 state.loading = false;

 state.error = true;

 });

 },

});

Once we have the reducers defined and exported, in the store.ts we

can merge these two reducers together:

import { configureStore } from '@reduxjs/toolkit'

import bookListReducer from './bookListSlice';

import bookDetailsReducer from './bookDetailSlice';

const store = configureStore({

 reducer: {

 list: bookListReducer,

 detail: bookDetailsReducer

 }

});

And the corresponding BookDetailsContainer component will be

modified into something like

const BookDetailContainer = () => {

 const { id = "" } = useParams<string>();

 const { book } = useSelector((state: RootState) => ({

 book: state.detail.book,

 }));

Chapter 9 Introduction to State Management

193

 const dispatch = useDispatch<AppDispatch>();

 useEffect(() => {

 dispatch(fetchBookDetails(id));

 }, [dispatch]);

 return <BookDetail book={book} />;

};

export default BookDetailContainer;

�Do You Need a State Management Library?
When considering whether you need a state management library for

your application, it’s essential to evaluate the complexity of your state

management requirements. State management libraries like Redux can

be beneficial for large-scale applications with complex state interactions,

where maintaining data consistency and managing state across multiple

components becomes challenging.

If your application involves a shared state that needs to be

accessed and modified by multiple components, or if you find yourself

passing props through multiple levels of component hierarchy, a

state management library can help simplify your code and improve

maintainability.

State management libraries shine when handling scenarios such as

caching data, managing global application state, handling asynchronous

actions, or implementing undo/redo functionality. These libraries offer

tools and patterns for organizing, updating, and accessing state in a

predictable and centralized manner.

On the other hand, for smaller applications with simpler state needs,

introducing a state management library may add unnecessary complexity.

React’s built-in state management capabilities, like component state and

context API, might be sufficient to handle the state requirements.

Chapter 9 Introduction to State Management

194

For applications like Bookish, as we have demonstrated thus far, a state

management library may not be necessary. Utilizing hooks and, at most,

the context API can provide sufficient state management capabilities.

However, it is crucial to understand the advantages and considerations of

using a state management library when the need arises, as well as how to

effectively test the relevant components in an application.

Many legacy systems currently employ Redux as their state

management solution, and it offers valuable protection against errors

through comprehensive test coverage. While Redux can be a powerful tool,

it is important to assess whether its implementation is warranted based on

the specific requirements and complexity of your project. By weighing the

benefits and trade-offs, you can make an informed decision about when

and where to leverage a state management library like Redux.

�Summary
Throughout this chapter, we successfully integrated Redux into our

application, replacing the useBooks custom hook with Redux state

management. This transition allowed us to centralize and manage our

application’s state more efficiently.

We refactored the SearchBox and BookListContainer components

to utilize Redux by dispatching actions and accessing state through the

useSelector and useDispatch hooks. This restructuring improved the

overall organization and maintainability of our codebase.

In addition, we ensured the reliability of our Redux implementation

by writing comprehensive tests. By covering a wide range of scenarios,

we confirmed that our actions, reducers, and state management logic

functioned correctly. All tests passed successfully, giving us confidence in

the stability of our application.

Chapter 9 Introduction to State Management

195

By adopting Redux, we achieved a more structured and scalable

approach to state management. Separating concerns between components

and state management logic led to cleaner code and improved

maintainability. With Redux, we can confidently handle complex state

changes and provide a better user experience in our React application.

In conclusion, we successfully integrated Redux into our project,

refactored components to utilize Redux state management, and validated

our implementation with comprehensive tests. With a robust Redux

foundation in place, our application is now equipped to handle complex

state requirements and adapt to future growth and enhancements.

Chapter 9 Introduction to State Management

197

CHAPTER 10

Book Reviews
Welcome to the chapter on implementing review functionality in our

application. In this chapter, we will explore how to enable users to

create and update reviews for books. Reviews provide valuable insights

and feedback, allowing users to share their opinions and experiences

with others.

To achieve this, we will make changes to both the backend and

frontend components. We will modify the backend using json-server to

support the creation and update of reviews as subresources of books. This

will involve defining routes and handling requests accordingly.

On the frontend, we will integrate the review functionality into our

Redux store by adding a new slice. This slice will contain the necessary

actions and reducers to manage review-related state, such as creating,

updating, and retrieving reviews.

Throughout the chapter, we will focus on writing tests to ensure the

correctness and reliability of our review implementation. We will cover

various testing techniques, including unit tests for actions and reducers, as

well as integration tests to verify the interaction between components.

By the end of this chapter, you will have a solid understanding of how

to implement review functionality, test your code effectively, and enable

users to provide valuable feedback on books within your application. Let’s

dive in and get started!

In any real-world project, you usually have to deal with some type of

resource management. An advertising management system manages a

schedule or a campaign by creating, modifying, or deleting items under

© Juntao Qiu 2023
J. Qiu, Test-Driven Development with React and TypeScript,
https://doi.org/10.1007/978-1-4842-9648-6_10

https://doi.org/10.1007/978-1-4842-9648-6_10

198

some business restriction. An HR system would help HR to manage

employee records by creating (when the company has new hires),

modifying (being promoted), and deleting (retiring). If you look at the

problem those systems are trying to solve, you will find a similar pattern:

they’re all applying CRUD (Create, Read, Update, Delete) operations on

some resources.

However, not all systems have to involve all four operations; for a

critical system, no data will be deleted – the programmer will just set a flag

in the record to mark them as deleted. The records are still there, but the

user cannot retrieve them from the GUI anymore.

In this chapter, we’ll learn how to implement a classic set of CRUD

operations on the review resource by extending our application bookish,

with ATDD applied of course.

�Business Requirements
The book detail page showcases important details such as the book’s title,

description, and cover image. However, to enrich the user experience and

provide deeper insights, we want to integrate user reviews. Reviews offer

valuable perspectives from readers, expressing their opinions about the

book. These reviews can vary from positive to negative, often accompanied

by ratings, enabling users to assess the overall reception and quality of

the book.

Let’s start with the simplest scenario when there are no reviews. We

need to render an empty container – we’ll call it reviews-container.

�Start with an Empty List
describe("ReviewList", () => {

 it("renders an empty list", () => {

 const reviews = [

Chapter 10 Book Reviews

199

 {

 id: 1,

 bookId: 1,

 name: "Juntao Qiu",

 date: "2023/06/01",

 �content: "Excellent work, really impressed by your

efforts",

 },

];

 render(<ReviewList reviews={reviews} />);

 �expect(screen.getByTestId("reviews-container")).

toBeInTheDocument();

 });

});

It should be simple to make the test pass:

type Review = {

 id: number;

 bookId: number;

 name: string;

 date: string;

 content: string;

}

const ReviewList = ({reviews}: {reviews: Review[]}) => {

 return <div data-testid="reviews-container" />

}

export default ReviewList;

Chapter 10 Book Reviews

200

�Rendering a Static List
Our second test case can involve some static data:

it("renders a list when data is passed", () => {

 const reviews = [

 {

 id: 1,

 bookId: 1,

 name: "Juntao Qiu",

 date: "2023/06/21",

 �content: "Excellent work, really impressed by your

efforts",

 },

 {

 id: 2,

 bookId: 1,

 name: "Abruzzi Kim",

 date: "2023/06/22",

 content: "What a great book",

 },

];

 render(<ReviewList reviews={reviews} />);

 const items = screen.getAllByTestId("review");

 expect(items.length).toBe(2);

});

Here, we are demonstrating how to use the component from the

outside (pass in an array of reviews, each of which has fields for name, date,

and content). It would be possible for other programmers to reuse our

component without looking into our implementation.

Chapter 10 Book Reviews

201

A simple map should work for us. Since the map requires a unique

identity for the key attribute, let’s combine the name and date to form a

key; in the following section, we will create an id when we integrate with

the backend API.

const ReviewList = ({ reviews }: { reviews: Review[] }) => {

 return (

 <div data-testid="reviews-container">

 {reviews.map((review) => (

 �<div data-testid="review" key={review.id}>{review.

content}</div>

))}

 </div>

);

};

�Use the Review Component in BookDetail
To kick off our first integration, we’ll begin by implementing the test for the

integration between ReviewList and BookDetail. As you may have already

gathered, our approach follows the test-first methodology.

We can add a new test case in BookDetail.test.tsx as we want to

verify if the BookDetail has a ReviewList on it:

it("renders reviews", () => {

 const props = {

 book: {

 id: 1,

 name: "Refactoring",

 description:

 �"Martin Fowler's Refactoring defined core ideas and

techniques...",

 reviews: [

Chapter 10 Book Reviews

202

 {

 id: 1,

 bookId: 1,

 name: "Juntao",

 date: "2023/06/21",

 �content: "Excellent work, really impressed by your

efforts",

 },

],

 },

 };

 render(<BookDetail {...props} />);

 const reviews = screen.getAllByTestId("review");

 expect(reviews.length).toBe(1);

 expect(reviews[0].innerHTML).toEqual(

 "Excellent work, really impressed by your efforts"

);

});

In the implementation phase, we introduce the ReviewList

component, which takes the reviews attribute as a prop. With the power of

componentization, this integration becomes straightforward and requires

minimal additional code:

const BookDetail = ({ book }: { book: Book }) => {

 return (

 <div className="detail">

 <h2 className="book-title">{book.name}</h2>

 �<p className="book-description" data-testid="book-

description">

 {getDescriptionFor(book)}

 </p>

Chapter 10 Book Reviews

203

 {book.reviews && <ReviewList reviews={book.reviews} />}

 </div>

);

};

�Fulfill a Book Review Form
We can generate some static data to display in the BookDetail component,

but it would be better if we can show some real data from the end user. We

need a simple form for the user to communicate their point of view about

the book. For now, we can provide two input boxes and a submit button.

The first input is for the user’s name (or email address), and the second (a

textarea) is used for the review content.

We can add a new test case in the BookDetail component:

it("renders review form", () => {

 const props = {

 book: {

 id: 1,

 name: "Refactoring",

 description:

 �"Martin Fowler's Refactoring defined core ideas and

techniques...",

 },

 };

 render(<BookDetail {...props} />);

 const nameInput = screen.getByTestId("name");

 const contentInput = screen.getByTestId("content");

 const button = screen.getByTestId("submit");

Chapter 10 Book Reviews

204

 expect(nameInput).toBeInTheDocument();

 expect(contentInput).toBeInTheDocument();

 expect(button).toBeInTheDocument();

});

Make sure the <form> is displayed under the description section and

above reviews. The TextField and Button components can both be

imported from Material UI:

import { Button, TextField } from "@mui/material";

Now we have to connect it to state:

const BookDetail = ({ book }: { book: Book }) => {

 const [name, setName] = useState<string>("");

 const [content, setContent] = useState<string>("");

 const dispatch = useDispatch<AppDispatch>();

 return (

 <div className="detail">

 <h2 className="book-title">{book.name}</h2>

 �<p className="book-description" data-testid="book-

description">

 {getDescriptionFor(book)}

 </p>

 <form noValidate autoComplete="off">

 <TextField

 value={name}

 onChange={(e) => setName(e.target.value)}

 />

 <TextField

 data-testid="content"

Chapter 10 Book Reviews

205

 value={content}

 onChange={(e) => setContent(e.target.value)}

 />

 <Button

 data-testid="submit"

 >

 Submit

 </Button>

 </form>

 {book.reviews && <ReviewList reviews={book.reviews} />}

 </div>

);

};

To ensure data persistence, we need to make corresponding changes

in the backend service. This may involve modifying the API endpoints or

adding new endpoints specifically for handling review data. By aligning the

frontend and backend, we can establish a seamless connection and ensure

the successful storage and retrieval of review data.

�End-to-End Test
As you may have observed, our approach in this function began with the

unit test of the ReviewList component. This choice was influenced by

the static nature of the changes, as there were no behavioral interactions

involved at this stage. In such cases, you can opt to start either from

the top with an end-to-end test or from the bottom with the individual

component. Personally, I find it beneficial to begin with the component

itself as it allows for more rapid feedback, facilitating the implementation

process.

Chapter 10 Book Reviews

206

The end-to-end test can be summarized as follows: navigate to the

detail page, locate the input fields, enter relevant content, and click the

submit button. Upon completion, we anticipate that the submitted content

will be displayed on the page.

it('Write a review for a book', () => {

 gotoNthBookInTheList(0);

 checkBookDetail('Refactoring');

 cy.get('input[name="name"]').type('Juntao Qiu');

 cy.get('textarea[name="content"]').type('Excellent work!');

 cy.get('button[name="submit"]').click();

 �cy.get('div[data-test="reviews-container"] .review').

should('have.length', 1);

});

The test will fail after the click, as it neither sends the data to the server

nor receives a response and re-renders (Figure 10-1).

Figure 10-1.  The cypress test is now failing

Chapter 10 Book Reviews

207

To make the test pass, we’ll need to send a post request to the backend

and then refresh the page to get the latest data for that particular book. We

can start by adding a new redux slice.

�Define a Review Slice
We have learned that all network activity and other chores are handled by

actions in redux. So let’s first define an action to create a review:

type AddReviewRequest = {

 id: number;

 name: string;

 content: string;

};

export const addReview = createAsyncThunk<Review,

AddReviewRequest>(

 "reviews/addReview",

 async ({ id, name, content }: AddReviewRequest) => {

 try {

 const response = await axios.post(

 `http://localhost:8080/books/${id}/reviews`,

 {

 name,

 content,

 }

);

 return response.data;

 } catch (error) {

 throw error;

 }

 }

);

Chapter 10 Book Reviews

208

In this code snippet, we have the definition of an async thunk

addReview using createAsyncThunk from Redux Toolkit. It takes an

AddReviewRequest object as its first parameter, representing the required

data to add a review.

The AddReviewRequest type specifies the shape of the object, including

properties such as id (book ID), name (reviewer’s name), and content

(review content).

Within the addReview async thunk, an axios.post request is made

to the specified URL endpoint (http://localhost:8080/books/${id}/

reviews) with the provided name and content data. If the request is

successful, the response data is returned.

The async thunk is created with a specific type annotation using

<Review, AddReviewRequest>. This signifies that the fulfilled action of

addReview will return a value of type Review, representing the newly added

review object.

In case of any errors during the API call, an error handling block is

included to catch and handle any potential exceptions. The throw error

statement rethrows the error to propagate it further if necessary.

By utilizing createAsyncThunk and defining the addReview async

thunk, you can easily handle the asynchronous operation of adding

a review and manage the associated state updates within your Redux

application.

We’re assuming that when we POST some data to the endpoint http://

localhost:8080/books/1/reviews, a new review will be created for the

book with id 1:

{

 "name": "Juntao Qiu",

 "content": "Excellent work!"

}

Chapter 10 Book Reviews

209

Then we add an onClick event handler in the form in the BookDetail

component:

<Button

 variant='contained'

 color='primary'

 name='submit'

 �onClick={() => dispatch(addReview({ id: book.id, name,

content }))}

>

 Submit

</Button>

The unit tests for BookDetail are now failing because useDispatch can

only be used within a Provider. We can fix that by

import { Provider } from "react-redux";

import store from "../redux/store";

const renderWithProvider = (component: JSX.Element) => {

 return {

 ...render(<Provider store={store}>{component}</Provider>),

 };

};

and use renderWithProvider wherever render is being used:

renderWithProvider(<BookDetail {...props} />);

�Adjust the Stub Server for Book Reviews
We have been utilizing json-server as a convenient tool for our backend

API needs. To align with our new requirement, we need to customize it

further. Specifically, we want to establish a relationship between review

Chapter 10 Book Reviews

210

and book by treating review as a subresource of a book. This enables us to

access all the reviews associated with a specific book by making a request

to /books/1/reviews.

Furthermore, we aim to include all the reviews as embedded

resources within the /books/1 response. This simplifies the rendering

process of the book detail page. To achieve this, we must define a

corresponding route in json-server with the following configuration:

server.post('/books/:id/reviews', (req, res) => {

 const { id } = req.params;

 const { name, content } = req.body;

 �const book = router.db.get('books').find({ id:

parseInt(id) }).value();

 if (book) {

 if(!book.reviews) {

 book.reviews = [];

 }

 �const review = { id: book.reviews.length+1, bookId:

parseInt(id), name, content };

 book.reviews.push(review);

 router.db.write();

 res.status(201).json(review);

 } else {

 res.status(404).json({ error: 'Book not found' });

 }

});

Chapter 10 Book Reviews

211

The preceding code snippet is a custom route handler for the

POST /books/:id/reviews endpoint in json-server. It performs the

following steps:

	 1.	 Extracts the id, name, and content from the request

parameters and body

	 2.	 Retrieves the corresponding book based on the id

from the books collection in the JSON file

	 3.	 If the book exists, generates a new ID for the review

and creates a review object with the provided details

	 4.	 Checks if the book has a reviews array and

initializes it if it doesn’t

	 5.	 Adds the new review to the book’s reviews array

	 6.	 Writes the updated data back to the JSON file

	 7.	 Sends a response with the newly created review

if successful or an error message if the book is

not found

Note that to encode the json object from the request body, we’ll need

a middleware body-parser. So in the stub server folder, we can install

the body-parser package first and then make the following changes in

server.js:

const bodyParser = require('body-parser');

server.use(bodyParser.json());

server.use(bodyParser.urlencoded({ extended: true }));

Whenever you access /books/1, it returns all the reviews along with

the response. For example, if we send a request like this through curl in the

command line:

curl http://localhost:8080/books/1

Chapter 10 Book Reviews

212

we would get the response like

{

 "name": "Refactoring",

 "id": 1,

 �"description": "Martin Fowler's Refactoring defined core

ideas...",

 "reviews": [

 {

 "id": 1,

 "bookId": 1,

 "name": "Juntao",

 "content": "Great book!"

 }

]

}

Great work! Also, when we send POST request with a review data to

http://localhost:8080/books/1/reviews, it will create a review under

the book with id 1. Now, we can create the review via the form shown in

Figure 10-2.

Figure 10-2.  The stub server is supporting add reviews

Chapter 10 Book Reviews

213

Of course, we will need to refresh the page after the submission to see

the newly created review:

const dispatch = useDispatch<AppDispatch>();

const handleSubmit = () => {

 dispatch(addReview({ id: book.id, name, content }));

 dispatch(fetchBookDetails(book.id));

};

//...

<Button onClick={handleSubmit}>Submit</Button>

//...

The useDispatch hook is used to access the Redux store’s dispatch

function. When the submit button is clicked (onClick event), the

addReview action is dispatched with the book ID, name, and content.

Additionally, the fetchBookDetails action is dispatched to retrieve the

updated book details.

Then we can use the afterEach to do all of the cleanup, just like before:

afterEach(() => {

 cy.request('DELETE', 'http://localhost:8080/books/1/reviews');

})

And surely we need to define a new endpoint in our stub server:

server.delete('/books/:id/reviews', (req, res) => {

 const { id } = req.params;

 �const book = router.db.get('books').find({ id:

parseInt(id) }).value();

 book.reviews = [];

 router.db.write();

 res.sendStatus(204);

});

Chapter 10 Book Reviews

214

It deletes all reviews associated with a specific book by setting the

reviews property of the book to an empty array. Now we don’t have to

worry about a single failing test causing issues for another test.

�Refactoring
We have now finished implementing the Review creation and retrieval. Our

test coverage remains high, which is great. With those tests in place, we can

refactor confidently and fearlessly. For the BookDetail component, the

form is self-contained and should have its own file:

const ReviewForm = ({ book }: { book: Book }) => {

 const [name, setName] = useState<string>("");

 const [content, setContent] = useState<string>("");

 const dispatch = useDispatch<AppDispatch>();

 const handleSubmit = () => {

 dispatch(addReview({ id: book.id, name, content }));

 dispatch(fetchBookDetails(book.id));

 };

 return (

 <form noValidate autoComplete="off">

 <TextField

 data-testid="name"

 value={name}

 onChange={(e) => setName(e.target.value)}

 />

 <TextField

 data-testid="content"

 value={content}

 onChange={(e) => setContent(e.target.value)}

 />

Chapter 10 Book Reviews

215

 <Button

 data-testid="submit"

 onClick={() => handleSubmit()}

 >

 Submit

 </Button>

 </form>

);

};

export default ReviewForm;

Note here I have removed some cumbersome attributes for the

TextField and Button. After performing the extraction, the BookDetail

component becomes more streamlined and concise:

import ReviewForm from "./ReviewForm";

const BookDetail = ({ book }: { book: Book }) => {

 return (

 <div className="detail">

 <h2 className="book-title">{book.name}</h2>

 �<p className="book-description" data-testid="book-

description">

 {getDescriptionFor(book)}

 </p>

 <ReviewForm book={book} />

 {book.reviews && <ReviewList reviews={book.reviews} />}

 </div>

);

};

Chapter 10 Book Reviews

216

And for the functional test in cypress, we can extract some helper

functions to simplify the test case:

it('Write a review for a book', () => {

 gotoNthBookInTheList(0);

 checkBookDetail();

 composeReview('Juntao Qiu', 'Excellent work!');

 checkReview();

});

Functions composeReview and checkReview are defined as

const composeReview = (name: string, content:string) => {

 cy.get('input[name="name"]').type(name);

 cy.get('textarea[name="content"]').type(content);

 cy.get('button[name="submit"]').click();

};

const checkReview = () => {

 �cy.get('div[data-testid="reviews-container"] .review').

should('have.length', 1);

}

�Add More Fields
If you take a close look at the Review, you’ll find some important

information missing: username and time of creation. We need to complete

those fields:

it("renders book review detailed information", () => {

 const reviews = [

 {

 id: 1,

 bookId: 1,

Chapter 10 Book Reviews

217

 name: "Juntao Qiu",

 date: "2023/06/21",

 �content: "Excellent work, really impressed by your

efforts",

 },

];

 render(<ReviewList reviews={reviews} />);

 �expect(screen.getByTestId("name")).toHaveTextContent

("Juntao Qiu");

 �expect(screen.getByTestId("review-content")).toHaveText

Content(

 "Excellent work, really impressed by your efforts"

);

});

The implementation should be effortless:

{reviews.map((review) => (

 <div data-testid="review" className="review" key={review.id}>

 <div data-testid="name">{review.name}</div>

 <p data-testid="review-content">{review.content}</p>

 </div>

))}

As the code in map keeps growing, we can extract it to a separate

file – Review:

const ReviewItem = ({review}: { review: Review }) => {

 return (

 �<div data-testid="review" className="review"

key={review.id}>

 <div data-testid="name">{review.name}</div>

 <p data-testid="review-content">{review.content}</p>

Chapter 10 Book Reviews

218

 </div>

);

};

And use it as a pure presentational component:

import ReviewItem from "./ReviewItem";

const ReviewList = ({ reviews }: { reviews: Review[] }) => {

 return (

 <div data-testid="reviews-container">

 {reviews.map((review) => (

 <ReviewItem key={review.id} review={review} />

))}

 </div>

);

};

Since all the logic for rendering a review has been moved to its own

component, we can move the corresponding test as well:

describe("ReviewItem", () => {

 it("renders", () => {

 const review = {

 id: 1,

 bookId: 1,

 name: "Juntao Qiu",

 date: "2023/06/21",

 �content: "Excellent work, really impressed by your

efforts",

 };

 render(<ReviewItem review={review} />);

Chapter 10 Book Reviews

219

 �expect(screen.getByTestId("name")).toHaveTextContent

("Juntao Qiu");

 �expect(screen.getByTestId("review-content")).toHaveText

Content(

 "Excellent work, really impressed by your efforts"

);

 });

})

By following this approach, testing different data variations becomes

simpler. For instance, if there is a requirement to display the date in a

relative format, such as “Posted 5 mins ago” or “Posted yesterday,” instead

of an absolute date, there is no need to modify the ReviewList component.

All tests have successfully passed, indicating the robustness of our

code, as shown in Figure 10-3.

Figure 10-3.  All tests are passing after all code changes

Chapter 10 Book Reviews

220

It is now more streamlined, with each component having a clear and

well-defined purpose. The comprehensive test coverage ensures that

any refactoring or modifications won’t inadvertently introduce errors.

We can proceed confidently, knowing that our code is both reliable and

maintainable.

�Review Editing
The Review component now provides basic presentation. However, in

the real world, the user could have left a typo in their review or would

completely rewrite the content. We need to allow the user to edit the

Review they have already posted.

We need to add an Edit button that will change to a Submit button

when clicked (waiting for the user to submit). When a user clicks Submit,

the text turns to Edit again. So the first test could be

it('edit a review item', () => {

 const review = {

 id: 1,

 bookId: 1,

 name: "Juntao Qiu",

 date: "2023/06/21",

 �content: "Excellent work, really impressed by your

efforts",

 };

 render(<ReviewItem review={review} />);

 const button = screen.getByRole('button');

 expect(button).toHaveTextContent('Edit');

Chapter 10 Book Reviews

221

 act(() => {

 userEvent.click(button);

 })

 expect(button).toHaveTextContent('Submit');

})

By using userEvent.click, we can simulate the click event on the Edit

button and verify the text changes on the button. We can achieve that by

introducing state to the component:

const [editing, setEditing] = useState(false);

All we need to do is toggle the status of editing. For rendering, we can

decide which text to display by the editing state like this:

const ReviewItem = ({ review }: { review: Review }) => {

 const [editing, setEditing] = useState<boolean>(false);

 return (

 �<div data-testid="review" className="review"

key={review.id}>

 <div data-testid="name">{review.name}</div>

 <p data-testid="review-content">{review.content}</p>

 <Button

 onClick={() => setEditing(!editing)}

 >

 {!editing ? "Edit" : "Submit"}

 </Button>

 </div>

);

};

Chapter 10 Book Reviews

222

We’d like a textarea to show up when the user clicks Edit and copy all

the review content into the textarea for editing:

it("copy content to a textarea for editing", () => {

 const review = {

 id: 1,

 bookId: 1,

 name: "Juntao Qiu",

 date: "2023/06/21",

 content: "Excellent work, really impressed by your efforts",

 };

 render(<ReviewItem review={review} />);

 const button = screen.getByRole("button");

 const content = screen.getByTestId("review-content");

 expect(content).toBeInTheDocument();

 act(() => {

 userEvent.click(button);

 });

 const editingContent = screen.getByRole("textbox");

 expect(content).not.toBeInTheDocument();

 expect(editingContent).toBeInTheDocument();

 expect(editingContent).toHaveValue(

 "Excellent work, really impressed by your efforts"

);

});

To implement that, we have to maintain that content in state as well:

const [content, setContent] = useState<string>(review.content);

Chapter 10 Book Reviews

223

And render the textarea and static text based on the editing state:

{!editing ? (

 <p data-testid="review-content">{review.content}</p>

) : (

 <TextField

 name="content"

 label="Content"

 margin="normal"

 variant="outlined"

 multiline

 value={content}

 onChange={(e) => setContent(e.target.value)}

 />

)}

The Review component now has two distinct states: “viewing” and

“editing,” which can be toggled by clicking the “edit” button. In order to

persist the updated content to the backend, we need to define an action.

�Save a Review – Action and Reducer
Just like the process for creating a review, to save a review we need to

send a request to the backend. The good news is that json-server

already provides this functionality. We send a PUT request to http://

localhost:8080/books/<book-id>/reviews/<id> to update a review.

With RESTful style API, when you update some existing resource,

you use PUT as the HTTP verb. Let’s update reviewSlice.ts with a new

async action:

type UpdateReviewRequest = {

 bookId: number;

 reviewId: number;

Chapter 10 Book Reviews

224

 content: string;

};

export const updateReview = createAsyncThunk<Review,

UpdateReviewRequest>(

 "reviews/updateReview",

 �async ({ bookId, reviewId, content }:

UpdateReviewRequest) => {

 try {

 const response = await axios.put(

 �http://localhost:8080/books/${bookId}/reviews/$

{reviewId}`,

 { name, content }

);

 return response.data;

 } catch (error) {

 throw error;

 }

 }

);

Correspondingly, we could have two different unit tests for the

update action:

it("updates a review", async () => {

 const mockStore = configureStore({

 reducer: {

 reviewSliceReducer,

 },

 });

Chapter 10 Book Reviews

225

 const review = {

 id: 1,

 content: "Good work",

 };

 �const putSpy = jest.spyOn(axios, "put").mockResolvedValue

({ data: review });

 await mockStore

 .dispatch(

 updateReview({

 bookId: 1,

 reviewId: 1,

 content: "Good work",

 })

)

 .then((response) => {

 expect(response.payload).toEqual(review);

 });

 expect(putSpy).toHaveBeenCalledWith(

 "http://localhost:8080/books/1/reviews/1",

 {

 content: "Good work",

 }

);

});

The code snippet tests the “updates review” scenario. It creates a mock

store, spies on the axios.put function to track its calls, and dispatches

the updateReview action. The test asserts that the action resolves with the

expected payload and verifies that axios.put is called with the correct

parameters.

Chapter 10 Book Reviews

226

jest.spyOn is a Jest utility function used to create a mock or spy

on a function. It allows you to track the calls made to the function and

define custom behaviors for the function. In the code snippet, jest.

spyOn(axios, "put") is used to spy on the axios.put function, which

enables us to monitor its usage and control its behavior in the test.

By using jest.spyOn, we can assert that axios.put is called with the

expected parameters and provide a resolved value for the function using

mockResolvedValue. This allows us to simulate a successful response from

the server when testing the async action.

And for error handling cases, we’ll make sure the spy is simulating a

rejection:

it("handles network error", async () => {

 const mockStore = configureStore({

 reducer: {

 reviewSliceReducer,

 },

 });

 const error = new Error("Network error");

 �const putSpy = jest.spyOn(axios, "put").mockRejectedValueOnce

(error);

 await mockStore

 .dispatch(

 updateReview({

 bookId: 1,

 reviewId: 1,

 content: "Good work",

 })

)

Chapter 10 Book Reviews

227

 .then((response) => {

 �expect(response.type).toEqual("reviews/updateReview/

rejected");

 });

 expect(putSpy).toHaveBeenCalledWith(

 "http://localhost:8080/books/1/reviews/1",

 {

 content: "Good work",

 }

);

});

The error simulation part of the code uses jest.spyOn to create a spy

on the axios.put function. By using mockRejectedValueOnce, it sets up

the spy to return a rejected promise with the specified error object when

the axios.put function is called during the test. This allows us to simulate

a network error and test how the code handles it.

�Integration All Together
Since all the parts for editing a review are ready, it’s time to put them

together. We need to make sure that when Submit is clicked, the remote

service is called:

it("update the content", () => {

 const review = {

 id: 1,

 bookId: 1,

 name: "Juntao Qiu",

 date: "2023/06/21",

 �content: "Excellent work, really impressed by your efforts",

 };

Chapter 10 Book Reviews

228

 renderWithProvider(<ReviewItem review={review} />);

 �const putSpy = jest.spyOn(axios, "put").mockResolvedValue({

data: review });

 const button = screen.getByRole("button");

 // enter the editing mode

 act(() => {

 userEvent.click(button);

 });

 const editingContent = screen.getByRole("textbox");

 expect(editingContent).toBeInTheDocument();

 act(() => {

 userEvent.clear(editingContent);

 userEvent.type(editingContent, "I mean this is fantastic");

 });

 // submit the form

 act(() => {

 userEvent.click(button);

 });

 expect(putSpy).toHaveBeenCalledWith(

 "http://localhost:8080/books/1/reviews/1",

 { content: "I mean this is fantastic" }

);

});

The preceding code renders the ReviewItem component with

the provided review data. The axios.put function is spied on using

jest.spyOn and is set to resolve with the updated review data when called.

The test interacts with the component by clicking a button to enter

editing mode, clearing the existing content, and typing new content.

Chapter 10 Book Reviews

229

Then, another button is clicked to submit the form. The test asserts that

the axios.put function was called with the correct URL and updated

content.

For the user interaction, the userEvent.clear function is used to

clear the existing content from the textbox, and userEvent.type is used

to simulate typing the new content. After making the changes, another

button is clicked to submit the form and update the review. By simulating

these user interactions, the test ensures that the component is calling the

appropriate API endpoint.

For the ReviewItem component, we can implement it pretty

straightforwardly:

//...

const dispatch = useDispatch<AppDispatch>();

const updateReviewContent = () => {

 if (editing) {

 dispatch(

 �updateReview({ reviewId: review.id, bookId: review.

bookId, content })

);

 }

 setEditing((editing) => !editing);

};

//...

 <Button

 variant="contained"

 color="primary"

 name="submit"

 onClick={updateReviewContent}

 >

 {!editing ? "Edit" : "Submit"}

 </Button>

Chapter 10 Book Reviews

230

�Summary
In this chapter, we focused on implementing the functionality to create

and update reviews for books. We made the necessary changes in the

backend using json-server to support these operations, allowing us to

create and update reviews under a specific book.

On the frontend side, we added the reviewSlice to our Redux store,

which contains the necessary actions and reducers for handling review-

related state. We also updated our components to interact with the

reviewSlice, allowing users to add and update reviews.

To ensure the correctness of our implementation, we discussed various

testing techniques. We covered how to test actions and reducers using

Redux Toolkit’s createAsyncThunk and jest.spyOn to simulate network

requests and mock axios. We also explored how to test user interactions

by simulating events and user input using the React Testing Library and

userEvent.

By the end of this chapter, we have successfully implemented the

ability to create and update reviews for books. We have also gained an

understanding of how to effectively test our code to ensure its correctness

and maintainability.

Chapter 10 Book Reviews

231

CHAPTER 11

Behavior-Driven
Development
Behavior-Driven Development (BDD) methodology was coined by Dan

North. His goal was to improve communication between business and

technical teams to aid in the creation of software with business value.

Miscommunication between business and technical teams is often the

biggest bottleneck in the delivery of software projects, and developers

often misunderstand the business goals, and business teams fail to grasp

the capabilities of the technical team.

BDD is a process designed to aid the management and the
delivery of software development projects by improving com-
munication between engineers and business professionals. In
so doing, BDD ensures all development projects remain
focused on delivering what the business actually needs while
meeting all requirements of the user.

—Konstantin Kudryashov, Alistair Stead, and Dan North
from the blog post The Beginner’s Guide to BDD

The concept evolved from established agile practices, and there

are different practices used to implement BDD, but at its core it’s about

writing our automated tests in a human-readable language, in a way that

the goal of each test can be easily understood by both the business and

development teams. This encourages collaboration across roles to create

© Juntao Qiu 2023
J. Qiu, Test-Driven Development with React and TypeScript,
https://doi.org/10.1007/978-1-4842-9648-6_11

https://doi.org/10.1007/978-1-4842-9648-6_11

232

a shared understanding of the problem they are trying to solve and results

in system documentation that is automatically tested against actual system

behavior.

Some of the practices used when undertaking BDD you might have

heard of include Specification by Example and Living Documentation.

These practices provide specific techniques that can improve collaboration

among different roles in a team. They can aid developers in understanding

business goals and help them to make better decisions regarding business

restrictions. Live Document can make sure the software behaves as

expected when changes are implemented due to an update in business

requirements. It aims to prevent a situation where all tests are passing, but

the behavior of the system isn’t correct.

When implementing BDD in your team, there are numerous tools

available, and we will be showcasing one of them here: Cucumber.

Cucumber is a potent tool that utilizes a Domain-Specific Language

(DSL) for developers to create a human-readable document, which then

produces executable code as a side effect through some clever magic that

we’ll discuss later.

Cucumber can be used as a communication tool between business

analysts and developers who translate business rules into code. As

miscommunications often lead to bugs, having a dedicated tool for this

process is highly beneficial. While the Live Document generated by

Cucumber may not always be executable or too costly to run regularly,

it remains an excellent guide during the QA process for conducting

manual tests.

�Play with Cucumber
Given our existing familiarity with Cypress, it would be advantageous to

utilize that knowledge in conjunction with Cucumber. The excellent news

is that there exists a superb Cucumber plugin for Cypress, allowing us to

utilize the two tools in tandem.

Chapter 11 Behavior-Driven Development

https://en.wikipedia.org/wiki/Specification_by_example
https://cucumber.io/blog/podcast/living-documentation/
https://cucumber.io/blog/podcast/living-documentation/
https://cucumber.io/blog/podcast/living-documentation/
https://cucumber.io/blog/podcast/living-documentation/

233

�Install and Config cucumber Plugin
It only requires a few steps to configure and get them working together

properly:

npm install @badeball/cypress-cucumber-preprocessor \

 @bahmutov/cypress-esbuild-preprocessor esbuild --save-dev

And in the Cypress configuration file cypress.config.ts, we need to

tell Cypress to take the feature file as input and invoke the preprocessor to

parse and execute them:

import { defineConfig } from "cypress";

import createBundler from "@bahmutov/cypress-esbuild-

preprocessor";

import { addCucumberPreprocessorPlugin } from "@badeball/

cypress-cucumber-preprocessor";

import createEsbuildPlugin from "@badeball/cypress-cucumber-

preprocessor/esbuild";

export default defineConfig({

 e2e: {

 specPattern: "cypress/e2e/**/*.feature",

 async setupNodeEvents(

 on: Cypress.PluginEvents,

 config: Cypress.PluginConfigOptions

): Promise<Cypress.PluginConfigOptions> {

 await addCucumberPreprocessorPlugin(on, config);

 on(

 "file:preprocessor",

 createBundler({

 plugins: [createEsbuildPlugin(config)],

 })

);

Chapter 11 Behavior-Driven Development

234

 return config;

 },

 },

});

The code exports a default configuration for Cypress, specifically for

running end-to-end (e2e) tests with Cucumber. The configuration includes

the following:

•	 The specPattern property defines the pattern for

locating feature files. It uses a glob pattern to match all

.feature files in the cypress/e2e/ directory and its

subdirectories.

•	 The setupNodeEvents function is an asynchronous

function that sets up additional Node events for

Cypress. It takes two parameters: on and config.

•	 Inside the setupNodeEvents function, the

addCucumberPreprocessorPlugin function is called to

add a Cucumber preprocessor plugin to Cypress. This

plugin ensures proper preprocessing and parsing of

feature files.

•	 The file:preprocessor event is configured using the

createBundler function and an object with a list of

plugins. The createEsbuildPlugin is one such plugin,

likely responsible for transpiling or bundling the test

files using the Esbuild plugin.

•	 The modified configuration is then returned.

And the last thing we need to modify is the TypeScript configuration

tsconfig.json; (check the codebase hosted in https://github.com/

Apress/Test-Driven-Development-with-React-second-edition-

by-Juntao-Qiu) we need to make sure the target is ES2017 and

Chapter 11 Behavior-Driven Development

https://github.com/Apress/Test-Driven-Development-with-React-second-edition-by-Juntao-Qiu
https://github.com/Apress/Test-Driven-Development-with-React-second-edition-by-Juntao-Qiu
https://github.com/Apress/Test-Driven-Development-with-React-second-edition-by-Juntao-Qiu

235

nodeResolution is node16. The "target": "ES2017" means the

generated JavaScript code will be compatible with ECMAScript 2017. In

"moduleResolution": "node16", the value “node16” indicates that the

compiler will use a Node.js-style module resolution algorithm, specifically

targeting Node.js version 16 and its module resolution behavior.

�Live Document with cucumber
�File Structure
By default, cypress-cucumber-preprocessor is looking for feature files

under the cypress/e2e folder:

cypress

├── e2e
│ ├── bookish.feature
│ ├── bookish.spec.cy.ts
│ ├── bookish.ts
│ └── helpers.ts

So at runtime, cypress-cucumber-preprocessor will load *.feature

and try to execute them.

�The First Feature Specification
Because you can describe your test in plain English, it should be

straightforward to translate the acceptance criteria we described in

Chapter 3 into the format cucumber wants:

Feature: Book List

 As a reader

 I want to see books that are trending

 So I know what to read next

Chapter 11 Behavior-Driven Development

236

 Scenario: Heading

 Given I am a bookish user

 When I open the list page

 Then I can see the title "Bookish" is listed

Please take note of the indentation and specific keywords used in the

provided text, such as “Scenario,” “Given,” “When,” and “Then.” Certain

parts of the text, such as the section beginning with “As a , I want to ,

So that ,” are intended for human readers and not interpreted by the

Cucumber framework. This section can be seen as comments in other

programming languages and will not be recognized by Cucumber. The

actual execution by Cucumber starts from the “Scenario” section onward.

�Define the Steps
The sentences within a Scenario section are referred to as step definitions

and must be translated into executable code in the background. Cucumber

utilizes regular expressions to match these sentences and extract any

parameters, which are then passed into the corresponding step function

for execution.

Let’s firstly move some helper function we used in the current end-to-

end tests into a helpers.ts:

export const gotoApp = () => {

 cy.visit("http://localhost:3000/");

};

export const checkAppTitle = (title: string) => {

 cy.get('h2[data-test="heading"]').contains(title);

};

//...

Chapter 11 Behavior-Driven Development

237

�Interpret Sentences by Step Definition

We can define regular expressions with Given, When, and Then functions

from a cypress-cucumber-preprocessor and do something interesting in

those functions.

For example:

import { When, Then, Given } from "@badeball/cypress-cucumber-

preprocessor";

import {

 checkAppTitle,

 gotoApp,

} from "./helpers";

Given(/^I am a bookish user$/, function () {

 //...

});

When(/^I open the "([^"]*)" page$/, function (page: string) {

 gotoApp();

});

Then(/^I can see the title "([^"]*)" is showing$/, function

(title: string) {

 checkAppTitle(title);

});

The parameters passed into Given, When, and Then functions are

pretty similar; the first one is a regular expression, which is used to match

a sentence in .feature files. The second is a similar regular expression,

which returns a callback, which will be invoked once there is a match.

If there are some patterns in the regular expression, the value will be

Chapter 11 Behavior-Driven Development

238

extracted and passed to the callback (see the Then example). This is a

simple but powerful mechanism that allows us to do some interesting

work – including launching the browser and checking if particular

elements are showing on the page (Figure 11-1).

Figure 11-1.  Running cucumber with cypress in the terminal

So, our Feature is interpreted correctly, and the parameters are

extracted and passed to the method correspondingly. Note that we can

reuse functions we extracted in previous chapters like gotoApp and

checkAppTitle.

�Book List
With every piece connected, we can now start to define a step definition

with existing helper functions.

Chapter 11 Behavior-Driven Development

239

�Define Book List scenario

 Scenario: Book List

 Given I am a bookish user

 When I open the "list" page

 And there is a book list

 | name |

 | Refactoring |

 | Domain-driven design |

 | Building Microservices |

 | Acceptance Test Driven Development with React |

If you have used markdown to write documentation, you will recognize

the table we just defined earlier. That’s right, you can define a more

complex data structure in the feature file by using table: the structure

enclosed by pipe |. That’s a better way to organize repeatable data in your

test and is both easy for reading by human beings and for parsing by code.

�Use Data Table Interface

Each row will be treated as a row in a table, and you can actually define

many columns for each row:

 And there is

 | name | price |

 | Refactoring | $100 |

 | Domain-driven design | $120 |

 | Building Microservices | $80 |

Chapter 11 Behavior-Driven Development

240

cucumber provides a compelling DTI (Data Table Interface) to help

developers to parse and use data tables. For example, if we want to get

the BookList defined in the feature file within step, just use function

table.rows() as shown below:

And(/^there is a book list$/, function (table: DataTable) {

 console.log(table.rows())

});

You’ll see the data in the shape in your console:

[['Refactoring'],

 ['Domain-driven design'],

 ['Building Microservices'],

 ['Acceptance Test Driven Development with React']

]

Alternatively, if you prefer JSON, you can call table.hashes() instead:

[{ name: 'Refactoring' },

 { name: 'Domain-driven design' },

 { name: 'Building Microservices' },

 { name: 'Acceptance Test Driven Development with React' }]

Thus, in our step definition, we can use the DTI to do the assertion:

And(/^there is a book list$/, function (table: DataTable) {

 const actual = table.rows().map((row) => row[0]);

 checkBookListWith(actual);

});

�Searching
The next scenario we can test is the searching feature. We can describe

the business requirement in plain English:

Chapter 11 Behavior-Driven Development

241

 Scenario: Search by keyword

 Given I am a bookish user

 When I open the list page

 And I typed "design" to perform a search

 Then I should see "Domain-driven design" is matched

�Step Definitions

It is effortless to implement these steps, provided we have all the helper

functions in position:

import { checkBookListWith, performSearch } from './helpers';

import {

 When,

 Then

} from "@badeball/cypress-cucumber-preprocessor";

When(/^I typed "([^"]*)" to perform a search$/, function

(keyword: string) {

 performSearch(keyword);

});

Then(/^I should see "([^"]*)" is matched$/, function (title:

string) {

 checkBookListWith([title]);

});

Neat! The step functions are almost self-explainatory. Note how we

reuse existing helper functions here in step definitions.

Chapter 11 Behavior-Driven Development

242

�Review Page
Similarly, we can rewrite the review feature tests in the following sentence,

in English:

 Scenario: Write a review

 Given I am a bookish user

 When I open the book detail page for the first item

 And I add a review to that book

 | name | content |

 | Juntao Qiu | Excellent work! |

 �Then I can see it displayed beneath the description section

with the text "Excellent works!"

Again, we can reuse a lot of steps defined previously, noting that we

use a Data Table Interface to extract multiple parameters passed in:

import {

 When,

 Then,

 Given,

 DataTable,

} from "@badeball/cypress-cucumber-preprocessor";

import {

 checkReview,

 composeReview,

 gotoApp,

 gotoNthBookInTheList

} from "./helpers";

When(/^I open the book detail page for the first item$/,

function () {

 cy.request("DELETE", "http://localhost:8080/books/1/reviews");

 gotoApp();

Chapter 11 Behavior-Driven Development

243

 gotoNthBookInTheList(0);

});

When(/^I add a review to that book$/, function (table:

DataTable) {

 const reviews = table.hashes();

 const review = reviews[0];

 composeReview(review.name, review.content);

});

Then(

 �/^I can see it displayed beneath the description section with

the text "([^"]*)"$/,

 function (content: string) {

 �cy.get('div[data-testid="reviews-container"] .review')

.should(

 "have.length",

 1

);

 checkReview(content);

 }

);

By abstracting the behavior into helper functions, we can significantly

improve the clarity and relevance of the text within the step function.

Additionally, consolidating related code enhances the readability and

maintainability of future changes. This approach enables seamless

modification of specific files, such as UI elements, without impacting other

sections, as it allows for easy navigation to the corresponding file.

Chapter 11 Behavior-Driven Development

244

�Summary
In this chapter, we explored the concepts and benefits of Cucumber testing

and Behavior-Driven Development (BDD). Cucumber is a tool that allows

for the creation of executable specifications written in a language close to

the business domain. We discussed how placing Cucumber tests at the end

of examples improves readability, enabling stakeholders and nontechnical

team members to validate system behavior easily.

One of the key advantages of Cucumber is its ability to promote

collaboration between technical and nontechnical team members. By

aligning tests with business objectives and using a language that closely

resembles the domain, Cucumber facilitates effective communication and

shared understanding of requirements.

We learned about the reusability of Cucumber tests, which reduces

duplication of test code and simplifies maintenance efforts. Automation of

Cucumber tests enables regression testing and faster feedback on system

behavior, enhancing the overall testing process.

Finally, we discussed how Cucumber aligns with the principles of

Behavior-Driven Development (BDD). By focusing on collaboration,

shared understanding, and clarity in requirements, Cucumber encourages

teams to work together in delivering value to stakeholders.

In conclusion, Cucumber testing and BDD provide valuable

approaches to ensure the alignment of technical implementations

with business requirements. By leveraging Cucumber’s features, teams

can enhance collaboration, improve test quality, and achieve effective

communication throughout the development process.

Chapter 11 Behavior-Driven Development

245

�APPENDIX A

Background of
Testing Strategies
�Different Layers of Tests
Different layers of tests are used in a frontend project to ensure

comprehensive and reliable testing coverage. In a well-designed test

suite, tests should contain at least these components: end-to-end tests,

integration tests, and unit tests.

Each layer focuses on specific aspects of the application and helps

identify different types of issues. Here are the key reasons for using

different layers of tests:

	 1.	 Unit tests: Unit tests target small, isolated units of

code, typically individual functions or components.

They verify the behavior and functionality of these

units in isolation, without dependencies on external

resources. Unit tests help catch bugs early, validate

edge cases, and provide quick feedback during

development. They facilitate code maintainability,

as changes can be made with confidence, knowing

that existing functionality is preserved.

© Juntao Qiu 2023
J. Qiu, Test-Driven Development with React and TypeScript,
https://doi.org/10.1007/978-1-4842-9648-6

https://doi.org/10.1007/978-1-4842-9648-6

246

	 2.	 Integration tests: Integration tests verify the

interactions and compatibility between various

components, modules, or services within the

application. They focus on testing the integration

points, data flow, and communication between

different parts of the system. Integration tests

uncover issues that may arise when different

components work together and help ensure the

overall system functions correctly.

	 3.	 End-to-end (E2E) tests: E2E tests simulate real user

interactions and scenarios, covering the entire

application from start to finish. They validate

the functionality and behavior of the system as a

whole, including the user interface, user flows, and

integrations with external services. E2E tests ensure

that all components work together seamlessly and

provide confidence in the overall user experience.

By incorporating these different layers of tests, the frontend project

achieves a comprehensive testing strategy. Unit tests catch individual

component issues, integration tests detect problems at the interaction

points, and E2E tests validate the end-to-end functionality. This layered

approach helps identify bugs early, promotes code quality, supports easier

debugging, and builds confidence in the reliability and robustness of the

frontend application.

�Test Pyramid
Mike Cohn coined test pyramid in his famous book Succeeding with Agile,

which is about how you should arrange your test structure we mentioned

earlier.

Appendix A Background of Testing Strategies

https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid

247

The test pyramid

Typically, you have a small number of end-to-end tests (see the top of the

pyramid) and cover critical paths from the end user’s perspective. And then

you have a larger number of integration tests in the middle layer – those tests

are making sure different components across the application can fit together

and talk to each other correctly. Finally, at the bottom, you have many more

unit tests that verify each building block will function well independently.

There are different ways to explain the pyramid, but the point I want to

emphasize here is the higher the tests in the pyramid, the more expensive

they are in terms of running cost and the less helpful they are in locating bugs.

Additionally, as you proceed further down the pyramid, the number

of tests should increase, because each type of test focuses on a different

perspective of the software quality. The number of tests for each type, the

running time, and the feedback speed are all different from one to the next.

A long-running and fragile test suite does not help the development

process, or even worse, it could deliver the wrong message to the team:

automation tests are useless. And after some time, those test suites

are seen as waste and then would be abandoned, and that could put the

software system under significant risk.

The test pyramid is an excellent way for us to design and review our

test strategy. If we build everything from scratch, that’s easy. We just need

Appendix A Background of Testing Strategies

248

to make sure when new tests need to be added, we always add them after

reviewing the current shape of the test suites. In contrast, when we are

working on a legacy system, we may need to refactor the whole test suite

(if one exists) to conform to the shape of the test pyramid iteratively. We

need to clean up the duplicated, long-running tests at the higher levels and

make sure we have enough lower-level tests to support the development.

�Agile Testing Quadrants
In 2003, Brian Marick introduced the Agile Testing Quadrants. It’s a great

tool to help the delivery team to categorize different types of tests. Later

on in 2008, Lisa Crispin and Janet Gregory in their book Agile Testing: A

Practical Guide for Testers and Agile Teams extended the concept of Agile

Testing Quadrants, described in the following figure:

Test quadrants. Source: https://lisacrispin.com/2011/11/08/
using-the-agile-testing-quadrants/

Appendix A Background of Testing Strategies

https://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/
https://lisacrispin.com/2011/11/08/using-the-agile-testing-quadrants/

249

In the preceding figure, the authors divided tests into four quadrants.

Along the X axis, tests in the left-hand quadrants help the delivery team to

understand what should be tested, and tests on the right-hand side help

them to evaluate the system from the outside. For the Y axis, tests on the

top ensure the code meets the business requirements, while tests at the

bottom are related more to internal quality.

Since we’re focusing on a test-first approach to understand

business requirements and then drive the production code from a

developer’s perspective, we will only discuss tests in Q1 and Q2 in this

book. In the chart, acceptance tests check if our code is meeting the

business requirements, while unit tests and integration tests focus on

technical details.

Compared to exploratory tests or performance tests on the right, all of

those tests are used for supporting developers to write correct (i.e., meets

the requirements) code.

�Summary
Different layers of tests are utilized in frontend projects to ensure

comprehensive testing coverage and reliable software quality. The

concept of the test pyramid, introduced by Mike Cohn, emphasizes the

importance of a balanced test structure. By employing these different

layers and adopting a test-first approach, frontend projects can achieve

comprehensive testing, ensure code correctness, and maintain high

software quality.

Appendix A Background of Testing Strategies

251© Juntao Qiu 2023
J. Qiu, Test-Driven Development with React and TypeScript,
https://doi.org/10.1007/978-1-4842-9648-6

�APPENDIX B

A Short Introduction
to TypeScript
This appendix introduces some of the key features of TypeScript used

in the book. While not a comprehensive reference (as new features are

continuously added to the language), it provides enough context to

understand all the examples discussed in the book.

TypeScript’s static type checking is an effective way to reduce potential

bugs in a weakly typed language like JavaScript. Though it may take time

to become familiar with all the concepts, it’s worthwhile to learn and apply

them in your codebase.

�The Language
TypeScript is a typed superset of JavaScript that adds optional static typing

and other features to the language. It allows developers to catch errors

and bugs at compile time instead of runtime, making their code more

robust and maintainable. TypeScript also provides advanced features like

classes, interfaces, and modules that make it easier to write large-scale

applications.

TypeScript code needs to be compiled before it can be executed

in a browser or in a JavaScript runtime environment. When you write

TypeScript code, you use TypeScript syntax and features that are not

compatible with standard JavaScript engines.

https://doi.org/10.1007/978-1-4842-9648-6

252

The TypeScript compiler then takes your TypeScript code and

compiles it into JavaScript code that can be executed in a browser or in a

JavaScript runtime environment (like in Node).

�Primitive Types
TypeScript provides several built-in primitive types, including number,

string, boolean, and void. Use these types to declare the type of a variable

or parameter in your TypeScript code. By explicitly declaring the type of a

variable or parameter, you can catch errors early on and help ensure that

your code is more maintainable and robust:

const age: number = 38;

const name: string = "Juntao Qiu";

const isDone: boolean = false;

function sayHello(): void {

 console.log("Hello!");

}

These built-in primitive types can be used anywhere when you need a

variable, a parameter, or a return value from a function:

function greeting(message: string): void {

 console.log(`Hello, ${message}`);

}

or a helper function capitalize (takes a string as input and returns a

string) can be defined as

function capitalize(str: string): string {

 return str.charAt(0).toUpperCase() + str.slice(1);

}

Appendix B A Short Introduction to TypeScript

253

�Custom Types
A custom type is a type that you define yourself, either by combining

existing types or by creating new types from scratch. Custom types can be

used to define the structure and behavior of objects in your code and can

help make your code more expressive and self-documenting.

�Interface
An interface is a way to describe the shape of an object or function in

TypeScript. Use interfaces to create contracts between different parts

of your code or when you need to define a complex type that is used

in multiple places. By using interfaces, you can make your code more

modular and reusable. Interfaces can help catch errors early on and make

it easier to refactor your code later on.

interface Person {

 firstName: string;

 lastName: string;

 age: number;

}

const person: Person = {

 firstName: "Juntao",

 lastName: "Qiu",

 age: 38

};

You can also define methods in an interface, just like in other

programming languages:

interface OrderItem {

 id: number;

 name: string;

Appendix B A Short Introduction to TypeScript

254

 price: number;

 quantity: number;

}

interface Order {

 id: number;

 items: OrderItem[];

 totalPrice: number;

 status: "pending" | "shipped" | "delivered";

 addItem(item: OrderItem): void;

 removeItem(item: OrderItem): void;

 �updateStatus(status: "pending" | "shipped" |

"delivered"): void;

}

Note the status field is defined as "pending" | "shipped" |

"delivered"; it’s called union type, which means that a value can have one

of several possible types. So you can call method updateStatus with one of

these values, but other values will be rejected during the type checks.

�Class
In TypeScript, a class is a blueprint for creating objects that share a

common structure and behavior. Classes are used to define the properties

and methods of an object and can be used to create multiple instances of

that object:

class Product {

 �constructor(public id: number, public name: string, public

price: number) {}

}

const product = new Product(1, "Widget", 10.99);

Appendix B A Short Introduction to TypeScript

255

For a ShoppingCart, you can define private fields in a class that can

only be accessed internally with a this. prefix:

class ShoppingCart {

 private items: Item[];

 constructor() {

 this.items = [];

 }

 addItem(item: Item) {

 this.items.push(item);

 }

 removeItem(item: Item) {

 �const index = this.items.findIndex((i) => i.id ===

item.id);

 if (index > -1) {

 this.items.splice(index, 1);

 }

 }

 get totalPrice() {

 �return this.items.reduce((total, item) => total + item.

price, 0);

 }

}

Please note the get in the totalPrice method indicates that it is a

getter. You use a getter just like a regular property of the class instances:

 it('get the total price', () => {

 const shoppingCart = new ShoppingCart();

 shoppingCart.addItem({

 id: "1",

Appendix B A Short Introduction to TypeScript

256

 name: "Test-Driven Development with React",

 price: 50.0

 });

 expect(shoppingCart.totalPrice).toEqual(50.0);

 })

�Type Alias
In TypeScript, a type alias is a way to create a new name for an existing

type or to define a new type based on an existing type:

type Person = {

 name: string;

 age: number;

 email: string;

};

And you can use the Person like the built-in primitive types in a

variable definition, function parameter, or return value:

const person: Person = {

 name: "Juntao",

 age: 38,

 email: "juntao.qiu@gmail.com"

};

function sendEmailToPerson(person: Person): void {

 // Send email

}

sendEmailToPerson(person);

Appendix B A Short Introduction to TypeScript

257

Type aliases can also be used to define union types, intersection types,

or other complex types. For example:

type Status = "pending" | "shipped" | "delivered";

type Order = {

 id: number;

 items: string[];

 status: Status;

};

type EnhancedOrder = Order & {

 customerName: string;

 totalPrice: number;

};

In the preceding code, we define three type aliases: Status, Order, and

EnhancedOrder. The Status type alias defines a union type of string literals

that represent the possible values for the status property in the Order type.

The Order type alias defines an object with three properties: id, items,

and status, where the status property must be one of the possible values

defined in the Status type alias. Finally, the EnhancedOrder type alias

extends the Order type with two additional properties: customerName

and totalPrice.

The & symbol is used to create an intersection type, which represents a

type that has all the properties of two or more types. An intersection type is

formed by combining two or more types with the & operator.

Appendix B A Short Introduction to TypeScript

258

�Summary
In summary, using TypeScript with React can provide developers with

a range of benefits. TypeScript allows you to specify types for your

React components, props, and state, providing improved type safety

and catching errors early on. It can also make your code more self-

documenting and expressive and help organize your code more effectively.

Additionally, TypeScript can make it easier to refactor your code by

identifying all the places where a certain type or interface is used.

By using TypeScript, you can write more robust and maintainable code

that is easier to scale and collaborate on with other developers.

Appendix B A Short Introduction to TypeScript

259

Index

A
Acceptance test, 4, 153
Acceptance Test–Driven

Development (ATDD), 5, 6,
81, 167, 198

add function, 20, 70
Advertising management

system, 197
axios.put function, 225–228

B
beforeAll and afterAll functions, 25
Behavior-driven development

(BDD), 8
Cucumber, 232–234

book list, 238–240
feature specification, 235, 236
file structure, 235
review page, 242, 243
searching, 240, 241
step function, 236–238

developers, 232
miscommunication, 231

Book detail view
acceptance tests

detail page, 126
functionality, 125

default value, 146, 147, 149
frontend routing

BookDetailContainer, 132
BookDetailContainer.tsx,

129, 130
index.tsx, 128, 129
react-router, 127
useBook hook, 131

length of description,
149, 150

testing data, 141, 142
unit tests

book detail page, 137, 138
file structure, 139–141
refactoring, 133–136

user interface
refinement, 143–145

Book list
acceptance test

add list, 97, 98
extract component,

103, 104
extract function, 101, 102
verify book name, 99

backend server
async request, 108, 109
setup/teardown, 110–113
stub, 105–107

© Juntao Qiu 2023
J. Qiu, Test-Driven Development with React and TypeScript,
https://doi.org/10.1007/978-1-4842-9648-6

https://doi.org/10.1007/978-1-4842-9648-6

260

loading indicator
network connection, 114
react hooks, 118–120
refactor first, 114–118

unit tests, 120–123
BookListContainer, 116–118
Book reviews

add more fields, 216–219
business requirements

BookDetail, 201, 202
BookDetail

component, 203–205
empty list, 198, 199
static data, 200

end-to-end test
cypress test, 206
detail page, 206
refactoring, 214–216
review slice, 207–209
stub server, 209–214

review editing
edit, 220–223
integration, 227, 228
save a review, 223–226

Building Microservices, 112, 113,
142, 164–166

C
createAsyncThunk function, 181
create-react-app package, 84
Create, Read, Update, Delete

(CRUD), 106, 198

createSlice function, 169
Cucumber, 232, 244
Cypress, 167
Cypress end-to-end UI testing

framework, 81

D
describe function, 19
Domain-driven design, 110, 112, 154
Domain-Specific Language

(DSL), 8, 232

E, F
End-to-end (E2E) tests, 246

G
Given-When-Then (GWT), 66

H
Helper function, 236

I
Integration tests, 189, 246

J, K, L
JavaScript testing framework, 15
Jest

calc.test.ts, 18
example, 21

Book list (cont.)

INDEX

261

file name patterns, 19
function add, 20
matchers

array/object, 27, 28
equality, 25
expect.extend, 32, 33
expect object, 28–30
jsonpath, 31, 32
.not, 26, 27

mocking/stubbing
implementation, 35
jest.fn, 35
remote service call, 36

setup environment, 15–18
setup/tear down, 23, 25
test maintainer friendly, 22

jest.fn(), 160
jest.spyOn, 226
Jest testing framework, 12

M, N, O
Material UI, 81, 151
MVVM libraries, 170

P, Q
Project setup

application requirements, 81–84
create-react-app package,

84, 86, 87
install Cypress

async/await, 91
end-to-end test, 93, 94

setup, 91, 92
shortcut command, 94, 95
version control, 95

Material UI, 88–90
Publish-Subscribe (Pub-Sub)

pattern, 171

R
React function, 61
React hooks, 118
react-router, 127, 128
React Testing Library, 135, 230
Red-Green-Refactor, 2, 4
Redux, 169, 172
Refactoring, 124

arrow function, 61
code smells

Big Props List, 41
design principles, 44
long files, 40
mixing computation,

views, 42
mocks, 43, 44
projects, 40

extract constant, 49, 58
extract function, 50, 53, 54, 56
extract parameter, 57
if-else, 55
implementation, 45–47
mastering, 39
moce fields, 60
rename parameter, 51
rename variable, 52

INDEX

262

simplify logic, 62
slide statements, 48, 59

Refactoring techniques, 65
render method, 100, 122
ReviewList component, 202, 205

S
SearchBox, 158, 159
Search functionality

acceptance test
BookListContainer, 157
book title, 158
components, 162, 163
hook, 156
requirement, 160
SearchBox, 158–161
test code, 163–166
TextField, 154
useBooks, 155
useEffect hook, 155

discovery process, 153
useBooks, 156

setupNodeEvents function, 234
Slice, 179, 197
spacing property, 145
specPattern property, 234
State management

build UI, 170, 171
decoupling data/view,

174, 175
formula view = f(state), 177

implementation
environment setup, 178
fetching data from

remote, 181–183
slice, 179
store, 183–185

library, 193, 194
migrate application

book details slice, 190–192
book list container, 186, 187
Redux, 185
SearchBox

component, 187–189
test individual reducers,

189, 190
pub-sub pattern, 171, 172
Redux, 172, 173

Step functions, 241
Stub server, 106

T
Test-Driven Development (TDD)

ATDD, 6, 7
BDD, 8
first test, 75
Mark d, 75
Notes d and D, 76
practical approaches, 1
prerequisites, 8, 9
Red-Green-Refactor, 2–4
refactoring, 77–79
tasking, 10, 11

Refactoring (cont.)

INDEX

263

parser, tracking
progress, 73, 74

subtasks, 72
system, 73

techniques, 10
tests, 1
types, 5
writing test, 65, 66, 68

Testing strategies
agile testing quadrants,

248, 249
E2E tests, 246
integration, 246
unit tests, 245
test pyramid, 247

totalPrice method, 255
translate function, 77
Triangulation method

function addition, 69–71
writing test, 69

TypeScript
custom type

class, 254, 255
definition, 253
interface, 253, 254
react components, 258
type alias, 256, 257

definition, 251
features, 251
primitive types, 252
static type checking, 251

U, V, W, X
Unit tests, 245–247, 249
userEvent.clear function, 229

Y, Z
YAGNI, 5

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Foreword 1
	Foreword 2
	Introduction
	Chapter 1: A Brief History of Test-Driven Development
	What Is Test-Driven Development?
	The Red-Green-Refactor Cycle
	A Closer Look at Red-Green-Refactor
	Types of TDD
	Implementing Acceptance Test–Driven Development
	Behavior-Driven Development

	Prerequisites of TDD
	Be Aware of Code Smell and Refactoring
	Test First or Test Last

	Other Techniques That Can Help Implement TDD
	Tasking
	Maintaining a Simple Checklist

	Summary
	Further Reading

	Chapter 2: Get Started with Jest
	Set Up the Environment
	Install and Configure Jest

	Jest at First Glance
	Basic Concepts in Jest
	Jest API: describe and it
	Organize Your Tests Maintainer Friendly
	Set Up and Tear Down

	Using Matchers in Jest
	Basic Usages
	Equality
	.not Method for Opposite Matching

	Matchers for Array and Object
	toContainEqual and toContain

	The Powerful Function expect
	The containing Family Functions

	Build Your Matchers
	Example: jsonpath Matcher
	Extend the expect Function

	Mocking and Stubbing
	jest.fn for Spying
	Mock Implementation
	Stub a Remote Service Call

	Summary

	Chapter 3: Refactoring Essentials: The Basics You Need to Know
	The Ten Most Common Refactorings
	Let’s Talk the Problem – Code Smells
	Long Files
	Big Props List
	Mixing Computation with Views
	Overuse of Mocks
	Not Following Established Principles

	The Problem – ROT13
	The Initial Implementation
	The Top Ten Refactorings
	Step 1: Slide Statements
	Step 2: Extract Constant
	Step 3: Extract Function
	Step 4: Rename Parameter
	Step 5: Rename Variable
	Step 6: Extract Function
	Step 7: Replace if-else with ?
	Step 8: Extract Function
	Step 9: Extract Parameter
	Step 10: Extract Constant
	Step 11: Slide Statements
	Step 12: Move Fields
	Step 13: Function to Arrow Function
	Step 14: Simplify Logic

	Summary

	Chapter 4: Test-Driven Development Essentials
	Writing Tests
	Using Given-When-Then to Arrange a Test

	Triangulation Method
	Example: Function addition
	The First Test for addition
	A Quick and Dirty Implementation
	The Second Test Case to Make Our Implementation Less Specific
	The Final and Simple Implementation

	How to Do Tasking with TDD
	An Expression Parser for Tracking Progress
	Split the Parser to Subtasks

	Applying TDD Step by Step
	The First Test – Parse and Calculate Mark d
	The Second Test – For Mark D
	The Combination of Notes d and D
	Refactoring – Extract Functions

	Keep Refactoring – Extract Functions to Files

	Summary

	Chapter 5: Project Setup
	Application Requirements
	Feature 1 – Book List
	Feature 2 – Book Detail
	Feature 3 – Searching
	Feature 4 – Book Reviews

	Create the Project
	Using create-react-app
	Project File Structure

	Material UI Library
	Font and Icons
	Using Typography As an Example

	Install Cypress
	Set Up Cypress
	Our First End-to-End Test
	Define a Shortcut Command

	Commit Code to Version Control
	Files to Ignore

	Summary

	Chapter 6: Implement the Book List
	Acceptance Tests for Book List
	A List (of Books)
	Verify Book Name
	Refactoring – Extract Function
	Refactoring – Extract Component

	Talk to the Backend Server
	Stub Server
	Set Up json-server
	Make Sure the Stub Server Is Working

	Async Request in Application
	Setup and Teardown
	Extend Stub Book Service with middleware
	beforeEach and afterEach Hook

	Adding a Loading Indicator
	Refactor First
	Adding More States
	Refactor: Extract Component

	Define a React Hook

	Unit Tests of the Bookish Application
	Unit Test with the React Testing Library
	Test Loading State

	Summary

	Chapter 7: Implementing the Book Detail View
	Acceptance Tests
	Link to Detail Page
	Verify Book Title on Detail Page
	Frontend Routing
	BookDetailContainer Component
	Extract useBook Hook
	Simplify BookDetailContainer with the New Hook

	Unit Tests
	Refactoring
	Extract Presentational Component BookDetail
	MemoryRouter for Testing

	Book Detail Page
	Book Title
	Book Description

	File Structure
	Modularize

	Testing Data
	User Interface Refinement
	Using Grid System

	Handling Default Value
	A Failing Test with undefined

	One Last Change?
	Summary

	Chapter 8: Searching by Keyword
	Acceptance Test
	One Step Further
	What Have We Done?

	Moving Forward – The Test Code Is As Important
	Summary

	Chapter 9: Introduction to State Management
	State Management
	A Typical Scenario of Building UI
	Pub-Sub Pattern
	A Brief of Redux
	Three Principles of Redux

	Decoupling Data and View
	The Formula: view = f(state)

	Implementing State Management
	Environment Setup
	Define a Slice
	Fetching Data from Remote
	Define the Store

	Migrate the Application
	Book List Container
	Refine the SearchBox

	Test Individual Reducers
	Book Details Slice
	Do You Need a State Management Library?
	Summary

	Chapter 10: Book Reviews
	Business Requirements
	Start with an Empty List
	Rendering a Static List
	Use the Review Component in BookDetail
	Fulfill a Book Review Form

	End-to-End Test
	Define a Review Slice
	Adjust the Stub Server for Book Reviews
	Refactoring

	Add More Fields
	Review Editing
	Save a Review – Action and Reducer
	Integration All Together

	Summary

	Chapter 11: Behavior-Driven Development
	Play with Cucumber
	Install and Config cucumber Plugin

	Live Document with cucumber
	File Structure
	The First Feature Specification
	Define the Steps
	Interpret Sentences by Step Definition

	Book List
	Define Book List scenario
	Use Data Table Interface

	Searching
	Step Definitions

	Review Page

	Summary

	Appendix A: Background of Testing Strategies
	Different Layers of Tests
	Test Pyramid
	Agile Testing Quadrants

	Summary

	Appendix B: A Short Introduction to TypeScript
	The Language
	Primitive Types
	Custom Types
	Interface
	Class
	Type Alias

	Summary

	Index

